skip to main content
10.1145/1088622.1088651acmconferencesArticle/Chapter ViewAbstractPublication Pagesk-capConference Proceedingsconference-collections
Article

Document annotation and ontology population from linguistic extractions

Published: 02 October 2005 Publication History

Abstract

In this paper, we present a workbench for semi-automatic ontology population from textual documents. It provides an environment for mapping the linguistic extractions with the domain ontology thanks to knowledge acquisition rules. Those rules are activated when a pertinent linguistic tag is reached. Those linguistic tags are then mapped to a concept, one of its attributes or even a semantic relation between several concepts. The rules instantiate these concepts, attributes and relations in the knowledge base constrained by the domain ontology. This paper deals with the underlying knowledge capture process and presents the first experiments realized on a real client application from the legal publishing domain.

References

[1]
Amardeilh F., Francart T, A Semantic Web Portal with HLT Capabilities, In Actes du colloque Veille Stratégique Scientifique et Technologique (VSST2004), Toulouse, France, Vol. 2, p 481--492, (2004).
[2]
Bontcheva K., Cunningham H., The Semantic Web: A New Opportunity and Challenge for Human Language Technology, In Proceedings of the Second International Semantic Web Conference, Workshop on Human Language Technology for the Semantic Web and Web Services, Florida, 20-23 October 2003, p. 89--96, (2003).
[3]
Bourrigault D., Aussenac-Gilles N., Charlet J., Construction de ressources terminologiques ou ontologiques a partir de textes : un cadre unificateur pour trois études de cas, In Revue d'Intelligence Artificielle, 18(4), 24 pp, (2004).
[4]
Crispino G. "Une plate-forme informatique de l'Exploration Contextuelle: modTlisation, architecture et réalisation (ContextO). Application au filtrage sémantique de textes", PhD Thesis, Paris 4-Sorbonne University, 241pp, (2003).
[5]
Desclès J.-P., Jouis C., Oh H-G. et al., Exploration Contextuelle et sémantique : un système expert qui trouve les valeurs sémantiques des temps de l'indicatif dans un texte, Knowledge modeling and expertise transfer, Amsterdam, p. 371--400, (1991).
[6]
Grisham R., Sundheim B., Message understanding conference - 6: A brief history, In Proceedings of the 16th International Conference on Computational Linguistics, Copenhagen, p.466--471, (1996).
[7]
Grivel L., Guillemin-Lanne S., Lautier C. et al., La construction de composants de connaissance pour l'extraction et le filtrage de l'information sur les réseaux, In Filtrage et résumé automatique de l'information sur les réseaux, 3ème congrès du Chapitre français de l'ISKO International Society for Knowledge Organization, Paris, 5-6 July 2001, 9 pp, (2001).
[8]
Gruber T., A Translation approach to portable ontology specifications. In Knowledge Acquisition, 5(2), p. 199--220, (1995).
[9]
Handschuh S., Staab S., Ciravegna F., S-CREAM Semi-automatic CREAtion of Metadata, In Proceedings of the 13th International Conference on Knowledge Engineering and Management (EKAW 2002), Spain, 1-4 October 2002, Springer Verlag, p. 358--372, (2002).
[10]
Hendler J., Horrocks I. and al., OWL web ontology language reference, W3C Recommendation, (2004), available at http://www.w3.org/TR/owl-ref/
[11]
Kahan J., Koivunen M., Prud'Hommeaux E. et al., Annotea: An Open RDF Infrastructure for Shared Web Annotations, In Proceedings of the WWW10 International Conference, Hong Kong, May 2001, p. 623--632, (2001).
[12]
Kiryakov A., Popov B., Ognyanoff D., et al., Semantic Annotation, Indexing, and Retrieval, In Proceedings of the 2nd International Semantic Web Conference (ISWC2003), Florida, 20-23 October 2003, p.484--499, (2003).
[13]
Laublet P., Reynaud C. et Charlet J., Sur quelques aspects du Web Sémantique, In Assises du GDR I3, Eds Cépadues, Nancy, 20 pp, (2002).
[14]
Minel J.-L., J-P. DesclTs, E. Cartier, et al., Résumé automatique par filtrage sémantique d'informations dans des textes. PrTsentation de la plate-forme FilText, In Revue Technique et Science informatiques, 20(3), HermFs, p. 369--395, (2001).
[15]
Ora L., Swick R., Resource Description Framework (RDF) Model and Syntax Specification, W3C Recommendation (1999), available at http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
[16]
Park J., Hunting S., XTM Topic Maps : Creating and using Topic Maps for the Web, Addison Wesley, Boston, p. 81--101, (2003).
[17]
Vargas-Vera M., Motta E., Domingue J., MnM : Ontology Driven Tool for Semantic Markup, In Proceedings of the Workshop Semantic Authoring, Annotation & Knowledge Markup (SAAKM 2002), Lyon (France), 22-23 July 2002, p.43--47, (2002).

Cited By

View all

Index Terms

  1. Document annotation and ontology population from linguistic extractions

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      K-CAP '05: Proceedings of the 3rd international conference on Knowledge capture
      October 2005
      234 pages
      ISBN:1595931635
      DOI:10.1145/1088622
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 02 October 2005

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. knowledge acquisition tool
      2. knowledge capture for the semantic web
      3. knowledge capture using natural language processing
      4. knowledge extraction from text
      5. method for ontology population
      6. semantic web

      Qualifiers

      • Article

      Conference

      K-Cap05
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 55 of 198 submissions, 28%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media