Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles
Abstract
:1. Introduction
1.1. Data Collection in Vehicles
1.2. Contribution
2. Preliminaries
2.1. Multi-Rate Sensor Fusion
2.2. SAE J1939 CAN Protocol for Heavy Vehicles
3. Problem Statement
4. Materials and Methods
4.1. Materials
4.2. Method
4.3. Data Collection from Driving Experiments
5. Results
Robustness Analysis
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAN | Controller Area Network |
ECU | Electronic Control Unit |
FMS | Fleet Management System |
GPS | Global Positioning System |
IMU | Inertial Measurement Unit |
ISO | International Organization for Standardization |
KF | Kalman Filter |
NMEA | National Marine Electronics Association |
PGN | Parameter Group Number |
RMS | Root Mean Square |
RPM | Revolutions Per Minute |
SAE | Society of Automotive Engineers |
SPN | Suspect Parameter Numbers |
LCM | Least Common Multiple |
Appendix A. J1939 Messages Used for Data Fusion
PGN | Acronym | Label | SPNs |
---|---|---|---|
61440 | ERC1 | Electronic Retarder Controller 1 | 520 (Actual Retarder-Percent Torque) |
61441 | EBC1 | Electronic Brake Controller 1 | 521 (Brake Pedal Position) |
61442 | ETC1 | Electronic Transmission Controller 1 | 161 (Transmission Input Shaft Speed) 191 (Transmission Output Shaft Speed) |
61443 | EEC2 | Electronic Engine Controller 2 | 91 (Accelerator Pedal Position 1) 92 (Engine Percent Load At Current Speed) |
61444 | EEC1 | Electronic Engine Controller 1 | 190 (Engine Speed) 513 (Actual Engine-Percent Torque) |
61445 | ETC2 | Electronic Transmission Controller 2 | 523 (Transmission Current Gear) 524 (Transmission Selected Gear) 526 (Transmission Actual Gear Ratio) |
61449 | VDC2 | Vehicle Dynamic Stability Control 2 | 1807 (Steering wheel Angle) 1810 (Longitudinal Acceleration) |
61452 | ETC8 | Electronic Transmission Controller #8 | 3030 (Transmission Torque Converter Ratio) |
65132 | TCO1 | Tachograph | 1623 (Tachograph output shaft speed) 1624 (Tachograph vehicle speed) |
65215 | EBC2 | Wheel Speed Information | 905 (Relative Speed; Front Axle, Left Wheel) 906 (Relative Speed; Front Axle, Right Wheel) 908 (Relative Speed; Rear Axle #1, Right Wheel) |
65247 | EEC3 | Electronic Engine Controller 3 | 514 (Nominal Friction-Percent Torque) |
65265 | CCVS | Cruise Control/Vehicle Speed | 84 (Wheel-Based Vehicle Speed) |
References
- De Winter, J.; van Leeuwen, P.; Happee, R. Advantages and disadvantages of driving simulators: A discussion. In Proceedings of the 8th International Conference on Methods and Techniques in Behavioral Research, Noldus Information Technology, Utrecht, The Netherlands, 28–31 August 2012; pp. 47–50. [Google Scholar] [CrossRef]
- Armesto, L.; Arnal, L.; Dols, J.; Girbés, V.; Peris, J. SAFEBUS Project: Advanced Safety Systems in Buses. RIAI Rev. Iberoam. Autom. Inform. Ind. 2016, 13, 103–114. [Google Scholar] [CrossRef]
- Girbés, V.; Armesto, L.; Dols, J.; Tornero, J. Haptic Feedback to Assist Bus Drivers for Pedestrian Safety at Low Speed. IEEE Trans. Haptics 2016, 9, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Girbés, V.; Armesto, L.; Dols, J.; Tornero, J. An Active Safety System for Low-Speed Bus Braking Assistance. IEEE Trans. Intell. Transp. Syst. 2017, 18, 377–387. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Montoro, I.P.; García, M.S. Geo-referencing naturalistic driving data using a novel method based on vehicle speed. IET Intell. Transp. Syst. 2013, 7, 190–197. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Pareja-Montoro, I.; Sánchez-García, M. Quality control procedure for naturalistic driving data using geographic information systems. In Proceedings of the European Conference on Human Centred Design for Intelligent Transport Systems, Vienna, Austria, 5–6 June 2014; pp. 5–6. [Google Scholar]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Berné-Valero, J.L.; Varela-García, F.A. GIS Mapping of Driving Behavior Based on Naturalistic Driving Data. ISPRS Int. J. Geo-Inf. 2019, 8, 226. [Google Scholar] [CrossRef]
- Fisher, D.L.; Rizzo, M.; Caird, J.K.; Lee, J.D. Handbook of Driving Simulation for Engineering, Medicine, and Psychology; CRC Press: Boca Ratón, FL, USA, 2011. [Google Scholar]
- Espié, S.; Gauriat, P.; Duraz, M. Driving Simulators Validation: The Issue of Transferability of Results Acquired on Simulator. In Proceedings of the Driving Simulation Conference, Orlando, FL, USA, 30 November–2 December 2005; pp. 149–156. [Google Scholar]
- Törnros, J. Driving behaviour in a real and a simulated road tunnel—A validation study. Accid. Anal. Prev. 1998, 30, 497–503. [Google Scholar] [CrossRef]
- Bella, F. Driving simulator for speed research on two-lane rural roads. Accid. Anal. Prev. 2008, 40, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, A.; Panerai, F. Evaluating perception in driving simulation experiments. Trends Cogn. Sci. 2002, 7, 31–37. [Google Scholar] [CrossRef]
- Girbés, V.; Armesto, L.; Tornero, J. Path following hybrid control for vehicle stability applied to industrial forklifts. Robot. Auton. Syst. 2014, 62, 910–922. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Abdel-Aty, M.; Radwan, E.; Wang, X.; Chilakapati, P. Validating a driving simulator using surrogate safety measures. Accid. Anal. Prev. 2008, 40, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.H.; Marcano, M.; Fernández, G.; Pérez, J. Cooperative maneuvers applied to automated vehicles in real and virtual environments. Rev. Iberoam. Autom. Inform. Ind. 2019, in press. [Google Scholar] [CrossRef]
- Voss, W. A comprehensible Guide to J1939; Copperhill Technologies Corporation: Greenfield, MA, USA, 2008. [Google Scholar]
- Hsu, L.Y.; Chen, T.L. Vehicle dynamic prediction systems with online identification of vehicle parameters and road conditions. Sensors 2012, 12, 15778–15800. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Cheng, Q.; Xue, D.; Wang, G.; Ochieng, W.Y. GNSS/electronic compass/road segment information fusion for vehicle-to-vehicle collision avoidance application. Sensors 2017, 17, 2724. [Google Scholar] [CrossRef] [PubMed]
- Shladover, S.E.; Lu, X.Y.; Song, B.; Dickey, S.; Nowakowski, C.; Howell, A.; Bu, F.; Marco, D.; Tan, H.S.; Nelson, D. Demonstration of Automated Heavy-Duty Vehicles; Technical Report, California PATH Research Report (UCB-ITS-PRR-2005-23); Institute of Transportation Studies, University of California: Berkeley, CA, USA, 2006. [Google Scholar]
- Jeong, Y.; Son, S.; Jeong, E.; Lee, B. An Integrated Self-Diagnosis System for an Autonomous Vehicle Based on an IoT Gateway and Deep Learning. Appl. Sci. 2018, 8, 1164. [Google Scholar] [CrossRef]
- Yang, J.; Guo, K.; Ding, H.; Zhang, J.; Xiang, B. The application of SAE J1939 protocol in Automobile Smart and Integrated Control System. In Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 24–26 August 2010; Volume 3, pp. 412–415. [Google Scholar] [CrossRef]
- Türk, E.; Challenger, M. An android-based IoT system for vehicle monitoring and diagnostic. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ozguner, U.; Redmill, K.A.; Broggi, A. Team TerraMax and the DARPA grand challenge: A general overview. In Proceedings of the IEEE Intelligent Vehicles Symposium 2004, Parma, Italy, 14–17 June 2004; pp. 232–237. [Google Scholar] [CrossRef]
- Li, Y.; Ji, X. Controller Design for ISG Hybrid Electric Vehicle Based on SAE J1939 Protocol. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, Los Angeles, CA, USA, 1–2 July 2013. [Google Scholar] [CrossRef]
- Wang, D.; Nan, J.; Sun, F. The application of CAN communication in distributed control system of electric city bus. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Hu, J.; Li, G.; Yu, X.; Liu, S. Design and Application of SAE J1939 Communication Database in City-Bus Information Integrated Control System Development. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 3429–3434. [Google Scholar] [CrossRef]
- Cavallo, F.; Sabatini, A.M.; Genovese, V. A step toward GPS/INS personal navigation systems: Real-time assessment of gait by foot inertial sensing. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 1187–1191. [Google Scholar]
- Tornero, J.; Armesto, L. A general formulation for generating multi-rate models. Proc. Am. Control Conf. 2003, 2, 1146–1151. [Google Scholar] [CrossRef]
- Armesto, L.; Tornero, J.; Vincze, M. On multi-rate fusion for nonlinear sampled-data systems: Application to a 6D tracking system. Robot. Auton. Syst. 2008, 56, 706–715. [Google Scholar] [CrossRef]
- Tan, H.; Shen, B.; Liu, Y.; Alsaedi, A.; Ahmad, B. Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inf. Fusion 2017, 36, 313–320. [Google Scholar] [CrossRef]
- Voss, W. A comprehensible Guide to Controller Area Network; Copperhill Technologies Corporation: Greenfield, MA, USA, 2008. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girbés, V.; Hernández, D.; Armesto, L.; Dols, J.F.; Sala, A. Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles. Sensors 2019, 19, 3515. https://doi.org/10.3390/s19163515
Girbés V, Hernández D, Armesto L, Dols JF, Sala A. Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles. Sensors. 2019; 19(16):3515. https://doi.org/10.3390/s19163515
Chicago/Turabian StyleGirbés, Vicent, Daniel Hernández, Leopoldo Armesto, Juan F. Dols, and Antonio Sala. 2019. "Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles" Sensors 19, no. 16: 3515. https://doi.org/10.3390/s19163515
APA StyleGirbés, V., Hernández, D., Armesto, L., Dols, J. F., & Sala, A. (2019). Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles. Sensors, 19(16), 3515. https://doi.org/10.3390/s19163515