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Abstract

Branching processes are a class of continuous-
time Markov chains (CTMCs) with ubiquitous
applications. A general difficulty in statistical
inference under partially observed CTMC mod-
els arises in computing transition probabilities
when the discrete state space is large or un-
countable. Classical methods such as matrix ex-
ponentiation are infeasible for large or count-
ably infinite state spaces, and sampling-based al-
ternatives are computationally intensive, requir-
ing integration over all possible hidden events.
Recent work has successfully applied generat-
ing function techniques to computing transition
probabilities for linear multi-type branching pro-
cesses. While these techniques often require sig-
nificantly fewer computations than matrix expo-
nentiation, they also become prohibitive in ap-
plications with large populations. We propose a
compressed sensing framework that significantly
accelerates the generating function method, de-
creasing computational cost up to a logarithmic
factor by only assuming the probability mass of
transitions is sparse. We demonstrate accurate
and efficient transition probability computations
in branching process models for blood cell for-
mation and evolution of self-replicating transpos-
able elements in bacterial genomes.

1 INTRODUCTION

Continuous-time branching processes are widely used in
stochastic modeling of population dynamics, with applica-
tions including cell biology, genetics, epidemiology, quan-
tum optics, and nuclear fission [Renshaw, 2011]. With the
exception of the well-studied class of birth-death processes,
which have known expressions for many quantities relevant
to probabilistic inference [Crawford et al., 2014], branch-
ing processes pose significant inferential challenges. In

particular, closed forms for finite-time transition probabil-
ities, the conditional probability that a trajectory ends at a
given state, given a starting state and time interval, are un-
available. These transition probabilities are crucial in many
inferential approaches, comprising the observed likelihood
function when data from the process are available at a set of
discrete times. The likelihood function is of central impor-
tance in frequentist and Bayesian methods, and any statis-
tical framework involving observed data likelihood evalua-
tion requires transition probability computations. Without
the ability to fully leverage the branching structure, stud-
ies must rely on general CTMC estimation techniques or
model approximations [Rosenberg et al., 2003, Golinelli
et al., 2006, El-Hay et al., 2006].

Computation of transition probabilities is the usual bottle-
neck in model-based inference using CTMCs [Hajiaghayi
et al., 2014], requiring a marginalization over the infi-
nite set of possible end-point conditioned paths. Clas-
sically, this marginalization is accomplished by comput-
ing the matrix exponential of the infinitesimal generator
of the CTMC. However, this procedure has cubic runtime
complexity in the size of the state space, becoming pro-
hibitive even for state spaces of moderate sizes. Alterna-
tives also have their shortcomings: uniformization meth-
ods use a discrete-time “skeleton” chain to approximate
the CTMC but rely on a restrictive assumption that there
is a uniform bound on all rates [Grassmann, 1977, Ross,
1987, Rao and Teh, 2011]. Typically, practitioners resort to
sampling-based approaches via Markov chain Monte Carlo
(MCMC). Specifically, particle-based methods such as se-
quential Monte Carlo (SMC) and particle MCMC [Doucet
et al., 2000, Andrieu et al., 2010] offer a complementary
approach whose runtime depends on the number of im-
puted transitions rather than the size of the state space.
However, these SMC methods have several limitations—
in many applications, a prohibitively large number of par-
ticles is required to impute waiting times and events be-
tween transitions, and degeneracy issues are a common oc-
currence, especially in longer time series. A method by
Hajiaghayi et al. [2014] accelerates particle-based methods
by marginalizing holding times analytically, but has cubic



runtime complexity in the number of imputed jumps be-
tween observations and is recommended for applications
with fewer than one thousand events occurring between ob-
servations.

Recent work by Xu et al. [2014] has extended techniques
for computing transition probabilities in birth-death mod-
els to linear multi-type branching processes. This ap-
proach involves expanding the probability generating func-
tion (PGF) of the process as a Fourier series, and apply-
ing a Riemann sum approximation to its inversion formula.
This technique has been used to compute numerical tran-
sition probabilities within a maximum likelihood estima-
tion (MLE) framework, and has also been applied within
Expectation Maximization (EM) algorithms [Doss et al.,
2013, Xu et al., 2014]. While this method provides a pow-
erful alternative to simulation and avoids costly matrix op-
erations, the Riemann approximation to the Fourier inver-
sion formula requires O(N b) PGF evaluations, where b is
the number of particle types and N is the largest popu-
lation size at endpoints of desired transition probabilities.
This complexity is no worse than linear in the size of the
state space, but can also be restrictive: a two-type pro-
cess in which each population can take values in the thou-
sands would require millions of PGF evaluations to pro-
duce transition probabilities over an observation interval.
This can amount to hours of computation in standard com-
puting architectures, because evaluating PGFs for multi-
type branching processes involves numerically solving sys-
tems of ordinary differential equations (ODEs). Such com-
putations become infeasible within iterative algorithms.

In this paper, we focus our attention on the efficient compu-
tation of transition probabilities in the presence of sparsity,
presenting a novel compressed sensing framework that dra-
matically reduces the computational cost of inverting the
PGF. We apply our compressed sensing generating func-
tion (CSGF) algorithm to a branching process model used
to study hematopoiesis — a process of blood cell forma-
tion — as well as a birth-death-shift process with applica-
tions to molecular epidemiology, and see that the sparsity
assumption is valid for scientifically realistic rates of the
processes obtained in previous statistical studies. We com-
pare performance of CSGF to transition probability compu-
tations without taking advantage of sparsity, demonstrating
a high degree of accuracy while achieving significant im-
provements in runtime.

2 MARKOV BRANCHING PROCESSES

A branching process is a Markov process in which a collec-
tion of independently acting individuals, or particles, can
reproduce and die according to a probability distribution.
We consider continuous-time, multi-type branching pro-
cesses that take values over a discrete state space. In this
setting, each particle type can have a distinct mean lifespan

and reproductive probabilities, and lives for an exponen-
tially distributed length of time. At time of death, a particle
can give rise to particles of its own type as well as other
types.

Denote a linear, multi-type branching process by the ran-
dom vector X(t) taking values in a discrete state space Ω,
with Xi(t) denoting the number of type i particles present
at time t ≥ 0. For exposition and notational simplicity,
we will focus on the two-type case. Each type i particle
produces k type 1 particles and l type 2 particles with in-
stantaneous rates aj(k, l) upon completion of its lifespan,
and the rates of no event occurring are defined as

α1 := a1(1, 0) = −
∑

(k,l)6=(1,0)

a1(k, l)

α2 := a2(0, 1) = −
∑

(k,l) 6=(0,1)

a2(k, l),

so that
∑
k,l ai(k, l) = 0 for i = 1, 2. The linearity as-

sumption implies that overall rates are multiplicative in the
number of particles. For example, the infinitesimal proba-
bility of jumping to k type 1 and l type 2 particles beginning
with j type 1 particles over a short interval of time h is

Pr {X(h) = (k, l)|X(0) = (j, 0)} = j · a1(k, l) ·h+ o(h).

Subsequently, offspring of each particle evolve according
to the same set of instantaneous rates, and these rates
aj(k, l) do not depend on t so that the process is time-
homogeneous. Together these assumptions imply that each
type i particle has exponentially distributed lifespan with
rate−αi, and X(t) evolves over time as a CTMC [Guttorp,
1995].

2.1 Transition probabilities

Dynamics of a CTMC are determined by its transition func-
tion

px,y(t) = Pr(X(t+ s) = y|X(s) = x), (1)

where time-homogeneity implies independence of the
value of s on the right hand side. When the state space
Ω is small, one can exponentiate the |Ω| by |Ω| infinitesi-
mal generator or rate matrix Q =

{
qx,y

}
x,y∈Ω

, where the
entries qx,y denote the instantaneous rates of jumping from
state x to y, to compute transition probabilities:

P(t) :=
{
px,y(t)

}
x,y∈Ω

= eQt =

∞∑
k=0

(Qt)k

k!
. (2)

These transition probabilities are fundamental quantities in
statistical inference for data generated from CTMCs. For
instance, if X(t) is observed at times t1, . . . , tJ and D rep-
resents the 2 by J matrix containing the observed data, the
observed data log-likelihood is given by

`o(D;θ) =

J−1∑
j=1

log pX(tj),X(tj+1)(tj+1 − tj ;θ), (3)



where the vector θ parametrizes the rates aj(k, l). Max-
imum likelihood inference that seeks to find the value θ̂
that optimizes (3) as well as Bayesian methods where like-
lihood calculations arise in working with the posterior den-
sity (up to a proportionality constant) fundamentally rely
on the ability to calculate transition probabilities. Having
established their importance in probabilistic inference, we
focus our discussion in this paper on computing these tran-
sition probabilities in a continuous-time branching process.

2.2 Generating function methods

Matrix exponentiation is cubic in |Ω| and thus prohibitive in
many applications, but we may take an alternate approach
by exploiting properties of the branching process. Xu et al.
[2014] extend a generating function technique used to com-
pute transition probabilities in birth-death processes to the
multi-type branching process setting. The probability gen-
erating function (PGF) for a two-type process is defined

φjk(t, s1, s2;θ) = Eθ

(
s
X1(t)
1 s

X2(t)
2 |X1(0) = j,X2(0) = k

)
=

∞∑
l=0

∞∑
m=0

p(jk),(lm)(t;θ)sl1s
m
2 ; (4)

this definition extends analogously for anym-type process.
We suppress dependence on θ for notational convenience.
Bailey [1964] provides a general technique to derive a sys-
tem of differential equations governing φjk using the Kol-
mogorov forward or backward equations given the instan-
taneous rates aj(k, l). It is often possible to solve these sys-
tems analytically for φjk, and even when closed forms are
unavailable, numerical solutions can be efficiently obtained
using standard algorithms such as Runge-Kutta methods
[Butcher, 1987].

With φjk available, transition probabilities are related to
the PGF (4) via differentiation:

p(jk),(lm)(t) =
1

l!

1

m!

∂l

∂s1

∂m

∂s2
φjk(t)

∣∣∣∣
s1=s2=0

. (5)

This repeated differentiation is computationally intensive
and numerically unstable for large l,m, but following
Lange [1982], we can map the domain s1, s2 ∈ [0, 1] ×
[0, 1] to the boundary of the complex unit circle, setting
s1 = e2πiw1 , s2 = e2πiw2 . The generating function be-
comes a Fourier series whose coefficients are the desired
transition probabilities

φjk(t, e2πiw1 , e2πiw2) =

∞∑
l,m=0

p(jk),(lm)(t)e
2πilw1e2πimw2 .

Applying a Riemann sum approximation to the Fourier in-
version formula, we can now compute the transition prob-

abilities via integration instead of differentiation:

p(jk),(lm)(t) =

∫ 1

0

∫ 1

0

φjk
(
t, e2πiw1 , e2πiw2

)
e−2πilw1

× e−2πimw2dw1dw2

≈ 1

N2

N−1∑
u=0

N−1∑
v=0

φjk

(
t, e2πiu/N , e2πiv/N

)
× e−2πilu/Ne−2πimv/N .

(6)

In practice, the set of transition probabilities S =
{p(jk),(lm)(t)} for all l,m = 0, . . . , N , given initial values
of (j, k), can be obtained via the Fast Fourier Transform
(FFT), described in Section 4. It is necessary to choose
N > l,m, since exponentiating the roots of unity can yield
at most N distinct values:

e−2πimv/N = e−2πi(mv modN)/N .

This is related to the Shannon-Nyquist criterion [Shannon,
2001], which dictates that the number of samples required
to recover a signal must match its highest frequency. Thus,
calculating “high frequency” coefficients— when l,m take
large values—requires O(N2) numerical ODE solutions,
which becomes computationally expensive for large N .

Sparsity: Given an initial state X(0) = (j, k), the sup-
port of transition probabilities is often concentrated over
a small range of (l,m) values. For example, if X(t) =
(800, 800), then the probability that the entire process be-
comes extinct, X(t+ s) = (0, 0), is effectively zero unless
particle death rates are very high or s is a very long time
interval. In many realistic applications, p(800,800),(l,m)(s)
has non-negligible mass on a small support, for instance
only over l,m values between 770 and 820. While their
values can be computed using Equation (6) for a choice of
N > 820, requiring N2 ODE evaluations toward comput-
ing only (820 − 770)2 nonzero probabilities seems waste-
ful. Similarly, in an example with high birth rates but low
death rates, probabilities p(800,800),(l,m)(s) may be con-
centrated around some mean values of (l,m) much larger
than (j, k), and other processes may feature concentration
of probability mass in one or several modes. While spar-
sity is not always available — for instance, support may be
spread out in applications when observation times are very
far apart— a general sparsity assumption is very reason-
able when data are observed relatively frequently relative
to the branching process rates. To exploit the sparsity in
such settings, we bridge aforementioned branching process
techniques to the literature of compressed sensing.

3 COMPRESSED SENSING

Originally developed in an information theoretic setting,
the principle of compressed sensing (CS) states that an un-



known sparse signal can be recovered accurately and of-
ten perfectly from significantly fewer samples than dictated
by the Shannon-Nyquist rate, at the cost of solving a con-
vex optimization problem [Donoho, 2006, Candès, 2006].
CS is a robust tool to collect high-dimensional sparse data
from a low-dimensional set of measurements and has been
applied to a plethora of fields, leading to dramatic reduc-
tions in the necessary number of measurements, samples,
or computations. In our setting, the transition probabilities
play the role of a target sparse signal of Fourier coefficients.
The data reduction made possible via CS then translates to
reducing necessary computations to a much smaller ran-
dom subsample of PGF evaluations, which play the role of
measurements used to recover the signal.

3.1 Overview

In the CS framework, the unknown signal is a vector x ∈
CN observed through a measurement b = Vx ∈ CM
with M << N . Here V denotes an M × N measure-
ment matrix or sensing matrix. Since M < N , the system
is underdetermined and inversion is highly ill-posed—the
space of solutions is an infinite affine subspace, but CS the-
ory shows that recovery can be accomplished under certain
assumptions by seeking the sparsest solution. Let ψ be an
orthonormal basis of CN that allows a K-sparse represen-
tation of x: that is, x = ψs where s is a sparse vector of
coefficients such that ||s||0 < K. Candès [2006] proves
that recovery can then be accurately accomplished by find-
ing the sparsest solution

ŝ = argmin
s
||s||0 s.t. As = b (7)

where A = Vψ is the composition of the measurement
and sparsifying matrices. In practice, this non-convex ob-
jective is combinatorially intractable to solve exactly, and
is instead solved by proxy via `1-relaxation, resulting in a
convex optimization program. In place of Equation (7), we
optimize the unconstrained penalized objective

ŝ = argmin
s

1

2
||As− b||22 + λ||s||1, (8)

where λ is a regularization parameter enforcing sparsity of
s. The signal x, or equivalently s, can be recovered per-
fectly using only M = CK logN measurements for some
constant C when A satisfies the Restricted Isometry Prop-
erty (RIP) [Candès and Tao, 2005, Candès, 2008]—briefly,
this requires that V and ψ to be incoherent so that rows
of V cannot sparsely represent the columns of ψ and vice
versa. Coherence between V,ψ is defined as

µ(V,ψ) =
√
nmax

i,j
|〈V,ψj〉|,

and low coherence pairs are desirable. It has been shown
that choosing random measurements V satisfies RIP with
overwhelming probability [Candès, 2008]. Further, given

ψ, it is often possible to choose a known ideal distribution
from which to sample elements in V such that V andψ are
maximally incoherent.

3.2 Higher dimensions

CS theory extends naturally to higher-dimensional signals
[Candès, 2006]. In the 2D case which will arise in our ap-
plications (Section 5), the sparse solution S ∈ CN×N and
measurement

B = ASAT ∈ CM×M (9)

are matrices rather than vectors, and we solve

Ŝ = argmin
S

1

2
||ASAT −B||22 + λ||S||1. (10)

This can always be equivalently represented in the vector-
valued framework: vectorizing

vec(S) = s̃ ∈ CN
2

, vec(B) = b̃ ∈ CM
2

,

we now seek b̃ = Ãs̃ as in Equations (7), (8), where
Ã = A ⊗ A is the Kronecker product of A with itself.
In practice, it can be preferable to solve (10), since the
number of entries in Ã grows rapidly and thus the vector-
ized problem requires a costly construction of Ã and can
be cumbersome in terms of memory.

4 CSGF METHOD

We propose an algorithm that allows for efficient PGF in-
version within a compressed sensing framework. We fo-
cus our exposition on two-type models: linear complexity
in |Ω| is less often a bottleneck in single-type problems,
and all generating function methods as well as compressed
sensing techniques we describe extend to settings with an
arbitrary number of particle types.

We wish to compute the transition probabilities pjk,lm(t)
given any t > 0 and X(0) = (j, k). These probabilities
can be arranged in a matrix S ∈ RN×N with entries{

S
}
l,m

= pjk,lm(t).

Without the CS framework, these probabilities are obtained
following Equation (6) by first computing an equally sized
matrix of PGF solutions

B̃ =
{
φjk

(
t, e

2πiu
N , e

2πiv
N

)}N−1

u,v=0
∈ CN×N . (11)

For largeN , obtaining B̃ is computationally expensive, and
our method seeks to bypass this step. When B̃ is computed,
transition probabilities are then recovered by taking the fast
Fourier transform S = fft(B̃). To better understand how
this fits into the CS framework, we can equivalently write



the fast Fourier transform in terms of matrix operations S =

FB̃F
T

, where F ∈ CN×N denotes the discrete Fourier
transform matrix (see Supplement). Thus, the sparsifying
basis ψ is the Inverse Discrete Fourier Transform (IDFT)
matrix ψ = F∗ given by the conjugate transpose of F, and
we have B̃ = ψSψT .

When the solution matrix S is expected to have a sparse
representation, our CSGF method seeks to recover S with-
out computing the full matrix B̃, instead beginning with a
much smaller set of PGF evaluations B ∈ CM×M corre-
sponding to random entries of B̃ selected uniformly at ran-
dom. Denoting randomly sampled indices I, this smaller
matrix is a projection B = ASAT in the form of Equation
(9) where A ∈ CM×N is obtained by selecting a subset of
rows of ψ corresponding to I. Uniform sampling of rows
corresponds to multiplying by a measurement matrix en-
coding the spike basis (or standard basis): formally, this fits
into the framework described in Section 3.1 as A = Vψ,
with measurement matrix rows Vj(l) = δ(j−l). The spike
and Fourier bases are known to be maximally incoherent in
any dimension, so uniformly sampling indices I is optimal
in our setting.

Now in the compressed sensing framework, computing the
reduced matrix B only requires a logarithmic proportion
|B| ∝ K log |B̃| of PGF evaluations necessary in Equation
(11). Computing transition probabilities in S is thus re-
duced to a signal recovery problem, solved by optimizing
the objective in Equation (10).

4.1 Solving the `1 problem

There has been extensive research on algorithms for solv-
ing the `1 regularization objective in Equation (8) and
related problems [Tibshirani, 1996, Beck and Teboulle,
2009a]. As mentioned previously, vectorizing the problem
so that it can be represented in the form (8) requires waste-
ful extra memory; instead we choose to solve the objective
in Equation (10) using a proximal gradient descent (PGD)
algorithm.

PGD is useful for solving minimization problems with ob-
jective of the form f(x) = g(x) + h(x) with g convex and
differentiable, and h convex but not necessarily differen-
tiable. Letting

g(S) =
1

2
||ASAT −B||22, h(S) = λ||S||1,

we see that Equation (10) satisfies these conditions. A form
of generalized gradient descent, PGD iterates toward a so-
lution with

xk+1 = argmin
z

[g(xk) +∇g(xk)T (z − xk) (12)

+
1

2Lk
||z − xk||22 + h(z)],

where Lk is a step size that is either fixed or determined
via line-search. This minimization has known closed-form
solution

xk+1 = softh(xk − Lk∇g(xk), Lkλ), (13)

where softh is the soft-thresholding operator

[softh(x, α)]i = sgn(xi) max(|xi| − α, 0). (14)

This results in an iterative soft-thresholding algorithm that
solves the convex problem (10) with rate of convergence
O(1/k) when Lk is fixed. The softh() operation is simple
and computationally negligible, so that the main compu-
tational cost is in evaluating ∇g(xk). We derive a closed
form expression for the gradient in our setting:

∇g(S) = −A∗(B−ASAT )A, (15)

where A,A∗ denote complex conjugate and conjugate
transpose of A respectively. In practice, the inner term
ASAT is obtained as a subset of the inverse fast Fourier
transform of S rather than by explicit matrix multiplication.
The computational effort in computing∇g(S) therefore in-
volves only the two outer matrix multiplications.

We implement a fast variant of PGD using momentum
terms [Beck and Teboulle, 2009b] based on an algorithm
introduced by Nesterov, and select step sizes Lk via a sim-
ple line-search subroutine [Beck and Teboulle, 2009a]. The
accelerated version includes an extrapolation step, where
the soft-thresholding operator is applied to a momentum
term

yk+1 = xk + ωk(xk − xk−1)

rather than to xk; here ωk is an extrapolation parameter for
the momentum term. Remarkably, the accelerated method
still only requires one gradient evaluation at each step as
yk+1 is a simple linear combination of previously com-
puted points, and has been proven to achieve the optimal
worst-case rate of convergence O(1/k2) among first order
methods [Nesterov, 1983]. Similarly, the line-search pro-
cedure involves evaluating a bound that also only requires
one evaluation of ∇g (see Supplement for further imple-
mentation details).

Algorithm 1 provides a summary of the CSGF method in
pseudocode.

5 EXAMPLES

We will examine the performance of CSGF in two applica-
tions: a stochastic two-compartment model used in statisti-
cal studies of hematopoiesis, the process of blood cell pro-
duction, and a birth-death-shift model that has been used
to study the evolution of transposons, mobile genetic ele-
ments.



Algorithm 1 CSGF algorithm.
1: Input: initial sizes X1 = j,X2 = k, time interval t,

branching rates θ, signal size N > j, k, measurement
size M , penalization constant λ > 0, line-search pa-
rameters L, c.

2: Uniformly sample M indices I ⊂ [0, . . . N − 1] /N
3: Compute B =

{
φjk(t, e2πiu/N , e2πiv/N )

}
u,v∈I×I

4: Define A = ψI· the I rows of IDFT matrix ψ
5: Initialize: S1 = Y1 = 0
6: for k = 1, 2, . . . , {max iterations} do
7: Choose Lk = line-search(L, c,Yk)
8: Update extrapolation parameter ωk = k

k+3
9: Update momentum Yk+1 = Sk + ωk(Sk − Sk−1)

10: Compute ∇g(Yk+1) according to (15)
11: Update Sk+1 = softh(Sk − Lk∇g(Yk+1), Lkλ)
12: end for
13: return Ŝ = Sk+1

5.1 Two-compartment hematopoiesis model

Hematopoiesis is the process in which self-sustaining prim-
itive hematopoietic stem cells (HSCs) specialize, or dif-
ferentiate, into progenitor cells, which further specialize
to eventually produce mature blood cells. In addition to
far-reaching clinical implications — stem cell transplan-
tation is a mainstay of cancer therapy — understanding
hematopoietic dynamics is biologically interesting, and
provides critical insights of general relevance to other areas
of stem cell biology [Orkin and Zon, 2008]. The stochas-
tic model, depicted in Figure 1, has enabled estimation of
hematopoietic rates in mammals from data in several stud-
ies [Catlin et al., 2001, Golinelli et al., 2006, Fong et al.,
2009]. Without the ability to compute transition probabili-
ties, an estimating equation approach by Catlin et al. [2001]
is statistically inefficient, resulting in uncertain estimated
parameters with very wide confidence intervals. Nonethe-
less, biologically sensible rates are inferred. Golinelli et al.
[2006] observe that transition probabilities are unknown
for a linear birth-death process (compartment 1) coupled
with an inhomogeneous immigration-death process (com-
partment 2), motivating their computationally intensive re-
versible jump MCMC implementation.

However, we can equivalently view the model as a two-type
branching process. Under such a representation, it becomes
possible to compute transition probabilities via Equation
(6). The type one particle population X1 corresponds to
hematopoietic stem cells (HSCs), and X2 represents pro-
genitor cells. With parameters as denoted in Figure 1, the
nonzero instantaneous rates defining the process are

a1(2, 0) = ρ, a1(0, 1) = ν, a1(1, 0) = −(ρ+ ν),

a2(0, 0) = µ, a2(0, 1) = −µ. (16)

Having newly formulated the model as a two-type branch-

Figure 1: HSCs can
self-renew, producing
new HSCs at rate ρ, or
differentiate into progeni-
tor cells at rate ν. Further
progenitor differentiation
is modeled by rate µ.

ing process, we derive solutions for its PGF, defined in
Equation (4), with details in the Supplement:

Proposition 5.1 The generating function for the two-type
model described in (16) is given by φjk = φj1,0φ

k
0,1, where

φ0,1(t, s1, s2) = 1 + (s2 − 1)e−µt

d
dtφ1,0(t, s1, s2) = ρφ2

1,0(t, s1, s2)− (ρ+ ν)φ1,0(t, s1, s2)

+νφ0,1(t, s1, s2).
(17)

We see that φ0,1 has closed form solution so that evaluating
φjk only requires solving one ODE numerically, and with
the ability to compute φjk, we may obtain transition prob-
abilities using Equation (6). In this application, cell pop-
ulations can easily reach thousands, motivating the CSGF
approach to accelerate transition probability computations.

5.2 Birth-death-shift model for transposons

Our second application examines the birth-death-shift
(BDS) process proposed by Rosenberg et al. [2003] to
model evolutionary dynamics of transposable elements or
transposons, genomic mobile sequence elements. Each
transposon can (1) duplicate, with the new copy moving
to a new genomic location; (2) shift to a different loca-
tion; or (3) be removed and lost from the genome, inde-
pendently of all other transposons. These respective birth,
shift, and death events occur at per-particle instantaneous
rates β, σ, δ, with overall rates proportional to the total
number of transposons. Transposons thus evolve according
to a linear birth-death-shift Markov process in continuous
time. In practice, genotyping technologies allow for this
process to be discretely monitored, necessitating computa-
tion of finite-time transition probabilities.

Rosenberg et al. [2003] estimate evolutionary rates of
the IS6110 transposon in the Mycobacterium tuberculo-
sis genome from a San Francisco community study dataset
[Cattamanchi et al., 2006]. Without transition probabili-
ties, the authors maximize an approximate likelihood by
assuming at most one event occurs per observation interval,
a rigid assumption that severely limits the range of applica-
tions. Doss et al. [2013] revisit their application, inferring
similar rates of IS6110 evolution using a one-dimensional
birth-death model that ignores shift events. Xu et al. [2014]
show that the BDS model over any finite observation inter-
val can be modeled as a two-type branching process, where
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Figure 2: Illustrative example of recovered transition
probabilities in hematopoiesis model described in Sec-
tion 5. Beginning with 15 HSCs and 5 progenitors over
a time period of one week, the CSGF solution Ŝ ={
p̂(15,5),(j,k)(1)

}
, j, k = 0, . . . , 31, perfectly recovers tran-

sition probabilities S, using fewer than half the measure-
ments.

X1 denotes the number of initially occupied genomic lo-
cations and X2 denotes the number of newly occupied lo-
cations (see figure in Supplement). In this representation,
full dynamics of the BDS model can be captured, and gen-
erating function techniques admit transition probabilities,
leading to rate estimation via MLE and EM algorithms.
Transposon counts in the tuberculosis dataset are low, so
that Equation (6) can be computed easily, but their method
does not scale well to applications with high counts in the
data.

The nonzero rates defining the two-type branching process
representation of the BDS model are given by

a1(1, 1) = β, a1(0, 1) = σ, a1(0, 0) = δ,

a1(1, 0) = −(β + σ + δ), a2(0, 2) = β,

a2(0, 1) = −(β + δ), a2(0, 0) = δ. (18)

and its PGF is governed by the following system derived in
[Xu et al., 2014]:φ0,1(t, s1, s2) = 1 +

[
β
δ−β + ( 1

s2−1 + β
β−δ )e(δ−β)t

]−1

d
dtφ1,0(t, s1, s2) = βφ1,0φ2 + σφ0,1 + δ − (β + σ + δ)s1,

(19)
again with φjk = φj1,0φ

k
0,1 by particle independence.

5.3 Results

To compare the performance of CSGF to the computation
of Equation (6) without considering sparsity, we first com-
pute sets of transition probabilities S of the hematopoiesis
model using the full set of PGF solution measurements B̃
as described in Equation (11). These “true signals” are

compared to the signals computed using CSGF Ŝ, recov-
ered using only a random subset of measurements B fol-
lowing Algorithm 1. Figure 2 provides an illustrative ex-
ample with small cell populations for visual clarity— we
see that the support of transition probabilities is concen-
trated (sparse), and the set of recovered probabilities Ŝ is
visually identical to the true signal.

In each of the aforementioned applications, we calculate
transition probabilities S ∈ RN×N for maximum popu-
lations N = 27, 28, . . . 212, given rate parameters θ, ini-
tial population X(0), and time intervals t. Each computa-
tion of S requires N2 numerical evaluations of the ODE
systems (17), (19). For each value of N , we repeat this
procedure beginning with ten randomly chosen sets of ini-
tial populations X(0) each with total size less than N . We
compare the recovered signals Ŝ computed using CSGF to
true signals S, and report median runtimes and measures
of accuracy over the ten trials, with details in the following
sections.

Transition probability recovery comparison, BDS model
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Figure 3: Randomly selected probabilities and largest prob-
abilities recovered using CSGF are nearly identical to their
true values. Probabilities displayed here correspond to a
randomly selected BDS model trial with N=512; transi-
tion probabilities Ŝ via CSGF are recovered from a sample
B requiring fewer than 2% of ODE computations used to
compute S = fft(B̃).

Parameter settings: In the hematopoiesis
example, we set per-week branching rates
θhema = (0.125, 0.104, 0.147) and observation time
t = 1 week based on biologically sensible rates and
observation time scales of data from previous studies of
hematopoiesis in mammals [Catlin et al., 2001, Golinelli
et al., 2006, Fong et al., 2009]. For the BDS application, we
set per-year event rates θbds = (0.0156, 0.00426, 0.0187)
estimated in [Xu et al., 2014], and t = 0.35 years, the
average length between observations in the San Francisco
tuberculosis dataset [Cattamanchi et al., 2006].

In each case, we computed M2 = 3K logN2 total random
measurements to obtain B for CSGF, and we set the regu-



Table 1: Runtimes and error, hematopoiesis model. The third column reports total runtime of the generating function
approach without using sparsity. Total runtimes using CSGF are the sum of the runtime for computing the subset of ODE
solutions (fourth column) and runtime for PGD.

N M

Time (sec),
B̃ ∈ CN×N

Time (sec),
B ∈ CM×M

Time (sec),
PGD

εmax =
|p̂ij,kl − pij,kl|max

εrel =
εmax/|pij,kl|max

128 43 108.6 9.3 0.64 9.41× 10−4 2.25× 10−2

256 65 368.9 22.1 2.1 9.44× 10−4 4.73× 10−2

512 99 922.1 44.8 8.5 3.23× 10−4 3.60× 10−2

1024 147 5740.1 118.1 41.9 2.27× 10−4 5.01× 10−2

2048 217 12754.8 145.0 390.0 1.29× 10−4 5.10× 10−2

4096 322 58797.3 310.7 2920.3 9.43× 10−5 6.13× 10−2

Table 2: Runtimes and error, birth-death-shift model.

N M

Time (sec),
B̃ ∈ CN×N

Time (sec),
B ∈ CM×M

Time (sec),
PGD

εmax =
|p̂ij,kl − pij,kl|max

εrel =
εmax/|pij,kl|max

128 25 39.7 2.3 1.0 5.27× 10−3 2.77× 10−2

256 33 150.2 3.8 7.8 4.86× 10−3 4.71× 10−2

512 45 895.8 7.8 25.3 2.71× 10−3 4.68× 10−2

1024 68 2508.9 18.6 58.2 1.41× 10−3 5.12× 10−2

2048 101 9788.3 26.1 528.3 8.10× 10−4 4.81× 10−2

4096 150 40732.7 57.4 2234.7 4.01× 10−4 5.32× 10−2

larization parameters λhsc =
√

logM , λbds = logM , with
more regularization in the BDS application as lower rates
and a shorter observation interval leads us to expect more
sparsity. While careful case-by-case tuning to choose λ,M
would lead to optimal results, we set them in this simple
manner across all trials to demonstrate a degree of robust-
ness, still yielding promising performance results. In prac-
tice one may apply standard cross-validation procedures to
select λ,M , and because the target solution is a set of tran-
sition probabilities, checking that entries in the recovered
solution Ŝ sum close to 1 offers a simpler available heuris-
tic. Finally, though one may expedite convergence of PGD
by supplying an informed initial guess with positive val-
ues near values X(0) in practice, we initialize PGD with
an uninformative initial value S1 = 0 in all cases.

Accuracy: In both models and for all values of N , each
signal was reconstructed very accurately. Errors are re-
ported in Tables 1 and 2 for the hematopoiesis and BDS
models respectively. Maximum absolute errors for each
CSGF recovery

εmax = max
kl
|{Ŝ}kl−{S}kl | = max

kl
|p̂ij,kl(t)− pij,kl(t)|

are on the order of 10−3 at worst. Because εmax is typically
attained at large probabilities, we include the maximum ab-
solute error relative to the largest transition probability

εrel =
εmax

maxkl {S}kl
,

providing a more conservative measure of accuracy. We
still see that εrel is on the order of 10−2 in all cases. Addi-

tional analysis and discussion of accuracy in terms of rel-
ative error are included in the Supplement, although the
measures here arguably give more insight to the perfor-
mance of our algorithm. Visually, the accuracy of CSGF
is stark: Figure 3 provides a side-by-side comparison of
randomly selected transition probabilities recovered in the
BDS model for N = 29.

Running Times: Tables 1 and 2 show dramatic improve-
ments in runtime using CSGF, reducing the number of
ODE computations logarithmically. For instance, with
N = 4096, we see the time spent on PGF evaluations nec-
essary for CSGF is less than 0.1% of the time required to
compute S in the BDS model, and around 0.5% of compu-
tational cost in the less sparse hematopoiesis application.
Including the time required for solving Equation (10) via
PGD, we see that computing Ŝ using CSGF reduces run-
time by two orders of magnitude, requiring less than 6% of
total computational time spent toward computing S in the
worst case. We remark that ODE solutions are computed
using a C implementation of efficient solvers via package
deSolve, while we employ a naive R implementation of
PGD. We emphasize the logarithmic reduction in required
numerical ODE solutions; an optimized implementation of
PGD reducing R overhead will yield further real-time effi-
ciency gains.

6 DISCUSSION

We have presented a novel adaptation of recent generating
function techniques to compute branching process transi-



tion probabilities within the compressed sensing paradigm.
While generating function approaches bypass costly ma-
trix exponentiation and simulation-based techniques by ex-
ploiting mathematical properties in the branching structure,
our contribution now makes these techniques scalable by
additionally harnessing the available sparsity structure. We
show that when sparsity is present in the set of transition
probabilities, computational cost can be reduced up to a
logarithmic factor over existing methods. Note that sparsity
is the only additional assumption necessary to apply our
CSGF method—no prior knowledge about where transition
probabilities have support is necessary. Further, while our
algorithm uses proximal gradient descent to solve the re-
sulting constrained optimization problem, the framework
we propose is very general, and users may choose among
many standard optimization techniques to best suit their ap-
plication.

Many real-world applications of branching process mod-
eling feature such sparsity, and we have seen that CSGF
achieves accurate results with significant efficiency gains
in two such examples with realistic parameter settings from
the scientific literature. Transition probabilities are of-
ten important, interpretable quantities in their own right,
and are necessary within any likelihood-based probabilistic
framework for partially observed CTMCs. Their tractabil-
ity using CSGF opens doors to applying Bayesian and fre-
quentist tools alike to settings in which such methods were
previously infeasible. Finally, we note that other statis-
tically relevant quantities such as expectations of parti-
cle dwell times and restricted moments can be computed
using similar generating function techniques [Minin and
Suchard, 2008], and the CSGF framework applies analo-
gously when sparsity is present.
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