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Abstract—This paper investigates the problem of distributed
medium access control in a time slotted wireless multiple access
network with an unknown finite number of homogeneous users.
Assume that each user has a single transmission option. In
each time slot, a user chooses either to idle or to transmit
a packet. With a generally-modeled link layer channel, a dis-
tributed medium access control framework is proposed to adapt
transmission probabilities of all users to maximize an arbitrarily
chosen symmetric network utility. Probability target of each user
in the proposed algorithm is calculated based on a channel
contention measure, which is defined as the success probability
of a virtual packet. It is shown that the proposed algorithm
falls into the classical stochastic approximation framework with
guaranteed convergence when the contention measure can be
directly obtained from the receiver. On the other hand, when
the contention measure is not directly available, computer sim-
ulations show that a revised medium access control algorithm
can still help the system to converge to the same designed
equilibrium.1

I. INTRODUCTION

Opportunistic channel access in a distributed wireless net-

work often leads to unavoidable packet collision that needs

to be resolved using a medium access control (MAC) pro-

tocol. Distributed adaptive MAC protocols can generally be

categorized into tree splitting algorithms [1][10] and expo-

nential back-off approaches [5][2]. While splitting algorithms

can often achieve a relatively high system throughput, their

function depends on the assumptions of instant availability of

noiseless channel feedback and correct reception of feedback

sequence. Unfortunately, both of these conditions can be

violated in a wireless environment. Back-off algorithms, on

the other hand, has proven to enjoy more trackable analysis.

In back-off algorithms such as the 802.11 DCF protocol,

each user transmits its packets randomly according to packet

availability and an associated probability parameter. A user

should decrease its transmission probability in response to a

packet collision (or transmission failure) event, and increase

its transmission probability in response to a transmission

success event. Distributed probability adaptation in a back-

off algorithm often falls into the stochastic approximation

framework [5], with rigorously developed mathematical and

statistical tools available for its performance analysis. It is

well known that convergence proof of these algorithms often
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hold in the existence of measurement noise and feedback

delay [6]. Practical back-off algorithms can also be analyzed

using Markov models to characterize the impact of discrete

probability updates [2].

In [5], a stochastic approximation model was proposed for

distributed networking over a collision channel with an un-

known finite number of users, each having a saturated message

queue. By setting the transmission probability target of each

user as a function of a locally measurable system variable, such

as the channel idling probability, it was shown that the system

can be designed to converge to a unique stable equilibrium.

In the case of throughput maximization with homogeneous

users, it was proposed that idling probability of the channel

should be controlled toward the asymptotically optimal value

of 1/e. Most of the existing analysis of the splitting and the

back-off algorithms either assume a throughput optimization

objective and/or a simple collision channel model. While

significant research efforts have been made to revise collision

resolution algorithms to incorporate wireless-related physical

layer properties, such as capture effect [7] and multi-packet

reception [4], not much progress has been reported since

the 1980s on integrating these extensions with the insightful

stochastic approximation-based frameworks, such as those

introduced in [5].

In [9][12][8], a new channel coding theory was developed

for physical layer distributed communication systems that

feature opportunistic channel access and packet collision. The

coding theory enabled the derivation of fundamental limits

of distributed communication systems. It also supported the

derivation of a link layer channel model based on the physical

layer channel and the coding details of data packets. This mo-

tivated the investigation on the impact of a general link layer

channel to the design and optimization of collision resolution

algorithms. One such attempt was presented in [11], where a

distributed MAC algorithm was proposed to optimize a class

of utility functions for a multiple access network over a class

of multi-packet reception channels with an unknown number

of users. While it was shown that the proposed algorithm

can help the distributed network to converge to the desired

equilibrium, both the utility function and the channel model

assumed in [11] were quite special. It was not clear whether

similar MAC algorithms can be developed for multiple access

networks with more general settings.

In this paper, we give a positive answer to the above

question. As in [11], we consider a distributed multiple



access wireless networking with an unknown finite number

of homogeneous users, each is backlogged with a saturated

message queue. Assume that users intend to maximize a

general symmetric network utility. Under a general link-layer

channel model, we propose a distributed MAC framework for

each user to adapt its transmission probability according to a

channel contention measure defined as the success probability

of a virtual packet. We show that the proposed MAC algorithm

falls into the classical stochastic approximation framework

with guaranteed convergence, if the system has a unique

equilibrium and if two key conditions can be met. Without

knowing the user number, we show that one can develop an

MAC algorithm to satisfy the required conditions and to place

the unique equilibrium at a point that is close to optimal with

respect to the (arbitrarily) chosen utility. Our work extends the

basic framework of [5] from a simple collision channel model

to a general link-layer channel. Such extension is enabled by

the following key ideas. First, as opposed to using a locally

measurable variable such as the channel idling probability [5],

we use the success probability of a specific virtual packet

as the channel contention measure. Second, we show that,

with the help of the channel contention measure and two key

monotonicity properties, each user can estimate the unknown

user number and set its transmission probability target as a

function of the (estimated) user number. Compared with the

approach of controlling channel contention at a pre-determined

level, as suggested in [5], the MAC algorithm presented in

this paper has the capability of helping the system to achieve

a performance closer to optimal especially when the user

number is not large in value.

II. A STOCHASTIC APPROXIMATION FRAMEWORK

Consider a link layer wireless multiple access network with

K homogeneous users (transmitters) and one receiver. K is

finite and is assumed to be known neither to the users nor to the

receiver. Time is slotted such that each slot equals the length

of one packet. Assume that each user has a saturated message

queue, a single transmission option plus an idling option. In

each time slot, each user, say user k, determines whether to

transmit a packet or to idle according to an associated prob-

ability parameter pk. We use transmission probability vector

p = [p1, · · · , pK ]T to denote the transmission probabilities of

all users.

At the end of each time slot t, upon receiving channel

feedback, each user, say user k, derives a probability target,

denoted by p̃k(t). User k then updates its transmission prob-

ability by pk(t + 1) = (1 − α(t))pk(t) + α(t)p̃k(t), where

α(t) ≥ 0 is the step size parameter of time slot t. Let

p(t) = [p1(t), · · · , pK(t)]T and p̃(t) = [p̃1(t), · · · , p̃K(t)]T

denote the transmission probabilities and probability targets of

all users in time slot t, respectively. Transmission probability

vector is updated by

p(t+ 1) = p(t) + α(t)(p̃(t)− p(t)). (1)

Note that (1) falls into the stochastic approximation frame-

work [6][3], where p̃(t) is often calculated based upon noisy

estimates of system variables.

Define p̂(t) = [p̂1(t), · · · , p̂K(t)]T as the “theoretical value”

of p̃(t) when there is no measurement noise and no feedback

error in time slot t. Let Et[p̃(t)] be the expectation of p̃(t)
conditioned on system state at the beginning of time slot t.
We express Et[p̃(t)] as follows

Et[p̃(t)] = p̂(t) + g(t) = p̂(p(t)) + g(p(t)), (2)

where g(t) represents a potential bias term in the probability

target derivation. Given the communication channel, both p̂(t)
and g(t) are functions of p(t), which is the transmission

probability vector in time slot t.
Next, we present two conditions that are typically required

for the convergence of a stochastic approximation algorithm.

Condition 1: (Mean and Bias) There exists a constant

Km > 0 and a bounding sequence 0 ≤ β(t) ≤ 1, such that

‖g(p(t))‖ ≤ Kmβ(t). (3)

We assume that β(t) is controllable in the sense that, for any

ǫ > 0, one can design protocols to ensure β(t) ≤ ǫ for a

sufficiently large t.
Condition 2: (Lipschitz Continuity) There exists a constant

Kl > 0, such that

‖p̂(p1)− p̂(p2)‖ ≤ Kl‖p1 − p2‖, for all p1,p2. (4)

If Conditions 1 and 2 are met, and α(t) and β(t) are

small enough, according to stochastic approximation theory

[6][3], trajectory of p(t) under probability update (1) can be

approximated by the following associated ordinary differential

equation (ODE),

dp(t)

dt
= − [p(t)− p̂(t)] , (5)

where we used the same notation t to denote the continuous

time variable. Because all entries of p(t) and p̂(t) stay in the

range of [0, 1], any equilibrium p
∗ of the associated ODE must

satisfy p
∗ = p̂(p∗).

Convergence of the distributed probability adaptation is

stated in the following two theorems which are quite standard

for stochastic control algorithms.

Theorem 1: [6, Theorem 4.3] Let Conditions 1 and 2 hold.

Assume that the associated ODE given in (5) has a unique

stable equilibrium at p∗. If α(t) and β(t) satisfy the following

conditions

∞
∑

t=0

α(t) = ∞,
∞
∑

t=0

α(t)2 < ∞,
∞
∑

t=0

α(t)β(t) < ∞, (6)

then under distributed probability adaptation given in (1), p(t)
converges to p

∗ with probability one.

Theorem 2: [3, Thorem 2.3] Let Conditions 1 and 2

hold. Assume that the associated ODE given in (5) has a

unique stable equilibrium at p∗. Under distributed probability

adaptation given in (1), for any ǫ > 0, there exists a constant



Kw > 0, such that, for any 0 < α < α < 1 satisfying the

following constraint

∃T0 ≥ 0, α ≤ α(t) ≤ α, β(t) ≤
√
α, ∀t ≥ T0, (7)

p(t) converges weakly to p
∗ in the following sense

lim sup
t→∞

Pr{‖p(t)− p
∗‖ ≥ ǫ} < Kwα. (8)

With convergence of the system guaranteed by Theorems

1 and 2, key objectives of the system design are to develop

the distributed MAC algorithm to satisfy Conditions 1 and

2 and to place the unique system equilibrium at the desired

point. Because users are homogeneous, due to symmetry, if a

system equilibrium p
∗ is indeed unique, it must take the form

of p
∗ = p∗1, with 1 being the vector of all ones. In other

words, transmission probabilities of all users at the equilibrium

must be identical. We choose to enforce such a property by

requiring that all users should obtain the same transmission

probability target in each time slot, as introduced below.

We assume that there is a virtual packet being transmitted

in each time slot. Virtual packets of different time slots are

identical. A virtual packet is an assumed packet with known

coding details but it is not physically transmitted by any user

in the system, i.e., the packet is “virtual”. We assume that,

without knowing the transmission/idling status of the users, the

receiver can detect whether the reception of a virtual packet

should be regarded as successful or not, and therefore can

estimate its success probability. Note that, such detection tasks

and their performance bounds have been extensively discussed

in the distributed channel coding theory [9][12][8].

Let qv(t) denote the success probability of the virtual packet

in time slot t. We assume that the receiver should estimate

qv(t) and feed it back to all transmitters. We term qv(t) the

“channel contention measure” because it is designed to serve

as a measurement of the contention level of the link-layer

multiple access channel. In the collision channel case when

qv(t) equals the channel idling probability, feeding back qv(t)
may not be necessary. So long as each user k knows the

success probability of its own packet, denoted by qk(t), idling

probability of the channel can be estimated by (1−pk(t))qk(t).
With a general link layer channel, however, estimating qv(t)
may not always be possible if it is not fed back directly by

the receiver. Upon receiving qv(t), each user calculates its

probability target as the same function of qv(t), denoted by

p̂(qv(t)). In other words, the vector transmission probability

target is given by p̂(t) = p̂(qv(t))1. Consequently, any system

equilibrium p
∗ must take the form of p

∗ = p∗1, where

p∗ satisfies p∗ = p̂(p∗) with p̂(p∗) being the theoretical

probability target of the users given that all users have the

same transmission probability p∗.

In a practical system, the measurement of qv(t) is likely

to be corrupted by noise. We assume that, if users keep their

transmission probability vector p̂ at a constant, and qv is mea-

sured over an interval of Q time slots, then the measurement

should converge to its true value with probability one as Q
is taken to infinity. Other than this assumption, measurement

noise is not involved in the discussion of the design objectives

of meeting Conditions 1 and 2 and placing the unique system

equilibrium at the desired point. Therefore, in the following

section, we assume that qv(t) can be measured precisely and

be fed back to the users. This leads to p̃(t) = p̂(t) = p̂1. We

will also skip the time index t to simplify the notations.

III. DISTRIBUTED MAC ALGORITHM

Given the physical layer channel and coding details of the

real and the virtual packets, we characterize the link layer

channel using two sets of derived channel parameters. Define

{Crj} for j ≥ 0 as the “real channel parameter set”, where Crj

is the conditional success probability of a real packet should it

be transmitted in parallel with j other real packets. Similarly,

define {Cvj} for j ≥ 0 as the “virtual channel parameter

set”, where Cvj is the success probability of the virtual packet

should it be transmitted in parallel with j real packets. We

assume that Cvj ≥ Cv(j+1) ≥ 0 for all j ≥ 0. This implies

that an increased number of parallel real packet transmissions

should not improve the chance of a virtual packet getting

through the channel. Let ǫv ≥ 0 be a pre-determined small

constant. Define Jǫv as the minimum integer such that CvJǫv

is strictly larger than Cv(Jǫv
+1) + ǫv, i.e.,

Jǫv = argmin
j

Cvj > Cv(j+1) + ǫv. (9)

According to the distributed channel coding theory [9][12][8],

{Crj} and {Cvj} can be derived from the physical layer

channel model and the coding details of the packets. Therefore,

we assume that both {Crj} and {Cvj} should be known to

the users and to the receiver.

We assume that the users intend to maximize a symmetric

utility, denoted by U(K, p, {Crj}), which is defined as a func-

tion of the unknown user number K , the common transmission

probability p of all users, and the real channel parameter set

{Crj}. Write p = x
K

. We define x∗ using the following

asymptotic utility optimization

x∗ = argmax
x

lim
K→∞

U
(

K,
x

K
, {Crj}

)

. (10)

Let b ≥ 1 be a pre-determined design parameter whose value

will be introduced later. Define pmax as

pmax = min

{

1,
x∗

Jǫv + b

}

. (11)

We will show next that, without knowing the actual user

number K , it is possible to set the unique system equilibrium

at p∗1 = min{pmax,
x∗

K+b
}1.

We intend to design a distributed MAC algorithm to set

the unique system equilibrium at p∗1 by maintaining channel

contention at an appropriate level. Note that, given the virtual

channel parameter set {Cvj}, channel contention measure

qv(p,K) is a function of the transmission probability vector

p and user number K . If all users transmit with the same

probability p, i.e., p = p1, then qv(p1,K) is given by

qv(p1,K) =

K
∑

j=0

(

K

j

)

pj(1 − p)K−jCvj . (12)



Upon obtaining qv from the receiver, each user should

first obtain a user number estimate, denoted by K̂ , and

then set the corresponding probability target at p̃ = p̂ =

min
{

pmax,
x∗

K̂+b

}

. In the following, we will show that, for

any x∗ > 0, without knowing K , one can always choose

an appropriate b and design a distributed MAC algorithm to

converge to the desired equilibrium p∗1 = min{pmax,
x∗

K+b
}1.

Convergence of the MAC algorithm to be introduced de-

pends on two monotonicity properties presented below. First,

the following theorem shows that, given user number K ,

qv(p1,K) is non-increasing in p.

Theorem 3: Under the assumption that Cvj ≥ Cv(j+1) for

all j ≥ 0, qv(p1,K) given in (12) satisfies
∂qv(p1,K)

∂p
≤ 0.

Furthermore,
∂qv(p1,K)

∂p
< 0 holds with strict inequality for

K > Jǫv and p ∈ (0, 1).
The proof of Theorem 3 is given in Appendix A.

Next, we introduce the “theoretical channel contention mea-

sure”, denoted by q∗v , to characterize the desired contention

level of the system. Let p̂ = x∗

K̂+b
, and N = ⌊K̂⌋ be the

largest integer below K̂ . We define a continuous function

q∗v(p̂), which can also be viewed as a function of K̂, as follows

q∗v(p̂) =
p̂− pN+1

pN − pN+1
qN (p̂) +

pN − p̂

pN − pN+1
qN+1(p̂), (13)

where pN = min
{

pmax,
x∗

N+b

}

, pN+1 =

min
{

pmax,
x∗

N+1+b

}

, and

qN (p) =

N
∑

j=0

(

N

j

)

pj(1− p)N−jCvj ,

qN+1(p) =

N+1
∑

j=0

(

N + 1

j

)

pj(1− p)N+1−jCvj . (14)

Note that if the user number indeed equals K = K̂ with K̂ ≥
x∗−b, then q∗v(p̂) defined in (13) equals the channel contention

measure qv(p
∗,K) at the desired equilibrium p

∗ = x∗

K+b
1.

The following theorem gives the second monotonicity prop-

erty, which shows that, given an arbitrary x∗ > 0, with an

appropriate choice of b, q∗v(p̂) is non-decreasing in p̂.

Theorem 4: Let x∗ > 0. If b ≥ max{1, x∗ − γǫv}, with

γǫv being given by

γǫv = min
N,N≥Jǫv

,N≥x∗−b

∑N

j=0 j
(

N
j

)

(

pN+1

1−pN+1

)j

(Cvj − Cv(j+1))

∑N
j=0

(

N
j

)

(

pN+1

1−pN+1

)j

(Cvj − Cv(j+1))

, (15)

then q∗v(p̂) defined in (13) is non-decreasing in p̂. Furthermore,

if b > max{1, x∗−γǫv} holds with strict inequality, then q∗v(p̂)
is strictly increasing in p̂ for p̂ ∈ (0, pmax).

The proof of Theorem 4 is given in Appendix B. We want to

point out that, if ǫv is small enough to satisfy Cvj = Cv(j+1)

for all j < Jǫv , then we have γǫv = Jǫv . Otherwise, γǫv ≤ Jǫv
is generally true.

We now propose the following distributed MAC algorithm.

Distributed MAC Algorithm:

1) Initialize the transmission probabilities of all users.

2) Over an interval of Q time slots, with Q ≥ 1, the receiver

measures the success probability of the virtual packet,

denoted by qv, and feeds qv back to all transmitters.

3) Upon receiving qv, each user, say user k, derives a

probability target p̂ by solving the equation of q∗v(p̂) = qv.

If a p̂ ∈ [0, pmax] satisfying q∗v(p̂) = qv cannot be found,

user k sets p̂ at p̂ = pmax when qv > q∗v(pmax), or at

p̂ = 0 when qv < q∗v(0).
4) User k then updates its transmission probability by pk =

(1 − α)pk + αp̂, where α is the step size parameter for

user k.

5) Go back to step 2 till convergence.

Theorem 5: Given x∗ > 0, let b be chosen to satisfy

b > max{1, x∗−γǫv}. With the proposed MAC algorithm, the

system has a unique equilibrium at p∗ = min{pmax,
x∗

K+b
}1.

Furthermore, given user number K , the probability target p̂(p)
as a function of transmission probability vector p satisfies

Conditions 1 and 2. Consequently, transmission probability

vector p converges to p
∗ in the sense explained in Theorems

1 and 2.

The proof of Theorem 5 is given in Appendix C.

In the above analysis, we did not pose any design constraint

on the coding detail of the virtual packet. Convergence of

the distributed MAC algorithm is guaranteed so long as

parameter b is chosen to satisfy b > max{1, x∗− γǫv}, where

γǫv = Jǫv if ǫv is small enough. However, one should note

that optimality of the MAC algorithm can be affected by the

value of b and Jǫv . Both b and Jǫv are determined by the

virtual channel parameter set {Cvj} which is dependent on the

virtual packet design. Because the proposed MAC algorithm

sets system equilibrium at p
∗ = min{pmax,

x∗

K+b
}1, there

are two optimality concerns. On one hand, for a large user

number K , it is a general preference that one should design

virtual packets to allow a relatively small value of b, which

implies a Jǫv value not much smaller than x∗. On the other

hand, for a small user number K , one should design virtual

packets to support a Jǫv value not much larger than x∗, so

that pmax = min{1, x∗

Jǫv
+b

} can be as close to 1 as possible.

Considering both optimality concerns, a general guideline is

to design coding parameters of the virtual packet such that Jǫv
is slightly smaller than x∗ and b is close to 1.

IV. INTERPRETING THE CONTENTION MEASURE

Classical MAC protocols often assume that a user should

get feedback from the receiver on whether its own packets

are successfully received or not [1]. This enables each user,

say user k, to measure the conditional success probability of

its own packet transmissions, denoted by qk. In this section,

we consider the case when qk is the only feedback avail-

able to user k. To simplify the discussion, we also assume

that a virtual packet should have the same communication

parameters as those of a real packet. In order to apply the

MAC algorithm proposed in Section III, user k will need to



interpret the success probability of the virtual packet based

on the measurement of qk. Because transmission activities of

the users are mutually independent, qk equals the conditional

success probability of the virtual packet given that user k idles.

Consequently, user k can calculate the success probability of

the virtual packet by

qv = (1− pk)qk + pkdk, (16)

where pk is the transmission probability of user k, and dk is

the conditional success probability of the virtual packet given

that user k transmits a packet2. Note that dk can be easily

calculated in special cases. For example, under a collision

channel model, we have dk = 0. In this case, qv = (1−pk)qk
is the actual success probability of the virtual packet. However,

for a general channel, dk may not always be available at

the transmitters unless additional feedback information is

provided. When dk is not available, we propose a two-step

approach for each user to interpret dk and hence the success

probability of the virtual packet qv, and then to update its

transmission probability accordingly.

To explain the detail of the two-step approach, we need

to define two auxiliary functions. More specifically, for an

arbitrary estimated number of users K̆, let N̆ = ⌊K̆⌋ denote

the largest integer below K̆. Let p̆ = min{pmax,
x∗

K̆+b
}, p

N̆
=

min{pmax,
x∗

N̆+b
} and p

N̆+1 = min{pmax,
x∗

N̆+1+b
}, where b

is a constant satisfying b > max{1, x∗ − γǫv}. We define

auxiliary functions q∗(p̆) and d∗(p̆) as follows

q∗(p̆) =
p̆− p

N̆+1

p
N̆
− p

N̆+1

N̆−1
∑

j=0

(

N̆ − 1

j

)

×p̆j(1− p̆)N̆−1−jCvj

+
p
N̆
− p̆

p
N̆
− p

N̆+1

N̆
∑

j=0

(

N̆

j

)

p̆j(1− p̆)N̆−jCvj ,

d∗(p̆) =
p̆− p

N̆+1

p
N̆
− p

N̆+1

N̆−1
∑

j=0

(

N̆ − 1

j

)

×p̆j(1− p̆)N̆−1−jCv(j+1)

+
p
N̆
− p̆

p
N̆
− p

N̆+1

N̆
∑

j=0

(

N̆

j

)

p̆j(1− p̆)N̆−jCv(j+1). (17)

In the case when K̆ takes an integer value, q∗(p̆) is the

conditional success probability of the virtual packet under the

assumptions that the system has K̆ users, user k idles, and

all other users have the same transmission probability of p̆.

Similarly, d∗(p̆) represents the conditional success probability

of the virtual packet under the assumptions that the system has

K̆ users, user k transmits a packet, and all other users have

the same transmission probability of p̆.

2Extensions can be made to the case when a virtual packet is equivalent
to the combination of R real packets by decomposing qk in a similar way as
shown in (16).

Next, we present the two-step approach that is suggested

for each user to obtain its transmission probability target.

Step 1: Over an interval of Q ≥ 1 time slots, each

user, say user k, measures its own conditional success prob-

ability qk. User k then obtains an intermediate transmission

probability p̆ by solving the equation of q∗(p̆) = qk. If a

p̆ ∈ [0, pmax] satisfying q∗(p̆) = qk cannot be found, user k
sets p̆ at p̆ = pmax when qk > q∗(pmax), or at p̆ = 0 when

qk < q∗(0) .

Step 2: In the second step, user k interprets channel

contention measure qv as

qv = (1− pk)qk + pkd
∗(p̆). (18)

An updated transmission probability target p̂ for user k is

then determined by solving q∗v(p̂) = qv. As before, if a

p̂ ∈ [0, pmax] satisfying q∗v(p̂) = qv cannot be found, user

k sets p̂ at p̂ = pmax when qv > q∗v(pmax), or at p̂ = 0 when

qv < q∗v(0).
Note that when p̂ is obtained by the two step approach,

a convergence proof of the MAC algorithm is no longer

available. This is because the two step approach does not

guarantee that transmission probability targets obtained by

different users should be identical. Therefore, the assumption

that any equilibrium p
∗ must take the form of p

∗ = p∗1 is

no longer valid. Nevertheless, in the following theorem, we

show that the two-step approach is equivalent to a simplified

one-step approach where user k directly uses p̆ obtained in

Step 1 as its transmission probability target.

Theorem 6: Let x∗ > 0, and b ≥ max{1, x∗− γǫv}, where

γǫv is defined in (15). Suppose that each user, say user k, first

obtains an intermediate transmission probability p̆ and then

determines its transmission probability target p̂ by following

the two-step approach. Then p̆ ≥ pk implies p̂ ≥ pk, while

p̆ ≤ pk implies p̂ ≤ pk.

The proof of Theorem 6 is presented in Appendix D.

Theorem 6 suggests that each user can simplify the two step

approach into Step 1 only and simply set the transmission

probability target at p̂ = p̆. In cases when the two-step

approach does lead the system to the designed equilibrium,

the simplified one step approach should also lead the system

to the same equilibrium.

V. SIMULATION RESULTS

Example 1: (Optimality) We first consider a distributed

multiple access network with K users and a simple fading

channel. In each time slot, with a probability of 0.3, the

channel can support no more than M1 = 4 parallel real

packet transmissions, and with a probability of 0.7, the channel

can support no more than M2 = 6 parallel real packet

transmissions3. The real channel parameter set {Crj} in this

case is given by Crj = 1 for j < 4, Crj = 0.7 for 4 ≤ j < 6,

and Crj = 0 for j ≥ 6. Assume that users intend to optimize

3Note that such a channel can appear if there is an interfering user that
transmits a packet with probability 0.3 in each time slot. One packet from
the interfering user is equivalent to the combination of two packets from a
regular user.



the symmetric throughput weighted by a transmission energy

cost of E = 0.3. With the number of users being K and all

users transmitting with the same probability p, system utility

U(K, p, {Crj}) is given by

U(K, p, {Crj}) = −EKp+
K−1
∑

j=0

K

(

K − 1

j

)

pj+1(1− p)K−1−jCrj . (19)

Correspondingly, x∗ can be obtained from (10) as x∗ = 3.29.

Assume that a virtual packet should have the same coding

parameters as those of a real packet. The virtual channel

parameter set {Cvj} is therefore identical to the real chan-

nel parameter set, i.e., Cvj = Crj for all j ≥ 0. With

ǫv = 0.01, we have γǫv = Jǫv = 3. Therefore, we can set

b = 1.01 > x∗ − γǫv .

In Figure 1, we illustrate three utilities all as functions of

0 5 10 15
0

0.5

1

1.5

2

2.5

3

User Number K

S
u
m

 U
ti

li
ty

Utility with idling prob. 

maintained at 

Utility at equilibrium

Optimum utility with known K

( )*exp x-

Fig. 1. Sum utility as functions of the number of users for distributed multiple
access over a simple fading channel.

the number of users K . The solid curve represents the utility

achieved by the proposed MAC algorithm at the designed

equilibrium. The dashed curve represents the optimum utility

under the assumption that number of users K is known, and

this is not necessarily achievable without the knowledge of K .

The dash-dotted curve represents the utility if we maintain the

channel idling probability at its asymptotically optimal value

of exp(−x∗), as suggested in [5]4. This is equivalent to setting

the transmission probabilities of all users at 1−exp
(

−x∗

K

)

. It

can be seen that, the proposed MAC algorithm can achieve a

higher utility value compared with the approach suggested in

[5]. Achieved utility of the proposed MAC algorithm is also

reasonably close to optimal when the number of users K is

not close to M .

Example 2: (Convergence in a dynamic environment) Fol-

lowing Example 1, in each time slot, a channel state flag is

randomly generated to indicate whether the channel can sup-

port the parallel transmissions of no more than 4 or 6 packets.

4While [5] also suggested to maintain other variables at their asymptot-
ically optimal values, these alternative approaches do not lead to a better
performance in this example.

Each user also randomly determines whether a packet should

be transmitted according to its own transmission probability

parameter. Whether a packet can go through the channel or

not is then determined using the corresponding channel model.

Assume that each user only knows the success/failure status

of its own packets, and uses the simplified one step approach

to calculate its transmission probability target. Each user

k uses the following exponential moving average approach

to measure qk. qk is initialized at qk = 1. In each time

slot, if user k transmits a packet, then qk is updated by

qk = (1− 1
300 )qk+

1
300Ik , where Ik ∈ {0, 1} is an indicator of

the success/failure status of the packet transmitted by user k in

the current time slot. While this is different from the approach

proposed in the distributed MAC algorithm, simulations show

that an exponential averaging measurement of qk can often

lead the system to converge in a relatively smaller number of

time slots. If user k does not transmit a packet in a time slot,

then user k maintains the estimated qk value during the time

slot. The rest of probability adaptation proceeds according to

the distributed MAC algorithm introduced in Section IV with

a constant step size of α = 0.05.

We assume that the system contains K = 8 users at the

beginning. We say that the system starts with Stage 1. At the

3001th time slot, we assume that the system enters Stage 2

when 7 other users join the network. This leads to a total

of K = 15 users. Each of the new users has its transmission

probability initialized at zero and its packet conditional success

probability initialized at one. Then at the 6001th time slot, we

assume that the system enters Stage 3 when 5 users exit the

network.

In Figure 2, we illustrate convergence behavior of the
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Fig. 2. Convergence behavior in average transmission probability of the active
users of a multiple access network over three stages.

system in average transmission probability of the active users

over the three stages. The corresponding optimal transmission

probability (i.e., transmission probability that maximizes the

symmetric utility) and the theoretical transmission probability

at the designed equilibria are also illustrated in dashed lines

and dash-dotted lines, respectively. While a theoretical con-

vergence proof is not available in this case, we can see that in



a dynamic environment when users join/exit the system, the

proposed MAC algorithm has a reasonably good capability to

help active users tracking the designed equilibrium.

APPENDIX

A. Proof of Theorem 3

The partial derivative of qv(p,K) with respect to p is given

by

∂qv(p,K)

∂p
=

K
∑

j=0

(

K

j

)

jpj−1(1− p)K−jCvj

−
K
∑

j=0

(

K

j

)

pj(K − j)(1 − p)K−j−1Cvj

=

K−1
∑

j=0

K

(

K − 1

j

)

pj(1− p)K−1−j(Cv(j+1) − Cvj)

≤ 0, (20)

where the last inequality is due to the assumption that Cvj ≥
Cv(j+1) for all j ≥ 0. Note that (20) holds with strict

inequality if K > Jǫv and p(1− p) 6= 0.

B. Proof of Theorem 4

We only prove the theorem under the assumption that
x∗

N+b
≤ pmax. It is easy to extend the derivations to the case

when x∗

N+b
> pmax.

According to the definition of q∗v(p̂) in (13), we have

dq∗v(p̂)

dp̂
=

qN (p̂)− qN+1(p̂)

pN − pN+1
+

p̂− pN+1

pN − pN+1

dqN (p̂)

dp̂

+
pN − p̂

pN − pN+1

dqN+1(p̂)

dp̂
. (21)

Write K̂ = N + 1− λ with λ ∈ (0, 1]. We have

p̂− pN+1 =
x∗

K̂ + b
− x∗

N + 1 + b
=

λ

N + 1 + b
p̂, (22)

and

pN − p̂ =
x∗

N + b
− x∗

K̂ + b
=

1− λ

N + b
p̂. (23)

Meanwhile, because function qN+1(p̂) can be decomposed as

qN+1(p̂) =

N+1
∑

j=0

(

N + 1

j

)

p̂j(1− p̂)N+1−jCvj

= p̂

N
∑

j=0

(

N

j

)

p̂j(1− p̂)N−jCv(j+1)

+(1− p̂)
N
∑

j=0

(

N

j

)

p̂j(1 − p̂)N−jCvj , (24)

we have

qN−qN+1 = p̂

N
∑

j=0

(

N

j

)

p̂j(1− p̂)N−j(Cvj−Cv(j+1)). (25)

Furthermore, the derivatives of qN (p̂) and qN+1(p̂) are given

by

dqN (p̂)

dp̂
= −

N
∑

j=0

(N − j)

(

N

j

)

×p̂j(1− p̂)N−j−1(Cvj − Cv(j+1)), (26)

and

dqN+1(p̂)

dp̂
= −

N
∑

j=0

(N + 1)

(

N

j

)

×p̂j(1 − p̂)N−j(Cvj − Cv(j+1)). (27)

Substitute the above results into (21), we get

(pN − pN+1)
dq∗v(p̂)

p̂
=

p̂

N
∑

j=0

(

N

j

)

p̂j(1− p̂)N−j(Cvj − Cv(j+1))

− λ

N + 1 + b
p̂

N
∑

j=0

(N − j)

(

N

j

)

p̂j(1− p̂)N−j−1

×(Cvj − Cv(j+1))

− 1− λ

N + b
p̂

N
∑

j=0

(N + 1)

(

N

j

)

p̂j(1− p̂)N−j

×(Cvj − Cv(j+1))

= p̂
N
∑

j=0

(

N

j

)

p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1))

×
(

1− p̂− λ(N − j)

N + 1 + b
− (1− λ)(1 − p̂)(N + 1)

N + b

)

= p̂

N
∑

j=0

(

N

j

)

p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1))

×
(

λ((1 − p̂)(N + 1 + b)−N + j)

N + 1 + b

+
(1− λ)(1 − p̂)(b − 1)

N + b

)

. (28)

Note that, for all j ≥ 0, we have

λ((1 − p̂)(N + 1 + b)−N + j)

N + 1 + b

≥ λ((1 − pN )(N + 1 + b)−N + j)

N + 1 + b

≥ λ(b − x∗ + j)

N + 1 + b
. (29)

Therefore,
dq∗

v
(p̂)

dp̂
≥ 0 if b ≥ 1 and the following inequality is

satisfied.

N
∑

j=0

(

N

j

)

p̂j(1− p̂)N−j−1(Cvj − Cv(j+1))(b − x∗ + j) ≥ 0.

(30)

It is easy to see that (30) holds if b ≥ x∗−γǫv , with γǫv being

defined in (15).



Furthermore, if we have both b > 1 and b > x∗ − Jǫv
holding with strict inequality, and Cvj > Cv(j+1) for at least

one j ≤ N , then
dq∗

v
(p̂)

dp̂
> 0 should also hold with strict

inequality for p̂ ∈ (0, pmax).

C. Proof of Theorem 5

First, because b > max{1, x∗ − Jǫv} holds with strict

inequality, the theoretical channel contention measure q∗v(p̂)
is strictly increasing in p̂ for p̂ ∈ (0, pmax). Given user

number K , qv(p̂, K) is non-increasing in p̂. Therefore, if

K ≥ Jǫv , then p̂ = p∗ = x∗

K+b
is the only solution to

qv(p̂, K) = q∗v(p̂). When K < Jǫv on the other hand, we

have qv(p̂, K) > q∗v(p̂) for all p̂ ∈ [0, pmax). This implies that

p
∗ = min{pmax,

x∗

K+b
}1 should be the only equilibrium of

the system.

Second, we show that there exists a constant ǫ > 0, such

that
dq∗

v
(p̂)

dp̂
≥ ǫ > 0 for all p̂ < pmax. Note that p̂ < pmax

implies K̂ > Jǫv . From (28) and (29), we get

dq∗v(p̂)

p̂
≥ p̂

pN − pN+1

(

N

Jǫv

)

p̂Jǫv (1− p̂)N−Jǫv
−1

×(CvJǫv
− Cv(Jǫv

+1))

×
(

λ(b − x∗ + Jǫv )

N + 1 + b
+

(1− λ)(1 − p̂)(b − 1)

N + b

)

.

(31)

Because the right hand side of (31) has a positive limit when

p̂ → 0, we can find two small positive constants ǫ0, ǫ1 > 0,

such that
dq∗

v
(p̂)
p̂

≥ ǫ0 for all p̂ ≤ ǫ1. On the other hand,

when ǫ1 ≤ p̂ < pmax, because b > max{1, x∗ − γǫv} holds

with strict inequality, we can find a small positive constant

ǫ2 > 0, such that the right hand side of (31) is no less than

ǫ2. Therefore, by choosing ǫ = min{ǫ0, ǫ2}, we have

dq∗v(p̂)

dp̂
≥ ǫ > 0, for all p̂ < pmax. (32)

Third, let q∗v
−1(.) be the inverse function of q∗v(p). For

any given transmission probability vector p, transmission

probability target p̂ is obtained by

p̂ = q∗v
−1(qv) = q∗v

−1(qv(p,K)). (33)

Because
dq∗

v
(p̂)

dp̂
≥ ǫ > 0, we can find a constant Kl1 > 0 such

that

|p̂1 − p̂2| ≤ Kl1|qv1 − qv2|, (34)

for all p̂1 = q∗v
−1(qv1) and p̂2 = q∗v

−1(qv2). In the meantime,

since qv = qv(p,K) is Lipschitz continuous in p for any given

K , there must exist a constant Kl2 > 0 to satisfy

|qv1 − qv2| ≤ Kl2‖p1 − p2‖, (35)

for all qv1 = qv(p1,K) and qv2 = qv(p2,K). Consequently,

by combining (34) and (35), we have

|p̂1 − p̂2| ≤ Kl1Kl2‖p1 − p2‖, (36)

for all p̂1 = q∗v
−1(qv(p1,K)) and p̂2 = q∗v

−1(qv(p2,K)).
This implies that the probability target function given in (33)

satisfies the Lipschitz condition.

Finally, when the system is noisy, the receiver can choose

to measure qv over an extended number of time slots, namely

increasing the value of Q introduced in Step 2 of the pro-

posed MAC algorithm. If users maintain their transmission

probabilities during the Q times slots, it is often the case that

the potential measurement bias in the system can be reduced

arbitrarily close to zero with a large enough Q. Therefore, the

Mean and Bias condition is also satisfied.

Consequently, convergence of the distributed probability

adaptation is supported by Theorems 1 and 2.

D. Proof of Theorem 6

According to the two-step approach, qv is interpreted by

qv = (1 − pk)qk + pkd
∗(p̆). When p̆ ≥ pk, we should either

have qk = q∗(p̆) when p̆ < pmax, or qk ≥ q∗(p̆) when p̆ =
pmax. Therefore

qv = (1− pk)qk + pkd
∗(p̆)

≥ (1− pk)q
∗(p̆) + pkd

∗(p̆)

= q∗(p̆)− pk(q
∗(p̆)− d∗(p̆))

≥ q∗(p̆)− p̆(q∗(p̆)− d∗(p̆)) = q∗v(p̆), (37)

where the last inequality is due to the fact that q∗(p̆)−d∗(p̆) ≥
0 should always hold.

Because b ≥ max{1, x∗ − γǫv}, according to Theorem 4,

q∗v(p̂) is non-decreasing in p̂. Therefore, if qv > q∗v(pmax), we

have p̂ = pmax ≥ pk. Otherwise, we have

q∗v(p̂) = qv ≥ q∗v(p̆) ≥ q∗v(pk). (38)

This also implies that we p̂ ≥ pk.

Similarly, when p̆ ≤ pk, it can be shown that the two-step

approach will yield p̂ ≤ pk.
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