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Noncoding antisense RNAs have recently occupied considerable attention and several computational studies have

been made on RNA-RNA interaction prediction. In this paper, we present novel dynamic programming algorithms
for predicting the minimum energy secondary structure when binding sites of one of the two interacting RNAs are
known. Experimental results on several known RNA-RNA interaction data show that our proposed method achieves
good performance in accuracy and time.
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1. Introduction

In recent years, analysis of noncoding RNAs has attained great importance. They play a crucial role in some
biological processes including post-transcriptional regulation of gene expression. Some noncoding RNAs,
called antisense RNAs, aim at inhibiting their target RNA function through base complementary binding.
Some antisense RNAs use full complementarity to their target for binding, whereas a number of antisense
RNAs use partial complementarity,1 and several kissing hairpin structures (Fig. 1) caused by loop-loop
interaction have been reported.2

To predict joint secondary structures of interacting RNAs, several dynamic programming (DP) algo-
rithms have been proposed so far. Andronescu et al.3 developed the PairFold algorithm for secondary struc-
ture prediction of two interacting RNAs of minimum free energy. Since this algorithm is based on the Zuker’s
algorithm4 for predicting pseudoknot-free structure of a single RNA, its time complexity is O((n+m)3) where
n and m are respective lengths of two input sequences. The PairFold algorithm, however, cannot deal with
any kissing hairpins, which are essentially equivalent to pseudoknotted structures when concatenating two
interacting sequences. On the other hand, DP algorithms presented by Pervouchine,5 Alkan et al.6 and Kato
et al.7 can predict joint secondary structures including kissing hairpins in O(n3m3) time. However, the time
complexity of these algorithms is prohibitive in case n ≃ m (i.e., O(n6) time), which is the same complexity
of a prediction algorithm for pseudoknots.8

Viewing RNA-RNA interaction prediction from a different angle inspires us to consider the situation
where we aim at predicting the secondary structure with binding sites of one of the two interacting RNAs
(e.g., target RNA) on condition that interacting sites of the other RNA (e.g., antisense RNA) are known. In
fact, we assume that a “profile” of intermolecular binding is given in advance, which can be obtained from the
known secondary structure of the antisense RNA. This assumption could be reasonable since we can reduce
computational complexity of a kind of interaction prediction and discover new target RNAs for antisense
RNAs with known profiles. In this paper, we propose novel DP algorithms for predicting RNA secondary
structures with binding site locations. Note that our formulation of the prediction problem requires that the
order in which binding sites appear in an antisense RNA should be the same as the order in its target RNA
(see Fig. 1). To deal with binding sites as well as base-paired structures, we design an extension of the classical
Nussinov’s algorithm,9 which essentially minimizes the sum of base pair energies. In addition, we develop
another DP algorithm that can incorporate stacking energy, which is based on the Zuker’s algorithm.4 Both
of our proposed algorithms can run in O(N3n3) time where N is the number of binding sites and n is a
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Fig. 1. An example of RNA-RNA interaction containing kissing hairpins. A black circle indicates one base of a binding site.

Table 1. An energy function
e cited from Ref. 10.

Base pair Energy value

{G, C} −5
{A, U} −4

{G, U} −1

sequence length. Since N can be regarded as a constant in most cases, the time complexity of our algorithms
can be evaluated as O(n3). We demonstrate the performance of our approach using the proposed algorithms
on some data sets.

2. Methods

In this section, we will present dynamic programming (DP) algorithms for predicting RNA secondary struc-
tures with binding sites. Before going through the details of the algorithms, let us begin with definitions of
RNA secondary structure and the prediction problem considering binding sites.

2.1. Preliminaries

Definition 2.1 (RNA secondary structure). For an RNA sequence s = s1s2 · · · sn where si ∈ Σ =
{A,C,G,U} (1 ≤ i ≤ n), a secondary structure of s is defined as a set R of position pairs (i, j) that satisfies
the following conditions:

• 1 ≤ i < i + 1 < j ≤ n;
• ∀(i, j), (i′, j′) ∈ R; i = i′ ⇐⇒ j = j′.

Next, let us formally define the binding site profile.

Definition 2.2 (Binding site profile). Let N be the number of binding sites and b̄p = s̄p,1s̄p,2 · · · s̄p,ℓp ∈
Σ∗ (1 ≤ p ≤ N) denote a binding site (subsequence) of an antisense RNA sequence. Let sisi+1 · · · sj ∈ Σ∗

be a subsequence of a target RNA sequence. Then, for each p (1 ≤ p ≤ N), a binding site profile Ip(i, j) of
sisi+1 · · · sj is defined as follows:

Ip(i, j) =


γ

ℓp∑
k=1

e(si+k−1, s̄p,k) (j = i + ℓp − 1, and ∀k; si+k−1 is complementary to s̄p,k),

∞ (otherwise),

(1)

where γ is a positive weight parameter, and e is an energy function that maps from a valid base pair to the
corresponding energy value (see Table 1).

It should be noted that we do not know the actual binding sites of the target RNA in advance even though
the actual binding sites of the antisense RNA are given. Instead of using the binding site profile, estimates
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Fig. 2. An example of binding site profile.

of binding energies could be used in our algorithms if the binding sites of the antisense RNA are known and
the binding energies depend on the stacking energies of the base pairs involved in the binding sites.

Example 2.1. Consider an antisense RNA sequence shown in Fig. 2 with known binding sites b̄1 = ACC
and b̄2 = CCAG. We first compute their complementary subsequences UGG for b̄1 and GGUC, GGUU for
b̄2. Notice that we also take the wobble pair {G, U} into account. Then, we search for those complementary
subsequences through the target sequence. Since UGG matches at the location from 3 to 5 in the target, we
have I1(3, 5) = −4− 5− 5 = −14 where γ = 1 in Eq. (1) and the energy function shown in Table 1 are used.
The rest of the elements of I1 are equal to ∞ because no other sites of length three in the target match
UGG. In a similar way, we obtain I2(8, 11) = −19 and I2(13, 16) = −15, and the rest of the elements of I2

are set at ∞.

With these definitions, we define the prediction problem of RNA secondary structure with binding sites.

Definition 2.3 (RNA secondary structure prediction with binding sites).

Input: A target RNA sequence s = s1s2 · · · sn ∈ Σ∗ and N binding site profiles I1, I2, . . . , IN of s.

Output: The optimum secondary structure of s whose subsequences match the binding sites in the order
from I1 to IN .

2.2. DP Algorithms

We develop two prediction models based on DP. The first DP-based model is an extension of the Nussinov’s
algorithm9 using a simple base pair energy function. For the second model, we extend the first model to
utilize the stacking energy and loop energy functions, which is based on the Zuker’s algorithm.4

2.2.1. Base pair energy model

In the beginning, we define DP tables to design the algorithm. Let s = s1s2 · · · sn be an RNA sequence. As
in the conventional case, we let W (i, j) denote the minimum free energy of secondary structure formed from
a subsequence sisi+1 · · · sj of s. In addition, let Wpq(i, j) be the minimum free energy of secondary structure
for sisi+1 · · · sj that contains binding sites corresponding to Ip, Ip+1, . . . , Iq (1 ≤ p ≤ q ≤ N). Note that
Wpq(i, j) is a four dimensional table. We use this notation to facilitate comparison with the other DP table
W (i, j).

These DP tables are initialized as follows:

W (i, i) = 0, Wpq(i, i) = ∞ (1 ≤ ∀i ≤ n; 1 ≤ ∀p ≤ ∀q ≤ N).

The recursions are classified into three cases as shown below. In the first case, we use the simple Nussinov’s
algorithm for predicting secondary structure without binding sites. The second case is used for dealing with
the structure with just one binding site. The third case is used for predicting the structure with two or more
binding sites.
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Fig. 3. Recursion for Wpp(i, j). A dashed curve indicates that we do not know whether or not two bases connected by the

curve form a base pair, and a solid curve shows that two bases connected by it definitely form a base pair.

Case 1 (the Nussinov’s algorithm):

W (i, j) = min


W (i + 1, j),

W (i, j − 1),

W (i + 1, j − 1) + e(i, j),

min
i≤k<j

{W (i, k) + W (k + 1, j)},

(2)

where e(i, j) is the simple energy function for a base pair (si, sj). In the above DP recursion, the first and
the second cases of minimization represent the cases where si and sj do not form a base pair. The third case
says that si and sj form a base pair, and the resulting energy e(i, j) is added to the present value of W .
The forth formula represents the bifurcation structure. Note that k is the position at which the structure
bifurcates in such a way that the sum of energies of two substructures is minimized.

Case 2 (p = q):

Wpp(i, j) = min



Ip(i, j),

Wpp(i + 1, j),

Wpp(i, j − 1),

Wpp(i + 1, j − 1) + e(i, j),

min
i≤k<j

{Wpp(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpp(k + 1, j)}.

(3)

The first case means that sisi+1 · · · sj is a possible binding site and we adopt the corresponding score Ip(i, j)
computed in Eq. (1). The formulas from the second through the fourth are similar to the ones from the first
through the third in Eq. (2). The fifth case represents the bifurcation structure where the binding site is
contained in the former part of the bifurcation. Since the latter part of the bifurcation does not contain any
binding sites, we use W computed in Eq. (2). The last case is a counterpart of the fifth case. Following a
diagrammatic representation in Ref. 8, we provide a schematic representation of the recursion for Wpp(i, j)
in Fig. 3.

Case 3 (q ≥ p + 1):

Wpq(i, j) = min



min
i≤k<j

min
p≤r<q

{Wpr(i, k) + Wr+1,q(k + 1, j)},

Wpq(i + 1, j),

Wpq(i, j − 1),

Wpq(i + 1, j − 1) + e(i, j),

min
i≤k<j

{Wpq(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpq(k + 1, j)}.

(4)
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Fig. 4. Recursion for Wpq(i, j).

The first case is designed for computing the bifurcation of secondary substructures, each of which contains
the binding sites. It should be noted that the former part of the bifurcation contains the binding sites
corresponding to Ip, . . . , Ir, whereas the latter part corresponds to the substructure with binding sites for
Ir+1, . . . , Iq. The other cases can be interpreted as in Case 2. Figure 4 illustrates the above DP recursion.

We now evaluate the complexity of the above algorithm. Computing Eq. (2) takes O(n3) time. Equa-
tions (3) and (4) can be computed in O(Nn3) and O(N3n3) time, respectively. Therefore, the overall time
complexity is evaluated as O(N3n3). By similar evaluation, we can see that the space complexity is O(N2n2).

The minimum energy of the secondary structure of the input sequence is equivalent to W1,N (1, n), and
the optimum secondary structure can be retrieved by tracing back the DP tables from W1,N (1, n).

2.2.2. Stacking energy model

Since the energy function used in the above DP algorithm is very simple, there is room for further improve-
ment of our DP model. It is widely accepted that calculating contributions for stacking energy rather than
individual contributions for each base pair yields better prediction. Hence, we extend the above DP algorithm
based on this idea. In order to incorporate stacking energy into our previous DP model, we introduce addi-
tional DP tables. Let V (i, j) be the minimum free energy of secondary structure formed from a subsequence
sisi+1 · · · sj such that si and sj form a base pair. Let Vpq(i, j) be the minimum free energy of secondary
structure for sisi+1 · · · sj that contains binding sites corresponding to Ip, Ip+1, . . . , Iq such that si and sj

form a base pair. Note that W (i, j) and Wpq(i, j) are defined in the same way as in the base pair energy
model. Although energies of multi-branched and exterior loops could be incorporated into the recursions of
W and Wpq, we exclude such energy rules for simplicity.

Initialization conditions for W and V are as follows:

W (i, i) = ∞, V (i, i) = ∞, Wpq(i, i) = ∞, Vpq(i, i) = ∞ (1 ≤ ∀i ≤ n; 1 ≤ ∀p ≤ ∀q ≤ N).

The revised version of the DP recursions is as follows:
Case 1 (the Zuker’s algorithm):

W (i, j) = min


W (i + 1, j),

W (i, j − 1),

V (i, j),

min
i≤k<j

{W (i, k) + W (k + 1, j)},

(5)
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V (i, j) = min



eh(i, j),

V (i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{V (i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{W (i + 1, k) + W (k + 1, j − 1)} + b,

(6)

where eh(i, j) is the destabilizing energy of a hairpin loop closed by a pair of (si, sj), es(i, i + 1, j − 1, j) is
the stacking energy of two pairs (si, sj) and (si+1, sj−1), ebi(i, i′, j′, j) is the destabilizing energy of a bulge
or an interior loop closed by pairs (si, sj) and (si′ , sj′), and b is a penalty for a bifurcation structure. Notice
that in Eq. (5), the case where si and sj form a base pair is represented by V (i, j). As can be seen in Eq. (6),
V (i, j) is computed by minimizing among the four cases. The first case represents the energy of a hairpin
loop closed by (si, sj). The second formula adds the stacking energy of (si, sj) and (si+1, sj−1) to the present
value of V . The third case represents a substructure where a bulge or an interior loop occurs in si · · · si′ and
sj′ · · · sj . The fourth formula is used for computing bifurcation.

Case 2 (p = q):

Wpp(i, j) = min



Ip(i, j),

Wpp(i + 1, j),

Wpp(i, j − 1),

Vpp(i, j),

min
i≤k<j

{Wpp(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpp(k + 1, j)},

(7)

Vpp(i, j) = min



min
i<i′<j′<j

{Wpp(i′, j′) + er(i, i′, j′, j)},

Vpp(i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{Vpp(i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{Wpp(i + 1, k) + W (k + 1, j − 1)} + b,

min
i<k<j−1

{W (i + 1, k) + Wpp(k + 1, j − 1)} + b,

(8)

where er(i, i′, j′, j) is the approximate destabilizing energy of a pair of subsequences (si+1 · · · si′−1, sj′+1 · · ·
sj−1), which is obtained by removing si′ · · · sj′ from si+1 · · · sj−1. Vpp(i, j) is computed by minimizing among
the five choices. The first formula represents the case where the binding site corresponding to Ip is contained
in the sequence closed by a base pair (si, sj). The other cases are similar to those of the V (i, j) recursion.

Case 3 (q ≥ p + 1):

Wpq(i, j) = min



min
i≤k<j

min
p≤r<q

{Wpr(i, k) + Wr+1,q(k + 1, j)},

Wpq(i + 1, j),

Wpq(i, j − 1),

Vpq(i, j),

min
i≤k<j

{Wpq(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpq(k + 1, j)},

(9)
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Table 2. Results of the base pair energy model (BPEM), where n is the length of a
target sequence and N is the number of binding sites. Note that for the ATP sensitive

ribozyme-Substrate, n indicates the length of the antisense sequence. Since the substrate
does not fold into secondary structure, only the binding sites can be detected by the
algorithms, which is too simple. Therefore, we used the substrate to compute the binding
site profile and predicted secondary structure and binding sites of the ATP sensitive

ribozyme.

Antisense-Target n N SEN (%) PPV (%) Time (s)

Tar-Tar*11 16 1 100.00 90.00 0.20
R1inv-R2inv12 19 1 100.00 100.00 0.23
DIS-DIS13 35 1 82.35 73.68 0.85

CopA-CopT14 57 3 100.00 93.94 17.76
ATP sensitive ribozyme-Substrate15 59 2 52.17 36.36 9.01
IncRNA54-RepZ16 61 2 100.00 94.87 9.72
RyhB-SodB17 87 1 37.50 25.00 10.27

OxyS-fhlA14 100 2 59.09 52.00 43.25

Average 78.89 70.73 11.41

Vpq(i, j) = min



min
i<i′<j′<j

{Wpq(i′, j′) + er(i, i′, j′, j)},

Vpq(i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{Vpq(i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{Wpq(i + 1, k) + W (k + 1, j − 1)} + b,

min
i<k<j−1

{W (i + 1, k) + Wpq(k + 1, j − 1)} + b.

(10)

Vpq(i, j) in Case 3 differs from Vpp(i, j) in Case 2 in that the present subsequence sisi+1 · · · sj contains at
least two binding sites.

Finally, we evaluate the complexity of this algorithm. Obviously, complexity for computing Eqs. (9) and
(10) dominates the overall complexity of the algorithm. Computing the first formula of Eq. (9) takes O(N3n3)
time. Exact analysis of the first and third formulas of Eq. (10) reveals time complexity of O(N2n4). In actual
case, however, the loop size is bounded by a constant, and thus the complexity can be reduced to O(N2n2).
Therefore, the overall time complexity is evaluated as O(N3n3). The space complexity is O(N2n2).

3. Results

Our two DP models were tested on the data set comprising eight antisense-target RNA complexes with
known structures, taken from several literatures (see Tables 2–4). In fact, an antisense sequence was
used for constructing a binding profile, whereas the corresponding target sequence was used for predict-
ing its structure with binding sites. For the binding site profile computation, we used γ = 2 in Eq.
(1). We employed Table 1 for the simple energy parameter e, and adopted sophisticated energy pa-
rameters for folding at 37◦C provided by the Turner Group18 (the recent version is available online at
http://www.bioinfo.rpi.edu/zukerm/rna/energy/) for other parameters including eh, es, etc. We limited the
size of interior and bulge loops to at most four nucleotides. The penalty for a bifurcation structure b was set
at 1. We implemented the algorithms in Java on a machine with Intel Core 2 Duo CPU 1.20GHz and 2.00GB
RAM. Prediction accuracy was measured using sensitivity (SEN) and positive predictive value (PPV) defined
below:

SEN =
♯ of correctly predicted base pairs + ♯ of correctly predicted bases of binding sites

♯ of observed base pairs + ♯ of observed bases of binding sites
,

PPV =
♯ of correctly predicted base pairs + ♯ of correctly predicted bases of binding sites

♯ of predicted base pairs + ♯ of predicted bases of binding sites
.

Note that ♯ represents the number.
Tables 2 and 3 show the prediction accuracy of the base pair energy model (BPEM) and that of the

stacking energy model (SEM), respectively. Figure 5 depicts predicted structures of the fhlA RNA of the
longest sequence in the data set. We can see that SEM outperforms BPEM in terms of accuracy.
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Table 3. Results of the stacking energy model (SEM).

Antisense-Target SEN (%) PPV (%) Time (s)

Tar-Tar* 100.00 100.00 0.39

R1inv-R2inv 92.31 100.00 0.53
DIS-DIS 100.00 100.00 2.92
CopA-CopT 96.77 100.00 50.09

ATP sensitive ribozyme-Substrate 100.00 92.00 29.11
IncRNA54-RepZ 100.00 97.37 30.23
RyhB-SodB 83.33 64.52 31.77
OxyS-fhlA 90.91 90.91 115.40

Average 95.42 93.10 32.56

[Observed structure]
AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG
(((((.(((((((((((...)))))))..*******.....)))).))))).........((((((((.((((....*********.)))).))))))))

[Predicted structure by BPEM]
AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG
((..(((((((.((.(((((((..(.((.*******)))))))))))))).).).).))))(((((((((((.(.(.*********))))))))))))).

[Predicted structure by SEM]
AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG
(((((.(((((((((((...)))))))..*******))))......))))).........((((((((.((((....*********.)))).))))))))

Fig. 5. Prediction results for the fhlA RNA. A pair of parentheses denotes a base pair and a series of asterisks represents a
binding site.

Table 4. Comparison of F-measure (%) between our models, the stacked pair

model (SPM) and the loop model (LM) presented in Ref. 6. Note that LM returned
no base pair when ATP sensitive ribozyme-Substrate was used as an input.

Antisense-Target BPEM SEM SPM LM

Tar-Tar* 94.74 100.00 90.00 90.00
R1inv-R2inv 100.00 96.00 100.00 100.00

DIS-DIS 77.78 100.00 82.35 82.35
CopA-CopT 96.88 98.36 83.33 78.79
ATP sensitive ribozyme-Substrate 42.86 95.83 55.32 0.00
IncRNA54-RepZ 97.37 98.67 81.58 81.58

RyhB-SodB 30.00 72.73 53.97 52.78
OxyS-fhlA 55.32 90.91 80.00 78.72

Average 74.37 94.06 78.17 70.68

We then compared the performance of our proposed methods with that of existing DP-based models,
called the stacked pair model (SPM) and the loop model (LM) presented in Ref. 6, using the inteRNA web
server19 (see Table 4). In the web interface, we set gap penalty and maximum substructure length at 0 and
61, respectively, for all eight RNA pairs. SPM and LM took much time for prediction due to their high time
complexity as stated in Sec. 1. We calculated F-measure F , which is the harmonic mean of SEN and PPV
defined by F = 2 · SEN · PPV/(SEN + PPV). As Table 4 shows, the prediction performance of SEM is the
best of all four models on average.

To demonstrate the applicability of our profile-based approach to target discovery, we further tried
analyzing some RNAs with unknown structures and binding sites, given binding profiles of specific antisense
RNAs. Test sequences were selected to be homologous to the known target sequence (query) for the antisense
RNA using BLASTN. Figures 6 and 7 illustrate two candidate prediction results using SEM. We must note
that in the figures it is not clear whether or not the predicted binding sites actually interact with the
antisense RNAs since the number of detected binding sites was fewer than that of the known homologous
target RNAs. The prediction result of CP001122 (see Fig. 6), which has 90% sequence identity with the
known target CopT, shows that SEM detected two binding sites on CP001122. Note that the second binding
site inside the hairpin loop (CUGC in Fig. 6) was ascribed to the profile computed from the third binding
site located in the exterior loop of CopT, which leads to more uncertainty of predicted target sites. As for
another example, SEM recognized only one binding sites on CU928158 (see Fig. 7), which has 89% sequence
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AAACCCCGAUAAUCUUCGUCAAGUUUGGCGACUGCGAAGAAGAUUACCGGGGCCC

...(((((.((((((((......******..****...)))))))).)))))...

Fig. 6. A prediction result of a sequence CP001122 Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188

plasmid pCVM29188 146, which has 90% sequence identity with the CopT RNA to which the antisense CopA binds. Notice
that only two binding sites were predicted as compared with the known target CopT with three binding sites.

UUGCGGUGCAUUCCUGGAUAGCAAAAUGUCGUAUACACCAAUGAGCGAUCUCGGACAACAAGGGCUGUUCGAUAUCACUCG

.((((.(((..*******..)))......))))........((((.(((.(((((((........))))))).))).))))

Fig. 7. A prediction result of a sequence CU928158 of the Escherichia fergusonii ATCC 35469 chromosome, which has 89%
sequence identity with the fhlA RNA to which the antisense OxyS binds. Notice that only one binding site was predicted as

compared with the known target fhlA with two binding sites.

identity with the known target fhlA. On the other hand, exactly two binding sites were found for another
test sequence of 99% sequence identity with fhlA (the result is not shown here).

4. Conclusion

We proposed new dynamic programming algorithms for predicting RNA secondary structures with binding
sites. The performance of the algorithms for the base pair energy model (BPEM) and the stacking energy
model (SEM) was demonstrated for several known RNA-RNA interaction data. Judging from the results,
it can be said that the advantages of BPEM are faster running time than that of SEM and the simplicity
of DP, which is a natural extension of the classical prediction algorithm for single RNA folding. However,
prediction accuracy of BPEM plummets for some inputs. On the other hand, SEM is a more complex model
than BPEM but a robust one in a sense that prediction accuracy hardly fluctuates according to the length
of an input sequence. We further compared the prediction results with those of other prediction methods,
which shows that SEM outperforms those earlier models.

Our approach is a novel method of RNA-RNA interaction prediction from a different point of view
(i.e., use of profile of intermolecular interaction), and achieves lower time complexity compared with earlier
methods. Moreover, use of our profile-based method can improve prediction performance. Our method will
also be useful in discovering new target sites for an antisense RNA with a known binding profile. To ensure
this advantage, exhaustive search for candidate targets has to be performed as our future work. If the profile
of an interacting protein is available, our method could be applied to RNA-protein interaction prediction,
which is also left as a challenging task.
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