Computer Science > Performance
[Submitted on 7 Jul 2022 (v1), last revised 17 Mar 2023 (this version, v2)]
Title:Diverse Adaptive Bulk Search: a Framework for Solving QUBO Problems on Multiple GPUs
View PDFAbstract:Quadratic Unconstrained Binary Optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. As many NP-hard problems can be reduced to QUBO problems, considerable research has gone into developing QUBO solvers running on various computing platforms such as quantum devices, ASICs, FPGAs, GPUs, and optical fibers. This paper presents a framework called Diverse Adaptive Bulk Search (DABS), which has the potential to find optimal solutions of many types of QUBO problems. Our DABS solver employs a genetic algorithm-based search algorithm featuring three diverse strategies: multiple search algorithms, multiple genetic operations, and multiple solution pools. During the execution of the solver, search algorithms and genetic operations that succeeded in finding good solutions are automatically selected to obtain better solutions. Moreover, search algorithms traverse between different solution pools to find good solutions. We have implemented our DABS solver to run on multiple GPUs. Experimental evaluations using eight NVIDIA A100 GPUs confirm that our DABS solver succeeds in finding optimal or potentially optimal solutions for three types of QUBO problems.
Submission history
From: Koji Nakano [view email][v1] Thu, 7 Jul 2022 03:29:19 UTC (2,989 KB)
[v2] Fri, 17 Mar 2023 06:04:36 UTC (2,480 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.