Dynamic Load Balancing with Tokens

Céline Comte
Nokia Bell Labs and Télécom ParisTech, University Paris-Saclay, France
celine.comte @nokia.com

Abstract—Efficiently exploiting the resources of data centers
is a complex task that requires efficient and reliable load
balancing and resource allocation algorithms. The former are
in charge of assigning jobs to servers upon their arrival in
the system, while the latter are responsible for sharing server
resources between their assigned jobs. These algorithms should
take account of various constraints, such as data locality, that
restrict the feasible job assignments. In this paper, we propose
a token-based mechanism that efficiently balances load between
servers without requiring any knowledge on job arrival rates and
server capacities. Assuming a balanced fair sharing of the server
resources, we show that the resulting dynamic load balancing
is insensitive to the job size distribution. Its performance is
compared to that obtained under the best static load balancing
and in an ideal system that would constantly optimize the
resource utilization.

I. INTRODUCTION

The success of cloud services encourages operators to scale
out their data centers and optimize the resource utilization.
The current trend consists in virtualizing applications instead
of running them on dedicated physical resources [1]. Each
server may then process several applications in parallel and
each application may be distributed among several servers.
Better understanding the dynamics of such server pools is a
prerequisite for developing load balancing and resource allo-
cation policies that fully exploit this new degree of flexibility.

Some recent works have tackled this problem from the point
of view of queueing theory [2]-[5]. Their common feature
is the adoption of a bipartite graph that translates practical
constraints such as data locality into compatibility relations
between jobs and servers. These models apply in various
systems such as computer clusters, where the shared resource
is the CPU [4], [5], and content delivery networks, where the
shared resource is the server upload bandwidth [3]. However,
these pool models do not consider simultaneously the impact
of complex load balancing and resource allocation policies.
The model of [2] lays emphasis on dynamic load balancing,
assuming neither server multitasking nor job parallelism. The
bipartite graph describes the initial compatibilities of incoming
jobs, each of them being eventually assigned to a single
server. On the other hand, [3]-[5] focus on the problem
of resource allocation, assuming a static load balancing that
assigns incoming jobs to classes at random, independently of
the system state. The class of a job in the system identifies the
set of servers that can be pooled to process it in parallel. The
corresponding bipartite graph, connecting classes to servers,
restricts the set of feasible resource allocations.

ISBN 978-3-903176-08-9 © 2018 IFIP

Job types

Job classes

Servers

Fig. 1. A compatibility graph between types, classes and servers. Two
consecutive servers can be pooled to process jobs in parallel. Thus there are
two classes, one for servers 1 and 2 and another for servers 2 and 3. Type-1
jobs can be assigned to any class, while type-2 jobs can only be assigned to the
latter. This restriction may result from data locality constraints for instance.

In this paper, we introduce a tripartite graph that explicitly
differentiates the compatibilities of an incoming job from its
actual assignment by the load balancer. This new model allows
us to study the joint effect of load balancing and resource
allocation. A toy example is shown in Fig. 1. Each incoming
job has a type that defines its compatibilities; these may reflect
its parallelization degree or locality constraints, for instance.
Depending on the system state, the load balancer matches the
job with a compatible class that subsequently determines its
assigned servers. The upper part of our graph, which puts
constraints on load balancing, corresponds to the bipartite
graph of [2]; the lower part, which restricts the resource
allocation, corresponds to the bipartite graph of [3]-[5].

We use this new framework to study load balancing and
resource allocation policies that are insensitive, in the sense
that they make the system performance independent of fine-
grained traffic characteristics. This property is highly desirable
as it allows service providers to dimension their infrastruc-
ture based on average traffic predictions only. It has been
extensively studied in the queueing literature [3], [6]-[8]. In
particular, insensitive load balancing policies were introduced
in [8] in a generic queueing model, assuming an arbitrary
insensitive allocation of the resources. These load balancing
policies were defined as a generalization of the static load
balancing described above, where the assignment probabilities
of jobs to classes depend on both the job type and the system
state, and are chosen to preserve insensitivity.

Our main contribution is an algorithm based on tokens
that enforces such an insensitive load balancing without per-
forming randomized assignments. More precisely, this is a
deterministic implementation of an insensitive load balancing
that adapts dynamically to the system state, under an arbi-
trary compatibility graph. The principle is as follows. The
assignments are regulated through a bucket containing a fixed

number of tokens of each class. An incoming job seizes the
longest available token among those that identify a compatible
class, and is blocked if it does not find any. The rationale
behind this algorithm is to use the release order of tokens
as an information on the relative load of their servers: a
token that has been available for a long time without being
seized is likely to identify a server set that is less loaded
than others. As we will see, our algorithm mirrors the first-
come, first-served (FCFS) service discipline proposed in [5]
to implement balanced fairness, which was defined in [7] as
the most efficient insensitive resource allocation.

The closest existing algorithm we know is assign longest
idle server (ALIS), introduced in reference [2] cited above.
This work focuses on server pools without job parallel pro-
cessing nor server multitasking. Hence, ALIS can be seen as
a special case of our algorithm where each class identifies
a server with a single token. The algorithm we propose is
also related to the blocking version of Join-Idle-Queue [9]
studied in [10]. More precisely, we could easily generalize our
algorithm to server pools with several load balancers, each
with their own bucket. The corresponding queueing model,
still tractable using known results on networks of quasi-
reversible queues [11], extends that of [10].

Organization of the paper: Section II recalls known
facts about resource allocation in server pools. We describe a
standard pool model based on a bipartite compatibility graph
and explain how to apply balanced fairness in this model.
Section III contains our main contributions. We describe our
pool model based on a tripartite graph and introduce a new
token-based insensitive load balancing mechanism. Numerical
results are presented in Section IV.

II. RESOURCE ALLOCATION

We first recall the model considered in [3]-[5] to study the
problem of resource allocation in server pools. This model will
be extended in Section III to integrate dynamic load balancing.

A. Model

We consider a pool of S servers. There are N job classes
and we let Z = {1,..., N} denote the set of class indices. For
now, each incoming job is assigned to a compatible class at
random, independently of the system state. For each ¢ € Z, the
resulting arrival process of jobs assigned to class 7 is assumed
to be Poisson with a rate A; > 0 that may depend on the
job arrival rates, compatibilities and assignment probabilities.
The number of jobs of class ¢ in the system is limited by
¢;, for each i € Z, so that a new job is blocked if its
assigned class is already full. Job sizes are independent and
exponentially distributed with unit mean. Each job leaves the
system immediately after service completion.

The class of a job defines the set of servers that can be
pooled to process it. Specifically, for each ¢+ € Z, a job of
class ¢ can be served in parallel by any subset of servers within
the non-empty set S; C {1,...,S}. This defines a bipartite
compatibility graph between classes and servers, where there

344

Job classes

Servers

Fig. 2. A compatibility graph between classes and servers. Servers 1 and 3
are dedicated, while server 2 can serve both classes. The server sets associated
with classes 1 and 2 are S1 = {1, 2} and S = {2, 3}, respectively.

is an edge between a class and a server if the jobs of this class
can be processed by this server. Fig. 2 shows a toy example.

When a job is in service on several servers, its service rate
is the sum of the rates allocated by each server to this job.
For each s = 1,...,.5, the capacity of server s is denoted by
s > 0. We can then define a function p on the power set of
T as follows: for each A C Z,

> ne

p(A) =
5€Uiea Si

denotes the aggregate capacity of the servers that can process
at least one class in A, i.e., the maximum rate at which jobs of
these classes can be served. p is a submodular, non-decreasing
set function [12]. It is said to be normalized because 1(0) = 0.

B. Balanced fairness

We first recall the definition of balanced fairness [7], which
was initially applied to server pools in [3]. Like processor shar-
ing (PS) policy, balanced fairness assumes that the capacity of
each server can be divided continuously between its jobs. It is
further assumed that the resource allocation only depends on
the number of jobs of each class in the system; in particular,
all jobs of the same class receive service at the same rate.

The system state is described by the vector z = (z; : i € Z)
of numbers of jobs of each class in the system. The state space
is X = {z e NV : 2 </}, where £ = (¢; : i € T) is the
vector of per-class constraints and the comparison < is taken
componentwise. For each i € Z, we let ¢;(x) denote the total
service rate allocated to class-¢ jobs in state x. It is assumed
to be nonzero if and only if x; > 0, in which case each job
of class i receives service at rate @

Queueing model: Since all jobs of the same class receive
service at the same rate, we can describe the evolution of the
system with a network of N PS queues with state-dependent
service capacities. For each ¢ € Z, queue ¢ contains jobs of
class 4; the arrival rate at this queue is A; and its service
capacity is ¢;(x) when the network state is . An example is
shown in Fig. 3 for the configuration of Fig. 2.

Capacity set: The compatibilities between classes and
servers restrict the set of feasible resource allocations. Specif-
ically, the vector (¢;(x) : ¢ € Z) of per-class service rates
belongs to the following capacity set in any state z € X

Y= {¢>6M: Z@gu(A), VACI}.
i€A
As observed in [3], the properties satisfied by p guarantee that
Y is a polymatroid [12].

S

S
I
w

|
|

AN — —

¢1()

|
|

&

N
Il
[\

)\24’

—

$2(x)

Fig. 3. An open Whittle network of N = 2 queues associated with the server
pool of Fig. 2.

Balance function: It was shown in [6] that the resource
allocation is insensitive if and only if there is a balance
function ® defined on A" such that ®(0) = 1 and

D(x—e;)

oi(x) = o) Ve e X, Viel(x), ()
where e; is the N-dimensional vector with 1 in component
i and O elsewhere and Z(x) = {i € Z : x; > 0} is the
set of active classes in state x. Under this condition, the
network of PS queues defined above is a Whittle network [13].
The insensitive resource allocations that respect the capacity
constraints of the system are characterized by a balance

function ® such that, for all z € X'\ {0},

Z(b i7

zE.A

VA C Z(x), A#0.

Recursively maximizing the overall service rate in the system
is then equivalent to minimizing ® by choosing

d(z)= m Cm (Z@
A#

ZG.A
The resource allocation defined by this balance function is
called balanced fairness.

It was shown in [3] that balanced fairness is Pareto-efficient
in polymatroid capacity sets, meaning that the total service
rate Ziel(a:) ¢i(x) is always equal to the aggregate capacity
u(Z(x)) of the servers that can process at least one active
class. By (1), this is equivalent to

Zq) iv

zeI(x)

ez>, Ve e X\ {0}.

d(x) = Vee X\{0}. (2

Stationary distribution: The Markov process defined by
the system state x is reversible, with stationary distribution

(@) = w(0)D () [A,

i€l

Vr e X. 3)

By insensitivity, the system state has the same stationary
distribution if the jobs sizes within each class are only i.i.d., as
long as the traffic intensity of class ¢ (defined as the average
quantity of work brought by jobs of this class per unit of time)
is A;, for each ¢ € Z. A proof of this result is given in [6] for
Cox distributions, which form a dense subset within the set of
distributions of nonnegative random variables.

C. Job scheduling

We now describe the sequential implementation of balanced
fairness that was proposed in [5]. This will lay the foundations
for the results of Section III.

We still assume that a job can be distributed among several
servers, but we relax the assumption that servers can process
several jobs at the same time. Instead, each server processes
its jobs sequentially in FCFS order. When a job arrives, it
enters in service on every idle server within its assignment,
if any, so that its service rate is the sum of the capacities of
these servers. When the service of a job is complete, it leaves
the system immediately and its servers are reallocated to the
first job they can serve in the queue. Note that this sequential
implementation also makes sense in a model where jobs are
replicated over several servers instead of being processed in
parallel. For more details, we refer the reader to [4] where the
model with redundant requests was introduced.

Since the arrival order of jobs impacts the rate allocation, we
need to detail the system state. We consider the sequence ¢ =
(c1,...,cn) € T*, where n is the number of jobs in the system
and c,, is the class of the p-th oldest job, foreachp =1,...,n
() denotes the empty state, with n = 0. The vector of numbers
of jobs of each class in the system, corresponding to the state
introduced in §II-B, is denoted by |c| = (|c[; ;1 € Z) € X. It
does not define a Markov process in general. We let Z(c) =
Z(|c|) denote the set of active classes in state c¢. The state
space of this detailed system state is C = {c € Z* : || < ¢}.

Queueing model: Each job is in service on all the servers
that were assigned this job but not those that arrived earlier.
For each p = 1,...,n, the service rate of the job in position
p is thus given by

>

SESCP\Ug 11 Seq

ps = (Z(cr, ... cp)) — w(Z(er, ..., cp—1)),

with the convention that (cq,...,¢,—1) = 0 if p = 1. The
service rate of a job is independent of the jobs arrived later
in the system. Additionally, the total service rate p(Z(c)) is
independent of the arrival order of jobs. The corresponding
queueing model is an order-independent (OI) queue [14], [15].
An example is shown in Fig. 4 for the configuration of Fig. 2.

c=(1,1,2,1,2)

)\14’

211211

)\24>

Fig. 4. An OI queue with N = 2 job classes associated with the server pool
of Fig. 2. The job of class 1 at the head of the queue is in service on servers
1 and 2. The third job, of class 2, is in service on server 3. Aggregating the
state ¢ yields the state = of the Whittle network of Fig. 3.

Stationary distribution: The Markov process defined by
the system state c is irreducible. The results of [15] show that
this process is quasi-reversible, with stationary distribution

() = w(O)D(e) [T A

i€l

VeeC, “4)

345

where ® is defined recursively on C by ®()) = 1 and
1

D(c) = ———

1(Z(c))

We now go back to the aggregate state x giving the number

of jobs of each class in the system. With a slight abuse of
notation, we let

> we) and O(x)= > O(c), Ve

cilel=x

As observed in [5], [15], if follows from (4) that

S @) | [[N" =rO)@@) [T

cile|=x i€l i€l

@(Cl,...70n_1), VCGC\{@} (5)

m(x) =

cilc|l=x

m(x) = =(0)

in any state x. Using (5), we can show that ® satisfies (2) with
the initial condition ®(0) = ®(0) = 1. Hence, the stationary
distribution of the aggregate system state x is exactly that
obtained in §II-B under balanced fairness.

It was also shown in [5] that the average per-class resource
allocation resulting from FCFS service discipline is balanced
fairness. In other words, we have

>

cilc|=z

Ve e X, VieI(x),

where ¢;(z) is the total service rate allocated to class-i jobs
in state x under balanced fairness, given by (1), and p;(c)
denotes the service rate received by the first job of class ¢ in
state ¢ under FCFS service discipline:

pi(c) = Z(M(I(cl, .

p=1
cp=1

’Cp>) - M(I(cla) Cp—l)))-

Observe that, by (3) and (4), the rate equality simplifies to

gi(z) = Y i)((;))ui(c), Vre X, YieZI(x). (6)
c:lc|=z
We will use this last equality later.

As it is, the FCFS service discipline is very sensitive to the
job size distribution. [5] mitigates this sensitivity by frequently
interrupting jobs and moving them to the end of the queue,
in the same way as round-robin scheduling algorithm in the
single-server case. In the queueing model, these interruptions
and resumptions are represented approximately by random
routing, which leaves the stationary distribution unchanged by
quasi-reversibility [11], [13]. If the interruptions are frequent
enough, then all jobs of a class tend to receive the same service
rate on average, which is that obtained under balanced fairness.
In particular, performance becomes approximately insensitive
to the job size distribution within each class.

III. LOAD BALANCING

The previous section has considered the problem of resource
sharing. We now focus on dynamic load balancing, using the
fact that each job may be a priori compatible with several
classes and assigned to one of them upon arrival. We first
extend the model of §II-A to add this new degree of flexibility.

346

A. Model
We again consider a pool of S servers. There are N job
classes and we let Z = {1,..., N} denote the set of class

indices. The compatibilities between job classes and servers
are described by a bipartite graph, as explained in §II-A.
Additionally, we assume that the arrivals are divided into K
types, so that the jobs of each type enter the system according
to an independent Poisson process. Job sizes are independent
and exponentially distributed with unit mean. Each job leaves
the system immediately after service completion.

The type of a job defines the set of classes it can be assigned
to. This assignment is performed instantaneously upon the job
arrival, according to some decision rule that will be detailed
later. For each ¢ € Z, we let K; C {1,...,K} denote the
non-empty set of job types that can be assigned to class 3.
This defines a bipartite compatibility graph between types and
classes, where there is an edge between a type and a class if
the jobs of this type can be assigned to this class. Overall,
the compatibilities are described by a tripartite graph between
types, classes, and servers. Fig. 1 shows a toy example.

Foreach £k =1, ..., K, the arrival rate of type-k jobs in the
system is denoted by v, > 0. We can then define a function
v on the power set of Z as follows: for each A C Z,

I/(.A) = Z Vg

keUiE.A K

denotes the aggregate arrival rate of the types that can be
assigned to at least one class in A. v satisfies the submodu-
larity, monotonicity and normalization properties satisfied by
the function p of §II-A.

B. Randomized load balancing

We now express the insensitive load balancing of [8] in our
new server pool model. This extends the static load balancing
considered earlier. Incoming jobs are assigned to classes at
random, and the assignment probabilities depend not only
on the job type but also on the system state. As in §II-B,
we assume that the capacity of each server can be divided
continuously between its jobs. The resources are allocated by
applying balanced fairness in the capacity set defined by the
bipartite compatibility graph between job classes and servers.

Open queueing model: We first recall the queueing model
considered in [8] to describe the randomized load balancing.
As in §II-B, jobs are gathered by class in PS queues with state-
dependent service capacities given by (1). Hence, the type of
a job is forgotten once it is assigned to a class.

Similarly, we record the job arrivals depending on the
class they are assigned to, regardless of their type before the
assignment. The Poisson arrival assumption ensures that, given
the system state, the time before the next arrival at each class
is exponentially distributed and independent of the arrivals at
other classes. The rates of these arrivals result from the load
balancing. We write them as functions of the vector y = £ —x
of numbers of available positions at each class. Specifically,
Ai(y) denotes the arrival rate of jobs assigned to class ¢ when
there are y; available positions in class j, for each j € I.

1‘1:3

)\1(€ — JJ) — (251 (IE) _—

.’L’2:2

Al —x) —

$2(z)

—

(a) An open Whittle network with state-dependent arrival rates.

Class-1
_ tokens T o1(@)
Yo = 2 Ty =2
Class-2
B e e

(b) A closed queueing system consisting of two Whittle networks.

Fig. 5. Alternative representations of a Whittle network associated with the
server pool of Fig. 1. At most £; = ¢2 = 4 jobs can be assigned to each
class.

The system can thus be modeled by a network of N PS
queues with state-dependent arrival rates, as shown in Fig. Sa.
Closed queueing model: We introduce a second queueing
model that describes the system dynamics differently. It will
later simplify the study of the insensitive load balancing by
drawing a parallel with the resource allocation of §II-B.

Our alternative model stems from the following observation:
since we impose limits on the number of jobs of each class,
we can indifferently assume that the arrivals are limited by
the intermediary of buckets containing tokens. Specifically, for
each ¢ € Z, the assignments to class ¢ are controlled through
a bucket filled with ¢; tokens. A job that is assigned to class ¢
removes a token from this bucket and holds it until its service
is complete. The assignments to a class are suspended when
the bucket of this class is empty, and they are resumed when
a token of this class is released.

Each token is either held by a job in service or waiting to
be seized by an incoming job. We consider a closed queueing
model that reflects this alternation: a first network of N queues
contains tokens held by jobs in service, as before, and a second
network of N queues contains available tokens. For each i €
7T, a token of class ¢ alternates between the queues indexed by
1 in the two networks. This is illustrated in Fig. 5b.

The state of the network containing tokens held by jobs
in service is . The queues in this network apply PS service
discipline and their service capacities are given by (1). The
state of the network containing available tokens is y = ¢ — x.
For each i € Z, the service of a token at queue ¢ in this
network is triggered by the arrival of a job assigned to class
i. The service capacity of this queue is thus equal to A;(y) in
state y. Since all tokens of the same class are exchangeable, we
can assume indifferently that we pick one of them at random,
so that the service discipline of the queue is PS.

Capacity set: The compatibilities between job types and
classes restrict the set of feasible load balancings. Specifically,
the vector (\;(y) : ¢ € Z) of per-class arrival rates belongs to

the following capacity set in any state y € X
= {)\ERf: Z/\igu(A), V.ACI}.
i€ A

The properties satisfied by v guarantee that I is a polymatroid.
Balance function: Our token-based reformulation allows
us to interpret dynamic load balancing as a problem of re-
source allocation in the network of queues containing available

tokens. This will allow us to apply the results of §II-B.
It was shown in [8] that the load balancing is insensitive if
and only if there is a balance function A defined on X’ such

that A(0) = 1, and

Aly —ei)
Aily) = —4 O
Under this condition, the network of PS queues containing
available tokens is a Whittle network.

The Pareto-efficiency of balanced fairness in polymatroid
capacity sets can be understood as follows in terms of load
balancing. We consider the balance function A defined recur-
sively on X by A(0) =1 and

Aly) = m Z Aly—e;), YyeX\{0}. (8

i€Z(y)

Vye X, VielI(y). 7)

Then A defines a load balancing that belongs to the capacity
set I' in each state y. By (7), this load balancing satisfies

3 Ny) = v(Zly), Vye X,
iGI(y)

meaning that an incoming job is accepted whenever it is
compatible with at least one available token.

Stationary distribution: The Markov process defined by
the system state x is reversible, with stationary distribution

(z) = é@(x)A(é —),

where G is a normalization constant. Note that we could
symmetrically give the stationary distribution of the Markov
process defined by the vector y = {—x of numbers of available
tokens. As mentioned earlier, the insensitivity of balanced
fairness is preserved by the load balancing.

Vo € X, 9)

C. Deterministic token mechanism

Our closed queueing model reveals that the randomized
load balancing is dual to the balanced fair resource allocation.
This allows us to propose a new deterministic load balancing
algorithm that mirrors the FCFS service discipline of §II-C.
This algorithm can be combined indifferently with balanced
fairness or with the sequential FCFS scheduling; in both cases,
we show that it implements the load balancing defined by (7).

All available tokens are now sorted in order of release in a
single bucket. The longest available tokens are in front. An
incoming job scans the bucket from beginning to end and
seizes the first compatible token; it is blocked if it does not
find any. For now, we assume that the server resources are
allocated to the accepted jobs by applying the FCFS service

347

discipline of §II-C. When the service of a job is complete, its
token is released and added to the end of the bucket.

We describe the system state with a couple (c,t) retain-
ing both the arrival order of jobs and the release order of
tokens. Specifically, ¢ = (c1,...,¢,) € C is the sequence
of classes of (tokens held by) jobs in service, as before, and
t = (t1,...,tm) € C is the sequence of classes of available
tokens, ordered by release, so that ¢; is the class of the longest
available token. Given the total number of tokens of each class
in the system, any feasible state satisfies |c| + |t| = £.

Queueing model: Depending on its position in the bucket,
each available token is seized by any incoming job whose type
is compatible with this token but not with the tokens released
earlier. For each p = 1,...,m, the token in position p is thus
seized at rate

>

kEK L, \UEZ] Ki

vp = v(Z(ty,. ..

,tp)) — V(I(th PN

>tp*1))'

The seizing rate of a token is independent of the tokens
released later. Additionally, the total rate at which available
tokens are seized is ¥(Z(y)), independently of their release
order. The bucket can thus be modeled by an OI queue, where
the service of a token is triggered by the arrival of a job that
seizes this token.

The evolution of the sequence of tokens held by jobs in
service also defines an OI queue, with the same dynamics
as in §II-C. Overall, the system can be modeled by a closed
tandem network of two OI queues, as shown in Fig. 6.

t=(1,2,2)
112]2
c=(1,1,2,1,2)
201(2]1 1

Fig. 6. A closed tandem network of two OI queues associated with the server
pool of Fig. 1. At most £; = ¢2 = 4 jobs can be assigned to each class. The
state is (¢, t), with ¢ = (1,1,2,1,2) and ¢t = (1,2, 2). The corresponding
aggregate state is that of the network of Fig. 5. An incoming job of type 1
would seize the available token in first position (of class 1), while an incoming
job of type 2 would seize the available token in second position (of class 2).

Stationary distribution: Assuming S; # S; or K; # K,
for each pair {4, j} C Z of classes, the Markov process defined
by the detailed state (c, t) is irreducible. The proof, omitted for
brevity, is given in the technical report [16]. Known results on
networks of quasi-reversible queues [11] then show that this
process is quasi-reversible, with stationary distribution

le,t) = é@(c)A(t),

where @ is defined by the recursion (5) and the initial step
®(P) = 1, as in §II-C; similarly, A is defined recursively on
C by A(0) =1 and

1

v(Z(1))

Ve,t € C: el + |t = ¢,

A(t) =

Aty .. tm—1), VteC\{0}.

348

We go back to the aggregate state = giving the number of
tokens of each class held by jobs in service. With a slight
abuse of notation, we define its stationary distribution by

= > Y wlet), VezeX. (10)
cilc|=z t:|t|=0—2x
As in §II-C, we can show that we have
1
m(x) = aé(x)A(E —z), VredX,

where the functions ® and A are defined on X by

Z ®(c) and Ay ZA , Vr,ye X,

c:lc|=x t:|t|=y

O(x) =

respectively. These functions ® and A satisfy the recursions
(2) and (8), respectively, with the initial conditions ®(0) =
A(0) = 1. Hence, the aggregate stationary distribution of the
system state x is exactly that obtained in §III-B by combining
the randomized load balancing with balanced fairness.

Also, using the definition of A, we can rewrite (6) as
follows: for each € X and i € Z(x),

®(c) Zt;mze—x A(t)
C;m l<I>(:10)A(€ —x)

NP

cile|=z t:|t|=0—x

¢i(z) = pi(e),

Hence, the average per-class service rates are still as defined
by balanced fairness. By symmetry, it follows that the average
per-class arrival rates, ignoring the release order of tokens, are
as defined by the randomized load balancing. Specifically, for
each y € X and ¢ € Z(y), we have

= X X

cile|=C—y t:|t|= y

where \;(y) is the arrival rate of jobs assigned to class 4 in
state y under the randomized load balancing, given by (7),
and v;(¢) denotes the rate at which the first available token of
class 7 is seized under the deterministic load balancing:

m

vi(t) =Y (w(Z(ts, ...

p=1
tp=i

,tp)) — V(I(tl, “ee

atpfl))>‘

As in §II-C, the stationary distribution of the system state is
unchanged by the addition of random routing, as long as the
average traffic intensity of each class remains constant. Hence
we can again reach some approximate insensitivity to the job
size distribution within each class by enforcing frequent job
interruptions and resumptions.

Application with balanced fairness: As announced ear-
lier, we can also combine our token-based load balancing algo-
rithm with balanced fairness. The assignment of jobs to classes
is still regulated by a single bucket containing available tokens,
sorted in release order, but the resources are now allocated
according to balanced fairness. The corresponding queueing

Class-1 T3 =3

t=(1,2,2) tokens b1(x)
2|21 oy =2
Class-2 P2 ()
tokens

Fig. 7. A closed queueing system, consisting of an OI queue and a Whittle
network, associated with the server pool of Fig. 1. At most {1 = {2 = 4 jobs
can be assigned to each class.

model consists of an OI queue and a Whittle network, as
represented in Fig. 7.

The intermediary state (x,t), retaining the release order of
available tokens but not the arrival order of jobs, defines a
Markov process. Its stationary distribution follows from known
results on networks of quasi-reversible queues [11]:

m(x,t) =

é@(ac)A(t), Vee X, VteC: z+|t| =L

We can show as before that the average per-class arrival rates,
ignoring the release order of tokens, are as defined by the
dynamic load balancing of §III-B.

The insensitivity of balanced fairness to the job size dis-
tribution within each class is again preserved. The proof
of [6] for Cox distributions extends directly. Note that this
does no imply that performance is insensitive to the job size
distribution within each type. Indeed, if two job types with
different size distributions can be assigned to the same class,
then the distribution of the job sizes within this class may be
correlated to the system state upon their arrival. This point
will be assessed by simulation in Section IV.

Observe that our token-based mechanism can be applied to
balance the load between the queues of an arbitrary Whittle
network, as represented in Fig. 7, independently of the system
considered. Examples or such systems are given in [8].

IV. NUMERICAL RESULTS

We finally consider two examples that give insights on
the performance of our token-based algorithm. We especially
make a comparison with the static load balancing of Section II
and assess the insensitivity to the job size distribution within
each type. We refer the reader to [17] for a large-scale analysis
in homogeneous pools with a single job type, along with a
comparison with other (non-insensitive) standard policies.

Performance metrics for Poisson arrival processes and expo-
nentially distributed sizes with unit mean follow from (9). By
insensitivity, these also give the performance when job sizes
within each class are i.i.d., as long as the traffic intensity is
unchanged. We resort to simulations to evaluate performance
when the job size distribution is type-dependent.

Performance is measured by the job blocking probability

and the resource occupancy. For each £k =1,..., K, we let
1
br=7 Z; d(z)A(L — 2)

xi=0;, VieL:keK;

denote the probability that a job of type k is blocked upon
arrival. The equality follows from PASTA property [13].
Symmetrically, for each s = 1,...,S, we let

1

r</l:
x;=0, Vi€eZ:seS;

O(2)A(L — 1)

denote the probability that server s is idle. These quantities
are related by the conservation equation

K S
D vkl = Br) =Y a1 —).
k=1 s=1

We define respectively the average blocking probability and
the average resource occupancy by

_ lec{zl VB _ Zf:l ps(1 = vs)
==F%—— and 7= = .

D k=1 Vk Dot M
There is a simple relation between § and 7. Indeed, if we
let p = (Zle z/k)/(z;g:l ts) denote the total load in the
system, then we can rewrite (11) as p(1 —) = 7.

As expected, minimizing the average blocking probability
is equivalent to maximizing the average resource occupancy.
It is however convenient to look at both metrics in parallel. As
we will see, when the system is underloaded, jobs are almost
never blocked and it is easier to describe the (almost linear)
evolution of the resource occupancy. On the contrary, when the
system is overloaded, resources tend to be maximally occupied
and it is more interesting to focus on the blocking probability.

Observe that any stable server pool satisfies the conservation
equation (11). In particular, the average blocking probability
[in a stable system cannot be less than 1 — % when p > 1.
A similar argument applied to each job type imposes that

(1)

B

1
Bp>max (0,1—— > p|, (12

Vg
5€Uinex,; Si
foreach k=1,... K.

A. A single job type

We first consider a pool of S = 10 servers with a single
type of jobs (K = 1), as shown in Fig. 8. Each class identifies
a unique server and each job can be assigned to any class. Half
of the servers have a unit capacity p and the other half have
capacity 4u. Each server has ¢/ = 6 tokens and applies PS
policy to its jobs. We do not look at the insensitivity to the
job size distribution in this case, as there is a single job type.

Servers with capacity ;1 Servers with capacity 4u

Fig. 8. A server pool with a single job type. Classes are omitted because
each of them corresponds to a single server.

349

v
2
= N
5] ——]
g
— N
5]
2 -
[5) —— Dynamic
v
2 ----- Best static
g Uniform static | |
< - - --Ideal
0 |- | T
0 2 1 2 3 4
2

Load p

Fig. 9. Performance of the dynamic load balancing in the pool of Fig. 8.
Average blocking probability (bottom plot) and resource occupancy (top plot).

Comparison: We compare the performance of our algo-
rithm with that of the static load balancing of Section II, where
each job is assigned to a server at random, independently of
system state, and blocked if its assigned server is already full.
We consider two variants, best static and uniform static, where
the assignment probabilities are proportional to the server
capacities and uniform, respectively. Ideal refers to the lowest
average blocking probability that complies with the system
stability. According to (11), it is O when p < 1 and 1—% when
p > 1. One can think of it as the performance in an ideal server
pool where resources would be constantly optimally utilized.
The results are shown in Fig. 9.

The performance gain of our algorithm compared to the
static policies is maximal near the critical load p = 1,
which is also the area where the delta with ideal is maximal.
Elsewhere, all load balancing policies have a comparable
performance. Our intuition is as follows: when the system
is underloaded, servers are often available and the blocking
probability is low anyway; when the system is overloaded,
resources are congested and the blocking probability is high
whichever scheme is utilized. Observe that the performance
under uniform static deteriorates faster, even when p < 1,
because the servers with the lowest capacity, concentrating
half of the arrivals with only %-th of the service capacity, are
congested whenever p > % This stresses the need for accurate
rate estimations under a static load balancing.

Asymptotics when the number of tokens increases: We
now focus on the impact of the number of tokens on the per-
formance of the dynamic load balancing. A direct calculation
shows that the average blocking probability decreases with the
number £ of tokens per server, and tends to ideal as { — +o0.
Intuitively, having many tokens gives a long run feedback on
the server loads without blocking arrivals more than necessary
(to preserve stability). The results are shown in Fig. 10.

We observe that the convergence to the asymptotic ideal is
quite fast. The largest gain is obtained with small values of
¢ and the performance is already close to the optimal with
¢ = 10 tokens per server. Hence, we can reach a low blocking
probability even when the number of tokens is limited, for
instance to guarantee a minimum service rate per job or respect
multitasking constraints on the servers.

350

——— 1 token

2 tokens
—-—-- 3 tokens
—— 6 tokens

10 tokens
- ---Ideal

Blocking probability

Load p

Fig. 10. Impact of the number of tokens on the average blocking probability
under the dynamic load balancing in the pool of Fig. 8.

B. Several job types

We now consider a pool of S = 6 servers, all with the same
unit capacity p, as shown in Fig. 11. As before, there is no
parallel processing. Each class identifies a unique server that
applies PS policy to its jobs and has ¢ = 6 tokens. There are
two job types with different arrival rates and compatibilities.
Type-1 jobs have a unit arrival rate v and can be assigned to
any of the first four servers. Type-2 jobs arrive at rate 4v and
can be assigned to any of the last four servers. Thus only two
servers can be accessed by both types. Note that heterogeneity
now lies in the job arrival rates and not in the server capacities.

SO
COCOO0

Fig. 11. A server pool with two job types.

Servers with
capacity u

Comparison: We again consider two variants of the
static load balancing: best static, in which the assignment
probabilities are chosen so as to homogenize the arrival rates
at the servers as far as possible, and uniform static, in which
the assignment probabilities are uniform. Note that best static
assumes that the arrival rates of the job types are known, while
uniform static does not. As before, ideal refers to the lowest
average blocking probability that complies with the system
stability. The results are shown in Fig. 12.

Regardless of the policy, the slope of the resource occupancy
breaks down near the critical load p = % The reason is that
the last four servers support at least %—th of the arrivals with
only %-rd of the service capacity, so that their effective load is
g p- It follows from (12) that the average blocking probability
in a stable system cannot be less than 3 (1 — %%) when p > 3.
Under ideal, the slope of the resource occupancy breaks down
again at p = g This is the point where the first two servers
cannot support the load of type-1 jobs by themselves anymore.

Otherwise, most of the observations of §IV-A are still
valid. The performance gain of the dynamic load balancing
compared to best static is maximal near the first critical load

p = 2. Its delta with ideal is maximal near p = 2 and p = 2.

1
2 08|
Q
=
§ 0.6 -
g —— Dynamic
2 041 - .- Best static
_g 0.2 - : Uniform static | |
= / : - —--Ideal

A it A | | | T

0 51 5 2 3 4
6 3
Load p

Fig. 12. Performance of the dynamic load balancing in the pool of Fig. 11.
Average blocking probability (bottom plot) and resource occupancy (top plot).

—i— Average

--%--Type 1
-—+-Type 2

Blocking probability

Fig. 13. Blocking probability under the dynamic load balancing in the server
pool of Fig. 11, with either exponentially distributed job sizes (line plots)
or hyperexponentially distributed sizes (marks). Each simulation point is the
average of 100 independent runs, each built up of 108 jumps after a warm-up
period of 10 jumps. The corresponding 95% confidence interval, not shown
on the figure, does not exceed +0.001 around the point.

Elsewhere, all schemes have a similar performance, except for
uniform static that deteriorates faster.

Overall, these numerical results show that our dynamic load
balancing algorithm often outperforms best static and is close
to ideal. The configurations (not shown here) where it was not
the case involved very small pools, with job arrival rates and
compatibilities opposite to the server capacities. Our intuition
is that our algorithm performs better when the pool size or the
number of tokens allow for some diversity in the assignments.

(In)sensitivity: We finally evaluate the sensitivity of our
algorithm to the job size distribution within each type. Fig. 13
shows the results. Lines give the performance when job sizes
are exponentially distributed with unit mean, as before. Marks,
obtained by simulation, give the performance when the job
size distribution within each type is hyperexponential: %-rd of
type-1 jobs have an exponentially distributed size with mean 2
and the other %-rd have an exponentially distributed size with

1

mean 3; similarly, %—th of type-2 jobs have an exponentially

distributed size with mean 5 and the other %—th have an
exponentially distributed size with mean %

The similarity of the exact and simulation results suggests
that insensitivity is preserved even when the job size distri-
bution is type-dependent. Further evaluations, involving other

job size distributions, would be necessary to conclude.

Also observe that the blocking probability of type-1 jobs

increases near the load p = g, which is twice less than the

upper bound p = 13—0 given by (12). This suggests that the
dynamic load balancing compensates the overload of type-2

jobs by rejecting more jobs of type 1.

V. CONCLUSION

We have introduced a new server pool model that explicitly
distinguishes the compatibilities of a job from its actual
assignment by the load balancer. Expressing the results of [8]
in this new model has allowed us to see the problem of load
balancing in a new light. We have derived a deterministic,
token-based implementation of a dynamic load balancing that
preserves the insensitivity of balanced fairness to the job size
distribution within each class. Numerical results have assessed
the performance of this algorithm.

For the future works, we would like to evaluate the perfor-
mance of our algorithm in broader classes of server pools. We
are also interested in proving its insensitivity to the job size
distribution within each type.

REFERENCES

[11 L. A. Barroso, J. Clidaras, and U. Holzle, The Datacenter As a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
2nd ed. Morgan & Claypool Publishers, 2013.

[2] 1. Adan and G. Weiss, “A loss system with skill-based servers under
assign to longest idle server policy,” Probability in the Engineering and
Informational Sciences, vol. 26, no. 3, p. 307321, 2012.

[3] V. Shah and G. de Veciana, “High-Performance Centralized Content De-
livery Infrastructure: Models and Asymptotics,” IEEE/ACM Transactions
on Networking, vol. 23, no. 5, pp. 1674-1687, Oct. 2015.

[4] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” SIGMET-
RICS Perform. Eval. Rev., vol. 43, no. 1, pp. 347-360, Jun. 2015.

[5] T. Bonald and C. Comte, “Balanced fair resource sharing in computer
clusters,” Performance Evaluation, vol. 116, no. Supplement C, pp. 70—
83, Nov. 2017.

[6] T. Bonald and A. Proutiere, “Insensitivity in processor-sharing net-
works,” Performance Evaluation, vol. 49, no. 1, pp. 193-209, Sep. 2002.

[71 ——, “Insensitive bandwidth sharing in data networks,” Queueing Syst.,
vol. 44, no. 1, pp. 69-100, 2003.

[8] T. Bonald, M. Jonckheere, and A. Proutiere, “Insensitive load balancing,”
SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp. 367-377, Jun.
2004.

[9] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg, “Join-

Idle-Queue: A novel load balancing algorithm for dynamically scalable

web services,” Performance Evaluation, vol. 68, no. 11, pp. 1056-1071,

Nov. 2011.

M. van der Boor, S. Borst, and J. van Leeuwaarden, “Load balancing

in large-scale systems with multiple dispatchers,” in Proceedings of

INFOCOM 2017, 2017.

F. P. Kelly, Reversibility and Stochastic Networks.

USA: Cambridge University Press, 2011.

S. Fujishige, Submodular Functions and Optimization, Volume 58 - 2nd

Edition. Elsevier Science, Jul. 2005.

R. Serfozo, Introduction to Stochastic Networks, ser. Stochastic Mod-

elling and Applied Probability. Springer New York, 1999.

S. A. Berezner and A. E. Krzesinski, “Order independent loss queues,”

Queueing Systems, vol. 23, no. 1-4, pp. 331-335, Mar. 1996.

A. E. Krzesinski, “Order independent queues,” in Queueing Networks:

A Fundamental Approach, R. J. Boucherie and N. M. van Dijk, Eds.

Boston, MA: Springer US, 2011, pp. 85-120.

C. Comte, “Dynamic Load Balancing with Tokens,” arXiv:1804.01783

[cs], Apr. 2018, technical report, arXiv: 1804.01783. [Online].

Available: http://arxiv.org/abs/1804.01783

M. Jonckheere and B. J. Prabhu, “Asymptotics of insensitive load

balancing and blocking phases,” SIGMETRICS Perform. Eval. Rev.,

vol. 44, no. 1, pp. 311-322, Jun. 2016.

[10]

(1]

(12]

New York, NY,

[13]
[14]

[15]

[16]

[17]

351

