Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling
Abstract
:1. Introduction
- In response to the limitations of traditional methods for predicting the health status of lithium batteries, we have introduced the HEAG model. This model utilizes hybrid-granularity time scales to significantly enhance predictive accuracy.
- To address the complex interplay of coarse-grained and fine-grained temporal dependencies within multiple input sequences more effectively, we have developed the FDG and the CDG. These tools help analyze the mutual dependencies across individual time points and entire time windows, offering new perspectives on heterogeneous correlation modeling among sequences.
- We have conducted extensive experiments using two publicly available datasets to demonstrate that the HEAG model can more accurately discern the correlations among various input sequences. This ability leads to improved predictions of the SOH of lithium batteries.
2. Related Works
2.1. Traditional Methods
2.2. Deep Learning-Based Methods
2.3. Graph-Based Methods
3. Methods
3.1. Problem Formulation
3.2. Model Architecture
3.2.1. Feature Engineering
3.2.2. Fine-Grained Evolving Aware Graph
3.2.3. Coarse-Grained Dependency Graph
3.3. Result Prediction and Loss Function
4. Experiments
4.1. Battery Datasets
4.1.1. NASA Dataset
4.1.2. CALCE Dataset
4.2. Evaluation Metrics
4.3. Baseline Methods
4.4. Implementation Settings
4.5. Comparison Results and Analysis
4.6. Ablation Study
4.7. Case Study: Cross-Battery Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SOH | State-of-health |
FDG | Fine-grained Dependency Graph |
CDG | Coarse-grained Dependency Graph |
HEAG | Hybrid-grained Evolving Aware Graph |
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
GRU | Gated Recurrent Network |
LSTM | Long Short-term Memory |
GAT | Graph Attention |
TCN | Temporal Convolutional Network |
CC | Constant Current |
CV | Constant Voltage |
MLP | Multi-Layer Perceptron |
References
- Xu, F.; Yang, F.; Fei, Z.; Huang, Z.; Tsui, K.L. Life prediction of lithium-ion batteries based on stacked denoising autoencoders. Reliab. Eng. Syst. Saf. 2021, 208, 107396. [Google Scholar] [CrossRef]
- Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z.; et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation. Int. J. Electr. Power Energy Syst. 2014, 62, 783–791. [Google Scholar] [CrossRef]
- Yao, L.; Wen, J.; Xu, S.; Zheng, J.; Hou, J.; Fang, Z.; Xiao, Y. State of health estimation based on the long short-term memory network using incremental capacity and transfer learning. Sensors 2022, 22, 7835. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.; Younes, H.; Hong, H.; Widener, C.; Hrabe, R.H.; Wu, J.J. Nanofluids as media for high capacity anodes of lithium-ion battery—A review. J. Nanofluids 2019, 8, 657–670. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, S. Research on aging mechanism and state of health prediction in lithium batteries. J. Energy Storage 2023, 72, 108274. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Y.; Cheng, C.; Zhou, B.; Hu, P.; Yuan, Y. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl. Energy 2019, 253, 113626. [Google Scholar] [CrossRef]
- Gao, X.; Dong, X.; Xing, Z.; Jamila, S.; Hong, H.; Jiang, H.; Zhang, J.; Ju, Z. Ether-based electrolytes enable the application of nitrogen and sulfur co-doped 3D graphene frameworks as anodes in high-performance sodium-ion batteries. Nanoscale 2023, 15, 1568–1582. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Wang, B.; Yang, M.; Wu, Z.; Yao, Y.; Wei, Z. Two-stage fine-grained image classification model based on multi-granularity feature fusion. Pattern Recognit. 2024, 146, 110042. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Soczka-Guth, T.; Sauer, D.U. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.; Jiang, C.; Fernandez, C.; Yu, C.; Fan, Y.; Cao, W. A novel adaptive dual extended Kalman filtering algorithm for the Li-ion battery state of charge and state of health co-estimation. Int. J. Energy Res. 2021, 45, 14592–14602. [Google Scholar] [CrossRef]
- Liu, D.; Yin, X.; Song, Y.; Liu, W.; Peng, Y. An on-line state of health estimation of lithium-ion battery using unscented particle filter. IEEE Access 2018, 6, 40990–41001. [Google Scholar] [CrossRef]
- Schwunk, S.; Armbruster, N.; Straub, S.; Kehl, J.; Vetter, M. Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries. J. Power Sources 2013, 239, 705–710. [Google Scholar] [CrossRef]
- Dong, G.; Chen, Z.; Wei, J.; Ling, Q. Battery health prognosis using Brownian motion modeling and particle filtering. IEEE Trans. Ind. Electron. 2018, 65, 8646–8655. [Google Scholar] [CrossRef]
- Chen, N.; Hu, X.; Gui, W.; Zou, J. Estimation of li-ion battery state of charging and state of healthy based on unsented Kalman filtering. In Proceedings of the The 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014; pp. 4725–4729. [Google Scholar]
- Yan, W.; Zhang, B.; Zhao, G.; Tang, S.; Niu, G.; Wang, X. A battery management system with a Lebesgue-sampling-based extended Kalman filter. IEEE Trans. Ind. Electron. 2018, 66, 3227–3236. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Li, X.; Huo, M.; Luo, H.; Yin, S. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty. Reliab. Eng. Syst. Saf. 2022, 222, 108357. [Google Scholar] [CrossRef]
- Thelen, A.; Li, M.; Hu, C.; Bekyarova, E.; Kalinin, S.; Sanghadasa, M. Augmented model-based framework for battery remaining useful life prediction. Appl. Energy 2022, 324, 119624. [Google Scholar] [CrossRef]
- Greenbank, S.; Howey, D.A. Piecewise-linear modelling with automated feature selection for Li-ion battery end-of-life prognosis. Mech. Syst. Signal Process. 2023, 184, 109612. [Google Scholar] [CrossRef]
- Luo, J.; Fang, S.C.; Deng, Z.; Tian, Y. Robust kernel-free support vector regression based on optimal margin distribution. Knowl.-Based Syst. 2022, 253, 109477. [Google Scholar] [CrossRef]
- He, J.; Tian, Y.; Wu, L. A hybrid data-driven method for rapid prediction of lithium-ion battery capacity. Reliab. Eng. Syst. Saf. 2022, 226, 108674. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Feng, X. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Trans. Veh. Technol. 2020, 69, 10854–10867. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for forecasting battery state of health. J. Power Sources 2017, 357, 209–219. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. Energy 2020, 203, 117852. [Google Scholar] [CrossRef]
- Akbar, K.; Zou, Y.; Awais, Q.; Baig, M.J.A.; Jamil, M. A machine learning-based robust state of health (soh) prediction model for electric vehicle batteries. Electronics 2022, 11, 1216. [Google Scholar] [CrossRef]
- Chang, C.; Wang, Q.; Jiang, J.; Wu, T. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm. J. Energy Storage 2021, 38, 102570. [Google Scholar] [CrossRef]
- Al-Dulaimi, A.; Zabihi, S.; Asif, A.; Mohammadi, A. A multimodal and hybrid deep neural network model for remaining useful life estimation. Comput. Ind. 2019, 108, 186–196. [Google Scholar] [CrossRef]
- Lu, J.; Xiong, R.; Tian, J.; Wang, C.; Hsu, C.W.; Tsou, N.T.; Sun, F.; Li, J. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning. Energy Storage Mater. 2022, 50, 139–151. [Google Scholar] [CrossRef]
- Yayan, U.; Arslan, A.T.; Yucel, H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data. Appl. Artif. Intell. 2021, 35, 421–439. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, B. Battery health prognosis using improved temporal convolutional network modeling. J. Energy Storage 2022, 51, 104480. [Google Scholar] [CrossRef]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI blog 2019, 1, 9. [Google Scholar]
- Li, P.; Zhang, Z.; Grosu, R.; Deng, Z.; Hou, J.; Rong, Y.; Wu, R. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries. Renew. Sustain. Energy Rev. 2022, 156, 111843. [Google Scholar] [CrossRef]
- Eddahech, A.; Briat, O.; Bertrand, N.; Delétage, J.Y.; Vinassa, J.M. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electr. Power Energy Syst. 2012, 42, 487–494. [Google Scholar] [CrossRef]
- You, G.W.; Park, S.; Oh, D. Diagnosis of electric vehicle batteries using recurrent neural networks. IEEE Trans. Ind. Electron. 2017, 64, 4885–4893. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Wang, Y. Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network. J. Energy Storage 2022, 52, 104901. [Google Scholar] [CrossRef]
- Wang, S.; Takyi-Aninakwa, P.; Jin, S.; Yu, C.; Fernandez, C.; Stroe, D.I. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy 2022, 254, 124224. [Google Scholar] [CrossRef]
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; Zhang, B.; Liu, M.; Wang, J.; Liu, C.; Zhang, Y. Method of Predicting SOH and RUL of Lithium-Ion Battery Based on the Combination of LSTM and GPR. Sustainability 2022, 14, 11865. [Google Scholar] [CrossRef]
- Audin, P.; Jorge, I.; Mesbahi, T.; Samet, A.; De Beuvron, F.D.B.; Boné, R. Auto-encoder LSTM for Li-ion SOH prediction: A comparative study on various benchmark datasets. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021; pp. 1529–1536. [Google Scholar]
- Zhen, Y.; Fang, J.; Zhao, X.; Ge, J.; Xiao, Y. Temporal convolution network based on attention mechanism for well production prediction. J. Pet. Sci. Eng. 2022, 218, 111043. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Zhou, D.; Li, Z.; Zhu, J.; Zhang, H.; Hou, L. State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network. IEEE Access 2020, 8, 53307–53320. [Google Scholar] [CrossRef]
- Chen, D.; Hong, W.; Zhou, X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 2022, 10, 19621–19628. [Google Scholar] [CrossRef]
- Luo, K.; Zheng, H.; Shi, Z. A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network. J. Power Sources 2023, 576, 233139. [Google Scholar] [CrossRef]
- Fauzi, M.R.; Yudistira, N.; Mahmudy, W.F. State-of-Health Prediction of Lithium-Ion Batteries using Exponential Smoothing Transformer with Seasonal and Growth Embedding. IEEE Access 2024, 12, 14659–14670. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D. Remaining useful life prediction of bearings with attention-awared graph convolutional network. Adv. Eng. Inform. 2023, 58, 102143. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Multireceptive field graph convolutional networks for machine fault diagnosis. IEEE Trans. Ind. Electron. 2020, 68, 12739–12749. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D. Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms. Reliab. Eng. Syst. Saf. 2023, 230, 108947. [Google Scholar] [CrossRef]
- Yao, X.Y.; Chen, G.; Pecht, M.; Chen, B. A novel graph-based framework for state of health prediction of lithium-ion battery. J. Energy Storage 2023, 58, 106437. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D. State of health and remaining useful life prediction of lithium-ion batteries with conditional graph convolutional network. Expert Syst. Appl. 2024, 238, 122041. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. Battery Data Set; NASA AMES Prognostics Data Repository; NASA Ames Research Center: Moffett Field, CA, USA, 2007. [Google Scholar]
- Zhou, J.; Wang, S.; Cao, W.; Xie, Y.; Fernandez, C. State of Health Prediction of Lithium-ion Batteries Based on SSA Optimized Hybrid Neural Network Model. Electrochim. Acta 2024, 487, 144146. [Google Scholar] [CrossRef]
- Zou, C.; Chen, X.; Zhang, Y. State of Health prediction of lithium-ion batteries based on temporal degeneration feature extraction with Deep Cycle Attention Network. J. Energy Storage 2023, 65, 107367. [Google Scholar] [CrossRef]
- He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J. Power Sources 2011, 196, 10314–10321. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Xie, Y.; Shen, X.; Fernandez, C. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm. Energy 2023, 285, 128761. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Kang, S.H.; Noh, T.W.; Lee, B.K. Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis. Trans. Korean Inst. Power Electron. 2021, 26, 241–248. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30. [Google Scholar]
- Liu, X.; Zhao, Z.; Zhang, Y.; Liu, C.; Yang, F. Social network rumor detection method combining dual-attention mechanism with graph convolutional network. IEEE Trans. Comput. Soc. Syst. 2022, 10, 2350–2361. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
The SOH of lithium-ion batteries. | |
Factors related to the state-of-health of lithium-ion batteries. | |
The interplay of influences among various factors. | |
N | The number of influencing factors on battery life. |
L | The length of the information flow. |
J | The number of subseries after feature engineering. |
X | The finalized input series of each computational influencing factor. |
D | The dimension of the hidden vector. |
The space after information aggregation. | |
Z | The input series of graph-based neighbor influencing factors. |
K | The number of input sequences. |
s | The size of the sliding historical window. |
The global temporal sparse adjacency matrix. | |
The learnable parameter of the neural layer. | |
The bias of the neural layer. | |
x | The original series of the adjacent influencing factors. |
The normalized series of the adjacent influencing factors. | |
The trend series of the adjacent influencing factors. | |
X | The integrated input series of the adjacent influencing factors. |
y | The ground truth of each training series. |
The output of the HEAG. | |
The state vector in the HEAG. | |
The output temporal representation vector. | |
The representation vectors of adjacent influencing factors. | |
The final temporal representation vector for prediction. | |
The attenuation coefficient. | |
The attention weight learned by the attention mechanism. | |
The loss function used in this work. |
Dataset | Battery Pack | Sequence Number | Average Length |
---|---|---|---|
CALCE | CS2-35 | 25 | 6735 |
CS2-36 | 26 | 5639 | |
CS2-37 | 27 | 7968 | |
CS2-38 | 28 | 8236 | |
NASA | 5-6-7-18 | 4 | 857 |
25-26-27-28 | 4 | 739 | |
25-44 | 20 | 821 | |
45-46-47-48 | 4 | 769 | |
49-50-51-52 | 4 | 807 | |
53-54-55-56 | 4 | 792 |
Method | Metrics | 35 | 36 | 37 | 38 | Average |
---|---|---|---|---|---|---|
ARIMA [58] | RMSE () | 51.060 | 53.177 | 49.738 | 42.691 | 49.166 |
MAE () | 48.405 | 50.608 | 48.971 | 39.931 | 46.979 | |
MedAE () | 49.334 | 52.361 | 50.059 | 41.798 | 48.388 | |
LR [59] | RMSE () | 49.200 | 46.736 | 46.493 | 41.890 | 46.080 |
MAE () | 45.483 | 46.905 | 46.984 | 38.005 | 44.344 | |
MedAE () | 42.103 | 47.082 | 43.233 | 39.777 | 43.049 | |
GRU [60] | RMSE () | 32.536 | 34.613 | 31.611 | 25.665 | 31.106 |
MAE () | 29.296 | 31.215 | 28.718 | 23.943 | 28.293 | |
MedAE () | 30.440 | 34.504 | 32.136 | 25.727 | 30.702 | |
CNN+LSTM [34] | RMSE () | 27.635 | 30.620 | 28.127 | 23.033 | 27.354 |
MAE () | 26.231 | 30.240 | 27.436 | 19.939 | 25.961 | |
MedAE () | 27.303 | 31.420 | 29.454 | 21.129 | 27.326 | |
TCN [43] | RMSE () | 12.298 | 12.909 | 11.937 | 9.272 | 11.604 |
MAE () | 10.673 | 12.290 | 10.371 | 8.063 | 10.349 | |
MedAE () | 10.970 | 13.183 | 10.409 | 8.923 | 10.871 | |
Transformer [61] | RMSE () | 16.033 | 19.065 | 17.914 | 13.219 | 16.558 |
MAE () | 14.899 | 16.386 | 15.132 | 12.901 | 14.830 | |
MedAE () | 15.017 | 19.260 | 16.433 | 13.123 | 15.958 | |
SGEformer [47] | RMSE () | 1.992 | 2.730 | 2.083 | 1.747 | 2.138 |
MAE () | 1.242 | 2.153 | 1.583 | 0.916 | 1.473 | |
MedAE () | 1.866 | 2.397 | 1.999 | 1.158 | 1.855 | |
MGCN [49] | RMSE () | 4.157 | 6.689 | 4.689 | 3.443 | 4.745 |
MAE () | 2.866 | 5.343 | 3.321 | 2.210 | 3.435 | |
MedAE () | 3.005 | 6.096 | 4.343 | 2.948 | 4.098 | |
GCN-DA [50] | RMSE () | 1.849 | 4.885 | 1.942 | 1.808 | 2.621 |
MAE () | 1.021 | 3.096 | 1.696 | 0.915 | 1.682 | |
MedAE () | 1.721 | 3.784 | 2.014 | 1.540 | 2.265 | |
CL-GraphSAGE [51] | RMSE () | 0.987 | 1.127 | 1.015 | 0.893 | 1.005 |
MAE () | 0.755 | 1.082 | 0.863 | 0.570 | 0.817 | |
MedAE () | 0.720 | 0.952 | 0.719 | 0.598 | 0.747 | |
CGGN-DCO [52] | RMSE () | 0.783 | 0.913 | 0.810 | 0.623 | 0.782 |
MAE () | 0.544 | 0.755 | 0.530 | 0.339 | 0.542 | |
MedAE () | 0.659 | 0.820 | 0.634 | 0.407 | 0.630 | |
HEAG | RMSE () | 0.550 | 0.613 | 0.544 | 0.411 | 0.530 |
MAE () | 0.341 | 0.517 | 0.453 | 0.316 | 0.407 | |
MedAE () | 0.369 | 0.552 | 0.491 | 0.345 | 0.439 |
Method | Metrics | Subset 1 | Subset 2 | Subset 3 | AVG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. 5 | No. 6 | No. 7 | No. 18 | No. 29 | No. 30 | No. 31 | No. 32 | No. 25 | No. 26 | No. 27 | |||
ARIMA | RMSE () | 14.207 | 38.154 | 37.087 | 21.044 | 19.410 | 10.231 | 9.067 | 11.635 | 16.454 | 20.119 | 38.599 | 21.455 |
MAE () | 13.844 | 37.469 | 36.899 | 19.098 | 19.451 | 8.060 | 8.716 | 13.000 | 16.365 | 17.497 | 38.552 | 20.814 | |
MedAE () | 14.844 | 38.369 | 37.850 | 18.218 | 19.275 | 8.528 | 8.382 | 13.306 | 16.203 | 15.470 | 38.616 | 20.824 | |
LR | RMSE () | 13.170 | 36.336 | 36.179 | 19.635 | 19.022 | 8.131 | 8.623 | 11.882 | 15.611 | 19.906 | 38.189 | 20.608 |
MAE () | 12.404 | 36.878 | 36.147 | 18.005 | 17.593 | 8.024 | 6.746 | 11.063 | 15.813 | 16.665 | 37.195 | 19.685 | |
MedAE () | 12.973 | 37.465 | 38.234 | 16.688 | 19.260 | 6.884 | 8.004 | 12.460 | 14.151 | 13.432 | 36.446 | 19.636 | |
GRU | RMSE () | 8.461 | 31.791 | 32.679 | 15.876 | 15.538 | 4.979 | 3.463 | 8.341 | 11.529 | 16.423 | 34.194 | 16.661 |
MAE () | 7.365 | 32.962 | 32.312 | 13.307 | 15.298 | 3.669 | 3.103 | 7.923 | 10.544 | 12.116 | 32.873 | 15.588 | |
MedAE () | 9.894 | 33.889 | 34.181 | 14.124 | 15.502 | 4.476 | 4.082 | 8.526 | 10.080 | 10.410 | 33.348 | 16.229 | |
CNN + LSTM | RMSE () | 7.249 | 30.620 | 30.550 | 13.280 | 12.620 | 2.371 | 2.181 | 5.478 | 9.216 | 13.700 | 31.490 | 14.432 |
MAE () | 6.047 | 30.240 | 30.980 | 11.850 | 12.450 | 1.939 | 1.556 | 5.324 | 8.975 | 10.020 | 31.440 | 13.711 | |
MedAE () | 7.420 | 31.420 | 31.060 | 11.170 | 12.770 | 1.634 | 1.266 | 5.663 | 8.899 | 7.505 | 31.230 | 13.640 | |
TCN | RMSE () | 2.174 | 2.468 | 2.445 | 2.440 | 2.321 | 2.722 | 2.406 | 3.074 | 3.639 | 3.737 | 3.064 | 2.772 |
MAE () | 1.886 | 2.291 | 2.434 | 2.521 | 2.375 | 2.584 | 2.375 | 3.148 | 3.466 | 3.123 | 3.050 | 2.660 | |
MedAE () | 1.980 | 2.197 | 2.449 | 2.262 | 2.306 | 2.656 | 2.423 | 3.193 | 3.415 | 3.039 | 3.127 | 2.641 | |
Transformer | RMSE () | 4.520 | 25.030 | 25.344 | 4.856 | 7.857 | 4.049 | 2.069 | 1.931 | 2.618 | 23.050 | 8.035 | 9.942 |
MAE () | 3.618 | 16.610 | 16.325 | 3.877 | 4.603 | 3.491 | 1.826 | 1.590 | 2.244 | 18.240 | 7.348 | 7.252 | |
MedAE () | 2.751 | 13.260 | 13.449 | 3.224 | 2.064 | 3.176 | 1.723 | 1.272 | 2.202 | 11.580 | 6.390 | 5.554 | |
SGEformer | RMSE () | 0.987 | 1.547 | 1.483 | 1.421 | 1.258 | 1.946 | 1.415 | 2.366 | 2.629 | 2.680 | 2.021 | 1.796 |
MAE () | 1.225 | 1.532 | 1.559 | 1.279 | 1.211 | 1.798 | 1.647 | 2.392 | 2.485 | 2.475 | 1.844 | 1.768 | |
MedAE () | 1.267 | 1.097 | 1.196 | 1.360 | 1.512 | 2.053 | 1.258 | 2.438 | 2.625 | 1.954 | 1.940 | 1.700 | |
MGCN | RMSE () | 0.659 | 1.689 | 1.877 | 1.268 | 0.491 | 1.159 | 0.472 | 1.049 | 1.675 | 2.292 | 1.645 | 1.298 |
MAE () | 0.538 | 1.343 | 1.460 | 1.018 | 0.416 | 1.118 | 0.416 | 1.034 | 1.552 | 1.544 | 1.627 | 1.097 | |
MedAE () | 0.478 | 1.096 | 1.167 | 0.934 | 0.384 | 1.139 | 0.418 | 1.012 | 1.517 | 1.080 | 1.639 | 0.988 | |
GCN-DA | RMSE () | 0.849 | 1.129 | 1.012 | 1.518 | 1.351 | 1.866 | 1.188 | 1.849 | 2.414 | 2.533 | 1.909 | 1.602 |
MAE () | 1.004 | 1.038 | 1.010 | 1.211 | 0.942 | 1.625 | 1.104 | 2.091 | 2.401 | 1.867 | 1.940 | 1.476 | |
MedAE () | 0.774 | 0.975 | 1.137 | 1.160 | 1.278 | 1.457 | 1.098 | 2.005 | 2.372 | 1.797 | 1.753 | 1.437 | |
CL-GraphSAGE | RMSE () | 0.830 | 1.116 | 1.267 | 1.299 | 1.092 | 1.596 | 1.358 | 1.826 | 2.347 | 2.672 | 1.770 | 1.561 |
MAE () | 0.723 | 1.079 | 1.181 | 1.338 | 1.157 | 1.457 | 1.162 | 2.038 | 2.131 | 1.887 | 1.726 | 1.443 | |
MedAE () | 0.704 | 0.971 | 1.271 | 1.151 | 1.103 | 1.524 | 1.116 | 1.993 | 2.196 | 1.754 | 1.945 | 1.430 | |
CGGN-DCO | RMSE () | 0.228 | 0.513 | 0.501 | 0.711 | 0.480 | 0.980 | 0.567 | 1.274 | 1.686 | 1.941 | 1.157 | 0.913 |
MAE () | 0.164 | 0.355 | 0.460 | 0.553 | 0.406 | 0.864 | 0.489 | 1.243 | 1.566 | 1.346 | 1.129 | 0.780 | |
MedAE () | 0.120 | 0.220 | 0.475 | 0.477 | 0.433 | 0.881 | 0.466 | 1.259 | 1.542 | 1.146 | 1.166 | 0.744 | |
HEAG | RMSE () | 0.122 | 0.357 | 0.382 | 0.587 | 0.332 | 0.848 | 0.423 | 1.117 | 1.575 | 1.831 | 1.024 | 0.782 |
MAE () | 0.109 | 0.235 | 0.311 | 0.431 | 0.257 | 0.755 | 0.356 | 1.133 | 1.418 | 1.244 | 0.997 | 0.659 | |
MedAE () | 0.118 | 0.101 | 0.322 | 0.325 | 0.318 | 0.762 | 0.309 | 1.125 | 1.430 | 1.043 | 1.031 | 0.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, C.; Liu, H.; Zhang, Z.; Wang, J.; Wang, J. Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling. Sensors 2024, 24, 4185. https://doi.org/10.3390/s24134185
Xing C, Liu H, Zhang Z, Wang J, Wang J. Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling. Sensors. 2024; 24(13):4185. https://doi.org/10.3390/s24134185
Chicago/Turabian StyleXing, Chuang, Hangyu Liu, Zekun Zhang, Jun Wang, and Jiyao Wang. 2024. "Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling" Sensors 24, no. 13: 4185. https://doi.org/10.3390/s24134185
APA StyleXing, C., Liu, H., Zhang, Z., Wang, J., & Wang, J. (2024). Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling. Sensors, 24(13), 4185. https://doi.org/10.3390/s24134185