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Abstract. 
Duce is a Machine Learning system which suggests high-

level domain features to the user (or oracle) on the basis of a set of 
example object descriptions. Six transformation operators are used to 
successively compress the given examples by generalisation and 
feature construction. In this paper Duce is illustrated by way of its 
construction of a simple animal taxonomy and a hierarchical parity 
checker. However, Duce's main achievement has been the restructur­
ing of a substantial expert system for deciding whether positions 
within the chess endgame of King-and-Pawn-on-a7 v. King-and-
Rook (KPa7KR) are won-for-while or not. The new concepts sug­
gested by Duce for the chess expert system hierarchy were found to 
be meaningful by the chess expert Ivan Dratko. An existing manu­
ally created KPa7KR solution, which was the basis of a recent PhD. 
thesis, is compared to the structure interactively created by Duce. 

1. Introduction. 
It is well recognised (Feigenbaum 1979) that acquisition of 

expert knowledge is the major "bottleneck" in expert system 
development. However, Michalski and Chilausky (1980) and later 
Quinlan (1982) have shown that this bottleneck can be considerably 
eased by generalising low-level data to form high-level rules. 
Shapiro (1983) extended this methodology to deal effectively with 
extensive bodies of knowledge by employing structured program­
ming techniques. Thus the expert structures the knowledge in a top-
down fashion manually, and then provides examples which can be 
used to inductively generate each module in the hierarchy separately. 
Using this technique, Shapiro and Kopec created knowledge struc­
tures for correctly deciding a forced win for while in any position 
within the chess endgames of King-and-Pawn v. King (KPK) and 
King-and-Pawn-on-a7 v. King-and-Rook (KPa7KR). Doth solutions 
were completely verified by exhaustive computation. However, using 
an information theoretic approach Shapiro showed that around 80% 
of the endgame knowledge was provided by the expert in the crea­
tion of the knowledge structure. Thus almost all the work was still 
being done by the expert rather than by the machine. In an attempt 
to overcome this structuring bottleneck Paterson (1983) tried to use 
the statistical clustering algorithm CLUSTER (Michalski and Stepp 
1982) to automatically restructure the knowledge for the simpler of 
the two endgames, KPK. Paterson's results were not promising, with 
the machine's suggested hierarchy not having any significance to 
domain experts. 

In the context of Machine Learning, Michalski (1986) has 
called the problem of originating terms constructive induction. 
CLUSTER (Michalski and Stepp 1982), perhaps the best known 
constructive induction algorithm, uses a statistical clustering tech­
nique to group objects into conceptual clusters. Each object is ini­
tially described in terms of a vector of primitive attribute values. 
Objects are grouped using a heuristic inter-object distance metric. 
Rendell (1985), and Fu and Buchanan (1985) describe alternative 
similarity-based approaches to creating taxonomic hierarchies which 
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work on much the same basis as CLUSTER. 
2. Transformation-based Induction. 

In Duce the approach to constructive induction differs con­
siderably from that of Michalski and Stepp (1982), Rendell (1985), 
and Fu and Buchanan (1985), and can be more easily compared to 
the deductive transformational programming techniques of Burstall 
and Darlington (1977). Durstall and Darlington, and later Dershowitz 
(1985), suggest that deductive program synthesis can be carried out 
by gradual truth-preserving transformations of a program 
specification. At first sight, these techniques seem not to be applica­
ble to inductive inference, which by definition progresses by per­
forming non-truth-preserving generalisations of the supplied training 
set. However, if each inductive transformation is tested against an 
oracle which ensures the validity of any transformation, any such 
inductive transformation is as legal and safe as its deductive counter­
parts. This use of an oracle is closely related to Sammut and 
Banerji's (1986) method of learning concepts by asking questions 
Indeed, one of the generalisation operators described in the next sec­
tion is directly due to Sammut and Banerji. 

Constructive induction carries out transformations which 
introduce new terms into the learner's vocabulary. Though such 
transformations can be truth-preserving, they are not what might be 
called semantics-preserving. Thus the primary concern in construc­
tive induction should not be "how can new terms be introduced into 
the vocabulary?' but rather "how can meaningful new terms be 
introduced?'. Again by using an oracle to either name or reject 
machine-suggested concepts, the difficult philosophical problems 
involved in defining the word meaningful can be sidestepped. Given 
a meaningful and valid training set, every transformation of which is 
both meaningful and valid (by agreement of the oracle), the resultant 
rule set will be meaningful and valid. 
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Intra •construction. This is simply the distributive law of 
Boolean equations. Intra-consiruclion takes a group of rules 
all having the same rule head, such as 

Note that while operator 1, inter-construction, could legiti­
mately be applied to rules 2.1 and 2.2, the result would be 
less compact. 
Absorption. This operator is due to Samtmit and Dancrji 
(1986), who use it to generate recursive Prolog clauses. Even 
though recursion is not meaningful within propositions! cal­
culus, this operator can be employed profitably in generalis­
ing rule sets. Given a set of rules, the body of one of which 
is completely contained within the bodies of the others, such 
as 

Note that the preconditions for applying this operator are 
stronger than those for applying inter-construction. Also, if 
rule 3.2 were the only rule with rule head Y, men the new 
rule is necessarily valid. Otherwise it is a generalisation and 
must be verified by the oracle. In general, asking the oracle 
unnecessary questions can be avoided by first attempting to 
answer the question deductively from the rule base. 
Identification. The identification operator is again a poten­
tial generalisation, whose preconditions are stronger than 
those of intra-construction. A set of rules which all have the 
same head, the body of at least one of which contains exact­
ly one symbol not found within the other rules, such as 

Dichotomisation. This is operator works on sets of mixed po-
sitive and negative examples. Thus a set of rules which con­
tain positive and negative heads, and which all have some 
common symbols within the bodies, such as 

where the replacement is dependent on the oracle naming Z7. 
Dichotomisation is a generalisation of the the way that 1D3 
(Quinlan 1982) creates the internal nodes of decision trees. 
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6) Truncation, 'The truncation operator, like dichotomisalion 
is intended for use with rule sets containing positive and 
negative examples of the same concept. However, truncation 
generalises by dropping conditions. A set of rules which all 
contain the same head, such as 

This operator generalises in a similar manner to that of the 
AQ learning algorithms (Michalski and Chilausky, 1980). Its 
use is restricted by the precondition that the resultant rule 
(6.1/6.2) must not clash (i.e. be inconsistent) with any other 
rule within the rule base. Of all the operators truncation is 
the only one which reduces the number of rules. All other 
operators compact the rules by shortening the average rule 
length. 

4. The search algorithm. 
For any stale of a rule base, there arc many possible operator 

applications. Any subset of rules within the rule base R is a candi­
date for the application of one of the 6 operators. Thus the search-
space for the "best" operator application is of size 21R1, the size of 
the power set of R. What is meant by a "good" operator applica­
tion? Since each of the operators can reduce the number of symbols 
in the rule base, Duce searches for the application which produces 
the largest symbol reduction, i.e. Occam's razor is applied. If each 
rule is taken as having a symbol size equal to the number of con­
junctive terms in the rule body plus one (for the rule head), then for 
each operator there exists an equation which can be used to predict 
the exact symbol reduction for any operator. Let R' be a subset of 
the rule base R and /' be a common subset of all the bodies of rules 
within R'. In the following equations Voperator is the symbol reduc­
tion produced when the operator is applied to R'. The total number 
of symbols within the rule set R' is written as total (R'). The symbol 
reduction equations arc 

Note that V0p can take a zero or negative value, in which 
case there is no symbol reduction. Searching for the best operator 
application is clearly intractable. Moreover, there is no guarantee 
that such an operator application, once found, would be acceptable 
to the oracle. In Ducc the next operator application is chosen using a 
best first search through the power set of the symbols in the rule 
base R. Let a subset of symbols /' be found among the bodies of the 
rule set R' where R' is the largest subset of R containing /'. The 
operator application apply{Op, /', R'), using operator Op, is only 
suggested to the oracle when some /' has been found for which V0p 
is locally maximal. Any rejection of an operator application by the 
oracle leads to continued search. Transformations arc carried out 
itcralivcly until no further operations can reduce the rule base size 
further. At termination, by nature of the operators, almost all sym­
bols occur within a restricted number of rules. 'Thus, although the 
termination condition requires searching the entire remaining space 
the search space has shrunk to manageable proportions. Since only 
operations which reduce the number of symbols arc applied termina­
tion is guaranteed. 

5. Animal taxonomy. 
This section illustrates the behaviour of Ducc when creating 

a simple animal taxonomy. Figure 1 shows the set of example 
animal descriptions given to Ducc. In English the first example says 
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A blackbird has a beak, is black, has two legs, a tail and wings. 
"blockhead the blackbird is an instance of the "blackbird" concept. 

Note the inclusion of the instance set 
(blockhead the blackbird) within the role. This can be used as a 
powerful tool for illustrating the meaning of new rules and concepts. 

Figure 2 shows user interaction for this example set. User 
input is shown in bold type. When asked to induce, Duce searches 
for an operation and suggests an application of the truncation opera­
tor which will save 12 symbols. The operation is valid if and only if 
everything having four legs is an elephant. The user can either 
answer affirmatively ("y"), negatively ("n") or ask for illustrative 
examples ("i"). If Duce is asked for illustrative examples it lists the 
instances adultclcpliant and babyelcphant. The suggestion 
although consistent with the limited universe of the examples, is too 
general, and is rejected. Puce continues its search and finds a 
slightly less advantageous truncation, which would save 11 symbols. 
The new suggestion, that anything with four legs and no wings is an 
elephant is similarly rejected. There is no particular mechanism for 
specialising over-generalised hypotheses. This is merely a by-
product of the search mechanism. On the third attempt, Duce ques­
tions whether everything that has four legs and a trunk is an 
elephant. Since this is affirmed, Duce replaces all elephant rules by 
the new more general rule and returns to the "!-" prompt. 

The second generalisation, concerning man is accepted first 
lime around, producing a saving of 9 symbols. In the third interac­
tion Ducc finds that using the interconstruction operator, one symbol 
can. be saved by defining a new concept for all things which have 
two legs and no wings. The user can either reject this new concept 
("n"), ask for illustrative examples ("i"), or give a name for the con­
cept, The name "primate" is given to the concept. Duce goes on to 
suggest another new concept for all things which have a beak, two 
legs, a tail and wings. This concept is named "bird". When asked to 
search for another operator application Ducc comes back with the 
message, "No applicable transformation", meaning that none of the 
operators reduce the rule base. The time between each prompt in this 
example is in the order of one second. 

Figure 3 shows the result of the transformations. Not only is 
the rule base more compact but also the new concepts have made 
the rules more conceptually transparent. For example, a blackbird is 
simply defined as a bird which is black. Note that the illustrative 
examples arc propagated to all new rules. 

6. Even-parity. 
According to Minsky and Papert (1969) the "parity" function 

is unlcarnable by single-layer perceptions, The even-parity problem 
is that of recognising whether Strings of binary digits contain an 
even number of l's. Recent techniques using multi-layered percep-
tron networks (Rumclhart and McClelland 1986) have been shown 
lo be capable of learning parity effectively. However, in the para­
digm of explicit rule formation, algorithms such as 1D3 (Quinlan 
1982) and AQ11 (Michalski and Chilausky 1980) turn out to be 
rather inadequate when used to learn such functions. It has been 
shown (Muggleton 1986) that whereas single-level concept represen­
tations of parity have a description complexity which is necessarily 
non-polynomially dependent on the number of attributes, multi-level 
descriptions can be built whose size is only linearly dependent on 
the number of primitive attributes. Efficient multi-concept solutions 
inevitably rely on a divide-and-conqucr approach. Thus the decision 
of the top-level concept is based on the combination of values of 
lower-level predicates. Each lower-level predicate has a domain 
which depends on a restricted subset of the total set of problem attri­
butes. 

Figure 4 depicts examples of 8-variable even-parity. The 
variables (or primitive attributes) are numbered vl to v8, and each it 
bound to a value from the set {f t} (rather than {0 1}). In the first 
example, the variables have even-parky, since all eight have the 
value t, i.e. an even number of variables arc bound to t. The "eg" 
part of the example shows a string of this form. Figure 5 shows the 
session in which Duce transforms the training set of figure 4 into the 
partial, hierarchical solution of figure 6. The responses arc based on 



a standard solution in which the variables arc recursively broken into 
two equal sized sets at each level. The total set of variables have 
even-parity if and only if both subsets have even-parity, or both 
have odd-parity, 'The first three concept suggestions do not follow 
this scheme, and arc rejected. The fourth is recognised as "the 
second-half of the variables have even parity" (sev). 'The user then 
affirmatively answers questions concerning the application of the 
absorption operator, The next suggested concept is named ffev or 
"first-half of the first-half of the variables are even". Given the origi­
nal eight examples, Ducc's solution is generalised to cover 16 of the 

256 possible instances. If presented initially with the complete 
instance set, Duce tends towards a solution consisting of an 8-ievel 
deep hierarchy in which levels are used to count the number of vari­
ables set to t. 

7. Recreation of the Kl'a7KR structure. 
Both the animal taxonomy and parity problem have highly 

restricted domains. The real test of Duce's capabilities has been the 
attempt to restructure Shapiro and Kopec's expert system (Shapiro 
1983) for deciding whether positions within the chess endgame of 
King-and-Pawn-on-a7 v. King-and Rook (KPa7KR) are won-for-
white or not. The domain contains around 200,000 positions 
Shapiro generated a database of all positions, labelling each with its 
minimax backup value of forced win-for-white or not. A set of 36 
primitive board features were calculated for each position. Since 
many positions had the same feature vector and won-for-white 
value, the number of distinct examples was reduced to 3196. With 
this number of examples Duce's search-space for applying the first 
operation is 23196 (see section 4), or approximately 101000. Nilsson 
(1982) states that the complete game tree for chess has approxi­
mately 10120 nodes; even that well-known hard problem has a con­
siderably smaller search space than that attempted here. 

For the purposes of the experiment, Shapiro provided a ran­
domly chosen board position for each example. Thus the initial rule 
base given to Ducc consisted of examples of the form 

(wonforwhtte featurel A feature2 A .. feature36) eg (position) 
Two chess experts, Ivan Dratko and Tim Niblett, helped in 

giving oracle answers to questions asked by Ducc. The rule base 
started with 118,252 symbols. 'The first suggestion reduced 21,606 
of these, a reduction of around 20%. After three questions, around 
60% of the rule base had been reduced. After 41 transformations, 
the rule base had been reduced to 553 rules, and contained a total of 
9050 symbols. At this point there were still applicable operations, 
but symbol reductions had been reduced to the low hundreds. 

In questions 3 and 5, in which new concepts were intro-
duced, the size of the common set of symbols, Int was too large for 
a comprehensible rule description. It is here that the illustrative 
board positions were indispensible. For this experiment, a domain-
dependent graphics front-end was built into Ducc, which gave the 
user the ability to peruse a large number of board positions 
representing the concept and counter-concept Without this graphical 
device, new concepts could not have been recognised and named 
As it was, concepts were named with confidence within the presen­
tation of 20 to 40 board positions. It was rarely necessary to reject 
new concepts and generalisations suggested by Ducc in the KPa7KR 
experiment. 

Figure 7 shows the structure created manually by Shapiro 
and Kopec, which took an estimated 6 man months of effort. Figure 
8 shows Ducc's solution. Ducc carried out the 41 oracle agreed 
transformations during a single working day. The computation time 
between each question was in the order of a minute. It should be 
noted that where Shapiro and Kopec have used nine hierarchically 
arranged concepts, Duce has used thirteen. Ducc's solution also con­
tains 553 rules and 9050 symbols where Shapiro and Kopec's manu­
ally created solution contains the equivalent of around 225 produc­
tions and around 1000 symbols. Although Ducc's solution could 
have been made more compact by applying more transformations or 
by generating decision trees for each concept using 1D3, it seems 
unlikely to the author that this would have resulted in a solution 
which was as compact as that of Shapiro and Kopec. 

By virtue of the operators used by Ducc, the KPa7KR solu­
tion is guaranteed correct by construction. 

8. Discussion. 
Duce in a program which, with the aid of a human oracle 

discovers useful new concepts. AM (Lenat 1979), an early concept 
discovery program, was criticised (Ritchie and Hanna 1984) for the 
obscurity of the techniques involved. Unlike AM, Duce uses a sim­
ple and explicit set of six operators to create and refine concepts. In 
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addition the meaning-giving agent, implicitly present within any 
Machine Learning system, is explicitly represented as the oracle 
within Ducc. 

Extensive search is used to decrease the number of questions 
asked by Ducc of the oracle. However, in what circumstances is the 
use of an oracle either justified or feasible? In this respect it is 
worth noting that on the basis of a meagre number of empirical stu­
dies the ratio of oracle rejections to acceptances seems to be 
inversely related to the percentage of examples provided from the 
domain. In the parity problem, where Duce was supplied with a 
sparse set of examples, a large number of rejections were necessary 
(figure 5). In the more complex KPa7KR chess domain, Duce was 
given an exhaustive set of examples, and required almost no rejec­
tions from the oracle. Thus it might be expected that in domains in 
which a moderate amount of example material is available the oracle 
would need to reject a moderate number of proposals. Further 
research is necessary to show the truth of this hypothesis. 

Duce works with statements in prepositional logic. One way 
of extending the present work would be to attempt using similar 
techniques within other representations. Danerji (1986) is presently 
looking at the problem of constructive induction within first-order 
calculus. The author believes that techniques akin to those used in 
Ducc could be profitably employed in learning hierarchically 
definable context free grammars. 
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