skip to main content
10.1145/2671188.2749336acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
research-article

Effective, Efficient, and Scalable Unsupervised Distance Learning in Image Retrieval Tasks

Published: 22 June 2015 Publication History

Abstract

Various unsupervised learning methods have been proposed with significant improvements in the effectiveness of image search systems. However, despite the relevant effectiveness gains, these approaches commonly require high computation efforts, not addressing properly efficiency and scalability requirements. In this paper, we present a novel unsupervised learning approach for improving the effectiveness of image retrieval tasks. The proposed method is also scalable and efficient as it exploits parallel and heterogeneous computing on CPU and GPU devices. Extensive experiments were conducted considering five different public image collections and several descriptors. This rigorous experimental protocol evaluates the effectiveness, efficiency, and scalability of the proposed approach, and compares it with previous methods. Experimental results demonstrate that high effectiveness gains (up to +29%) can be obtained requiring small run times.

References

[1]
J. Almeida, R. da S. Torres, and N. J. Leite. BP-tree: An efficient index for similarity search in high-dimensional metric spaces. In CIKM, pages 1365--1368, 2010.
[2]
J. Almeida, D. C. G. Pedronette, and O. A. B. Penatti. Unsupervised manifold learning for video genre retrieval. In CIARP, pages 604--612, 2014.
[3]
N. Arica and F. T. Y. Vural. BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognition Letters, 24(9-10):1627--1639, 2003.
[4]
X. Bai, B. Wang, X. Wang, W. Liu, and Z. Tu. Co-transduction for shape retrieval. In ECCV, volume 3, pages 328--341, 2010.
[5]
S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. PAMI, 24(4):509--522, 2002.
[6]
P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover, 1966.
[7]
S. A. Chatzichristofis and Y. S. Boutalis. Cedd: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In ICVS, pages 312--322, 2008.
[8]
S. A. Chatzichristofis and Y. S. Boutalis. Fcth: Fuzzy color and texture histogram - a low level feature for accurate image retrieval. In WIAMIS, pages 191--196, 2008.
[9]
R. da S. Torres and A. X. Falcâo. Content-Based Image Retrieval: Theory and Applications. Revista de Informática Teórica e Aplicada, 13(2):161--185, 2006.
[10]
R. da S. Torres and A. X. Falcâo. Contour Salience Descriptors for Effective Image Retrieval and Analysis. Image and Vision Computing, 25(1):3--13, 2007.
[11]
J.-M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders. The amsterdam library of object images. International Journal of Computer Vision, 61(1):103--112, 2005.
[12]
R. Gopalan, P. Turaga, and R. Chellappa. Articulation-invariant representation of non-planar shapes. In ECCV, volume 3, pages 286--299, 2010.
[13]
D. C. Guimarâes Pedronette, J. Almeida, and R. Da S. Torres. A scalable re-ranking method for content-based image retrieval. Information Sciences, 265:91--104, May 2014.
[14]
J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using color correlograms. In CVPR, pages 762--768, 1997.
[15]
J. Jiang, B. Wang, and Z. Tu. Unsupervised metric learning by self-smoothing operator. In ICCV, pages 794--801, 2011.
[16]
P. Kontschieder, M. Donoser, and H. Bischof. Beyond pairwise shape similarity analysis. In ACCV, pages 655--666, 2009.
[17]
V. Kovalev and S. Volmer. Color co-occurence descriptors for querying-by-example. In ICMM, page 32, 1998.
[18]
L. J. Latecki, R. Lakmper, and U. Eckhardt. Shape descriptors for non-rigid shapes with a single closed contour. In CVPR, pages 424--429, 2000.
[19]
H. Ling and D. W. Jacobs. Shape classification using the inner-distance. PAMI, 29(2):286--299, 2007.
[20]
H. Ling, X. Yang, and L. J. Latecki. Balancing deformability and discriminability for shape matching. In ECCV, volume 3, pages 411--424, 2010.
[21]
Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma. A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1):262 -- 282, 2007.
[22]
D. Lowe. Object recognition from local scale-invariant features. In ICCV, pages 1150--1157, 1999.
[23]
H. Lu, B. Ooi, and K. Tan. Efficient image retrieval by color contents. In ADB, pages 95--108, 1994.
[24]
D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, volume 2, pages 2161--2168, 2006.
[25]
T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI, 24(7):971--987, 2002.
[26]
G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors. In ACM-MM, pages 65--73, 1996.
[27]
D. C. G. Pedronette and R. da S. Torres. Shape retrieval using contour features and distance optmization. In VISAPP, volume 1, pages 197 -- 202, 2010.
[28]
D. C. G. Pedronette and R. da S. Torres. Exploiting pairwise recommendation and clustering strategies for image re-ranking. Information Sciences, 207:19--34, 2012.
[29]
D. C. G. Pedronette and R. da S. Torres. Image re-ranking and rank aggregation based on similarity of ranked lists. Pattern Recognition, 46(8):2350--2360, 2013.
[30]
D. C. G. Pedronette, R. da S. Torres, E. Borin, and M. Breternitz. Efficient image re-ranking computation on GPUs. In ISPA, 2012.
[31]
D. C. G. Pedronette, R. da S. Torres, E. Borin, and M. Breternitz. Rl-sim algorithm acceleration on GPUs. In SBAC, 2013.
[32]
R. O. Stehling, M. A. Nascimento, and A. X. Falcâo. A compact and efficient image retrieval approach based on border/interior pixel classification. In CIKM, pages 102--109, 2002.
[33]
M. J. Swain and D. H. Ballard. Color indexing. International Journal on Computer Vision, 7(1):11--32, 1991.
[34]
B. Tao and B. W. Dickinson. Texture recognition and image retrieval using gradient indexing. JVCIR, 11(3):327--342, 2000.
[35]
Z. Tu and A. L. Yuille. Shape matching and recognition - using generative models and informative features. In ECCV, pages 195--209, 2004.
[36]
J. van de Weijer and C. Schmid. Coloring local feature extraction. In ECCV.
[37]
J. Wang, Y. Li, X. Bai, Y. Zhang, C. Wang, and N. Tang. Learning context-sensitive similarity by shortest path propagation. Pattern Recognition, 44(10-11):2367--2374, 2011.
[38]
X. Yang, S. Koknar-Tezel, and L. J. Latecki. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In CVPR, pages 357--364, 2009.
[39]
X. Yang, L. Prasad, and L. Latecki. Affinity learning with diffusion on tensor product graph. PAMI, PP(99):1, 2012.
[40]
K. Zagoris, S. Chatzichristofis, N. Papamarkos, and Y. Boutalis. Automatic image annotation and retrieval using the joint composite descriptor. In PCI, pages 143--147, 2010.

Cited By

View all

Index Terms

  1. Effective, Efficient, and Scalable Unsupervised Distance Learning in Image Retrieval Tasks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ICMR '15: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval
    June 2015
    700 pages
    ISBN:9781450332743
    DOI:10.1145/2671188
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 June 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. content-based image retrieval
    2. effectiveness
    3. efficiency
    4. scalability
    5. unsupervised learning

    Qualifiers

    • Research-article

    Funding Sources

    • AMD
    • CNPq
    • FAPESP
    • CAPES
    • Microsoft Research

    Conference

    ICMR '15
    Sponsor:

    Acceptance Rates

    ICMR '15 Paper Acceptance Rate 48 of 127 submissions, 38%;
    Overall Acceptance Rate 254 of 830 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 06 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media