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Abstract
In this paper, we consider the problem of preserving privacy in the context of online learning.
Online learning involves learning from data in real-time, due to which the learned model as well
as its predictions are continuously changing. This makes preserving privacy of each data point
significantly more challenging as its effect on the learned model can be easily tracked by observing
changes in the subsequent predictions. Furthermore, with more and more online systems (e.g.
search engines like Bing, Google etc.) trying to learn their customers’ behavior by leveraging their
access to sensitive customer data (through cookies etc.), the problem of privacy preserving online
learning has become critical.

We study the problem in the framework of online convex programming (OCP)—a popular
online learning setting with several theoretical and practical implications—while using differential
privacy as the formal measure of privacy. For this problem, we provide a generic framework that
can be used to convert any given OCP algorithm into a private OCP algorithm with provable privacy
as well as regret guarantees (utility), provided that the given OCP algorithm satisfies the following
two criteria: 1) linearly decreasing sensitivity, i.e., the effect of the new data points on the learned
model decreases linearly, 2) sub-linear regret. We then illustrate our approach by converting two
popular OCP algorithms into corresponding differentially private algorithms while guaranteeing
Õ(
√
T ) regret for strongly convex functions. Next, we consider the practically important class of

online linear regression problems, for which we generalize the approach by Dwork et al. (2010a) to
provide a differentially private algorithm with just poly-log regret. Finally, we show that our online
learning framework can be used to provide differentially private algorithms for the offline learning
problem as well. For the offline learning problem, our approach guarantees better error bounds
and is more practical than the existing state-of-the-art methods (Chaudhuri et al., 2011; Rubinstein
et al., 2009).

1. Introduction

With the continuous increase in the amount of computational resources available, modern websites
and online systems can now, in real time, process large amounts of potentially sensitive information
gathered from their customers. Although in most cases, these websites intend to just leverage real-
time learning using their customers’ data, it might actually compromise their customers’ privacy.

For example, consider the following scenario in the context of sponsored search. Sponsored
search advertisements (ads) are served with organic search results and form a major source of rev-
enue for search engines. To serve these ads effectively, search engines attempt to learn the relevance
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of an ad for a user. For this purpose, search engines typically store users’ profile information, e.g.,
gender of the user. Now, suppose a male user clicks an ad, through which the search engine learns
the rule “males like this ad”. This rule is directly observable by the corresponding advertiser whose
ad was clicked. To do this, the advertiser makes two profiles, one that reports the gender as male
and the other one as female. He now compares the rank of his ad presented by the search engine to
each of his profile and observes that the ad is presented at the top of other ads for the male profile.
Also, the advertiser can obtain the IP address of the user, as the user clicked the ad. Thus, he can
make a direct association between the user and his gender, compromising the user’s privacy. Simi-
lar examples can be constructed for several other online learning domains such as, online portfolio
management (Kalai and Vempala, 2005), online linear prediction (Hazan et al., 2007) etc.

In this paper, we address privacy concerns in online learning scenarios similar to the exam-
ples mentioned above. Specifically, we provide a generic framework for privacy preserving online
learning. We use differential privacy (Dwork et al., 2006b) as the formal notion of privacy, and use
online convex programming (OCP) (Zinkevich, 2003) as the formal online learning model. Note
that OCP is a popular online learning paradigm and includes several online learning problems faced
by real-life systems. Examples include online logistic regression, online linear regression etc.

Differential privacy (DP) is a popular privacy notion with a sound cryptographic foundation and
has recently been used in the context of several learning problems (Chaudhuri et al., 2011; Williams
and McSherry, 2010; Rubinstein et al., 2009). At a high level, a differentially private learning
algorithm guarantees that its output does not change “too much” because of perturbations in any
individual training data point. Now, a trivial way to ensure this is by providing a random/constant
output that is completely independent of the input. However, such an output does not have any
“utility” or “goodness” such as bounded generalization error.

Hence, a differentially private algorithm is measured with respect to two criteria: 1) Privacy and
2) Utility. Most of the existing results in differentially private learning have focused on the offline
setting only, where all the training data is available beforehand. Hence, both privacy and utility need
to be argued only over one final output.

In contrast, in the online learning setting, data arrives online1 (e.g. user queries and clicks)
and the algorithm has to provide an output (e.g. relevant ads) at each step. Hence, the number of
outputs produced is the same as the size of the entire dataset. To guarantee differential privacy, one
has to analyze the privacy of the complete sequence of outputs produced, thereby making privacy
preservation a significantly harder problem. For utility, we need to show that asymptotically the
algorithm is at least as good as the optimal offline solution, i.e., the algorithm has sub-linear regret.

In this paper, we study both privacy and utility aspects of privacy preserving online learning in
the online convex programming (OCP) model. The goal is to provide differentially private OCP
algorithms with sub-linear regret. To this end, we provide a generic framework to convert any OCP
algorithm into a differentially private algorithm with sub-linear regret, provided that the algorithm
satisfies two criteria: a) linearly decreasing sensitivity (see Definition 3), b) sub-linear regret.

Next, we instantiate our generic framework with two popular OCP algorithms: Implicit Gradi-
ent Descent (IGD ) by Crammer et al. (2006); Kulis and Bartlett (2010) and Generalized Infinites-
imal Gradient Ascent (GIGA ) by Zinkevich (2003). Our algorithms guarantee differential privacy
as well as Õ(

√
T ) regret for a fairly general class of strongly convex functions with Lipschitz con-

tinuous gradients. In fact, we show that IGD can be used with our framework for non-differentiable

1. At each time step one data entry arrives.
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functions as well. We also show that if the cost functions are quadratic (e.g. online linear regres-
sion), we can use another OCP algorithm called Follow The Leader (FTL) along with a gener-
alization of a technique by Dwork et al. (2010a) to guarantee O(ln1.5 T ) regret while preserving
privacy.

Finally, our generic framework can be used to obtain privacy preserving algorithms for a large
class of offline learning problems as well. In particular, we show that our private OCP frame-
work can be used to obtain generalization error bounds for various offline learning problems using
techniques of Kakade and Tewari (2008) (see Section 5). Our differentially private offline learn-
ing framework provide better error bounds and is more practical than the existing state-of-the-art
methods (Chaudhuri et al., 2011; Rubinstein et al., 2009).

1.1. Our Contributions

Following are the main contributions of this paper:

1. We formalize the problem of differentially private OCP, and provide a generic framework for
the same with provable privacy and utility (regret) guarantees. (see Section 3).

2. We instantiate our framework with two popular OCP algorithms: Implicit Gradient Descent
(IGD) and Generalized Infinitesimal Gradient Ascent (GIGA). For both the algorithms we
provide privacy guarantees and Õ(

√
T ) regret. To guarantee privacy, we need to show that

the effect of any data entry on the output of any of the algorithms (at time step t) decreases lin-
early in t. This stability bound is of independent interest and has implications for connections
between online learning and stability (Ross and Bagnell, 2011; Poggio et al., 2011).

3. For the special case of privacy preserving online linear regression problem, we improve the
regret bound to O(ln1.5 T ) by exploiting techniques from Dwork et al. (2010a).

4. In Section 5 we show that our differentially private framework for OCP can be used to solve a
large class of offline learning problems as well, for which our method provides better guaran-
tees than the existing state-of-the-art results (Chaudhuri et al., 2011; Rubinstein et al., 2009).

5. Finally, through empirical experiments on benchmark datasets, we demonstrate practicality of
our algorithms for two popular learning problems: online linear regression and online logistic
regression (see Appendix G).

1.2. Related Work

As more and more personal data is being digitized, privacy has become a critical issue. Over the
years, several ad-hoc privacy notions have been proposed, however, most of them stand broken
now. For example, de-anonymization of the Netflix challenge dataset by Narayanan and Shmatikov
(2008). In a seminal work, Dwork et al. (2006b) proposed differential privacy, a cryptography in-
spired privacy notion with solid theoretical foundation. This notion is now accepted as the standard
notion of privacy, and in this work we adhere to it for our privacy guarantees.

Recently, several differentially private algorithms have been developed for learning problems
(Blum et al., 2008; Chaudhuri et al., 2011; Williams and McSherry, 2010; Manas Pathak and Raj,
2010; Rubinstein et al., 2009). Among these, the works by Chaudhuri et al. (2011); Rubinstein et al.
(2009); Williams and McSherry (2010) are the most related as they consider a large class of offline
learning problems that can be written as regularized empirical risk minimization (ERM) problems
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with convex loss functions. In particular, Chaudhuri et al. (2011); Rubinstein et al. (2009) proposed
a differentially private method that ensures privacy by either adding noise to the optima of the corre-
sponding ERM or by perturbing the ERM itself. In both these cases, the privacy guarantees depend
on the promise that the exact minimum to the underlying optimization problem is obtained, which
is unlikely for several practical problems. In contrast, Williams and McSherry (2010) proposed
a noisy gradient descent method to optimize ERM. Although their method maintains differential
privacy at each gradient descent step, it fails to provide any convergence guarantees. Interestingly,
our online learning techniques can be applied to this offline learning problem as well. In fact, our
method provides better error bounds and is more practical than the existing methods (see Section 5).

As mentioned earlier, most of the existing work in differentially private learning has been in
the offline setting. One notable exception is the work of Dwork et al. (2010a), that considers the
problem of preserving privacy in the experts setting. In particular, they provide a differentially
private algorithm for experts framework that has Õ(

√
T ) regret. However, their results are restricted

to the experts setting only, and it is not clear how their techniques can be generalized to the general
class of OCP problems.

In a related line of work, there have been a few results that use online learning techniques to ob-
tain differentially private algorithms (Hardt and Rothblum, 2010; Dwork et al., 2010b; Gupta et al.,
2011). In particular, Hardt and Rothblum (2010); Gupta et al. (2011) used the experts framework
to obtain a differentially private algorithm for answering adaptive counting queries on a dataset.
We stress that although these methods use online learning techniques, they are designed to handle
offline problems only where the dataset is fixed and is known in advance.

2. Preliminaries

2.1. Online Convex Programming

Online convex programming (OCP ) is one of the most popular and powerful paradigms in the
online learning setting. OCP can be thought of as a game between a player and an adversary. At
each step t, the player selects a point xt ∈ Rd from a convex set C. Then, the adversary selects a
convex cost function ft : Rd → R and the player has to pay a cost of ft(xt). An OCP algorithm A
maps a function sequence F = 〈f1, f2, . . . , fT 〉 to a sequence of points X = 〈x2,x3, . . . ,xT+1〉 ∈
CT , i.e., A(F ) = X . Now, the goal of the player (or the algorithm) is to minimize regret, i.e., the
total cost incurred when compared to the optimal offline solution x∗ selected in hindsight, i.e., when
all the functions have already been provided. Formally,

Definition 1 (Regret) Let A be an online convex programming algorithm that selects a point xt ∈
C at the t − 1-th iteration. Let ft : Rd → R be a convex cost function served at the t-th it-
eration. Then, the regret RA of A over T iterations is given by: RA(T ) =

∑T
t=1 ft(xt) −

minx∗∈C
∑T

t=1 ft(x
∗).

Several OCP algorithms exist in the literature that guarantee O(
√
T ) regret for bounded Lipschitz

functions ft and O(lnT ) regret for strongly convex functions ft (Kulis and Bartlett, 2010; Zinke-
vich, 2003; Kakade and Shalev-Shwartz, 2008).

2.2. Differential Privacy

We now formally define the notion of differential privacy in the context of our problem.
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Definition 2 ((ε, δ)-differential privacy Dwork et al. (2006b,a)) Let F = 〈f1, f2, . . . , fT 〉 be a
sequence of convex functions. Let A(F ) = X , where X = 〈x1,x2, . . . ,xT 〉 ∈ CT be T outputs of
the OCP algorithm A when applied to F . A randomized OCP algorithm A is (ε, δ)-differentially
private if for any two function sequences F and F ′ that differ in at most one function entry, and for
all S ⊂ CT the following holds:

Pr[A(F ) ∈ S] ≤ eε Pr[A(F ′) ∈ S] + δ

Intuitively, the above definition means that changing any ft ∈ F, t ≤ T to some other function
f ′t will not modify the output sequence X by a large amount. If we consider each ft to be some
information or data point associated with an individual, then the definition above states that the
presence or absence of that individual’s entry in the dataset will not affect the output by too much.
Hence, the output of algorithmA will not reveal any extra information about the individual. Privacy
parameters (ε, δ) decide the extent to which an individual’s entry affects the output; lower values of
ε and δ imply higher level of privacy.

2.3. Notation

F = 〈f1, f2, . . . , fT 〉 denotes the function sequence given to an OCP algorithmA andA(F ) = X
s.t. X = 〈x2,x3, . . . ,xT+1〉 ∈ CT represents output sequence when A is applied to F . We denote
the subsequence of functions F till the t-th step as Ft = 〈f1, . . . , ft〉. C ⊆ Rd, denotes a convex
set in d dimensions. Vectors are denoted by bold-face symbols (e.g., x), matrices are represented
by capital letters (e.g., M ). xTy denotes the inner product between x and y. ‖M‖2 denotes the
spectral norm of matrix M and is the largest eigenvalue of M .

Typically, α is the minimum strong convexity parameter of any ft ∈ F . Similarly, L is the
largest Lipschitz constant of any ft ∈ F and LG is the largest Lipschitz constant of the gradient of
any ft ∈ F . Recall that a function f : C → R is α-strongly convex, if ∀ x,y ∈ C the following
holds: f(γx+(1−γ)y) ≤ γf(x)+(1−γ)f(y)− αγ(1−γ)

2 ||x−y||22, 0 ≤ γ ≤ 1. Also recall that a
function f is L-Lipschitz, if ∀ x,y ∈ C the following holds: |f(x)−f(y)| ≤ L||x−y||2. Function
f is LG-Lipschitz continuous gradient if || 5 f(x)−5f(y)||2 ≤ LG||x− y||2, ∀x,y ∈ C.

At time-step t, non-private and private versions of any OCP algorithm output xt+1 and x̂t+1,
respectively. x∗ denotes the optimal offline solution, that is x∗ = argminx∈C

∑T
t=1 ft(x). RA(T )

denotes the regret of an OCP algorithm A when applied for T steps.

3. Differentially Private Online Convex Programming

In this section we first present our differentially private framework for solving OCP problems, and
provide privacy as well as regret guarantees for our framework. Then, in Appendix B, we instan-
tiate our framework with the Implicit Gradient Descent (IGD) (Kulis and Bartlett, 2010) algorithm
and provide regret, privacy guarantees for the same. We also instantiate our framework with the
Generalized Infinitesimal Gradient Ascent (GIGA) (Zinkevich, 2003) algorithm (see Appendix C).

Recall that a differentially private OCP algorithm should not produce significantly different
sequences of outputs (X = 〈x2, · · · ,xT+1〉) for input function sequences F and F ′, where F and
F ′ differ in exactly one cost function. A trivial way to ensure it is by selecting output sequence X
independently of the input cost functions F . However, such an “algorithm” can have O(T ) regret.

To discard such bad solutions, we require a differentially private OCP algorithm to have both:
a) Privacy: (ε, δ)-differential privacy, and b) Utility: sub-linear regret.
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Our generic framework can transform any given OCP algorithm,A, into a differentially private
OCP algorithm that satisfies the above given requirements. However, we require A to have sub-
linear regret and low sensitivity, i.e., A should not be very sensitive to any particular cost function
in the input sequence. We now formalize this notion of sensitivity:

Definition 3 (L2-sensitivity (Dwork et al., 2006b; Chaudhuri et al., 2011)) LetF, F ′ be two func-
tion sequences differing in at most one entry, i.e., at most one function is different in the two se-
quences. Let xt+1 = A(F )t be the t-th output ofA when supplied F , and similarly, xt+1 = A(F ′)t
is the t-th output of A for input sequence F ′. Then sensitivity of the algorithm A : F → CT , at the
t-th time-step is given by: S(A, t) = supF,F ′ ||A(F )t −A(F ′)t||2.

Using this definition of sensitivity, we now state the assumptions that A should satisfy:

• L2-sensitivity: The L2-sensitivity of the algorithm A should decay linearly with time, i.e.,

S(A, t) ≤ λA
t
, (1)

where λA > 0 is a constant depending only on A, L and α, i.e., the Lipschitz constant and
the strong convexity parameter of the functions in F .

• Regret boundRA(T ): Regret of A is assumed to be sub-linear in T , i.e.,

RA(T ) =

T∑
t=1

ft(xt)− min
x∗∈C

T∑
t=1

ft(x
∗) = o(T ). (2)

A natural question to ask is whether there exists an OCP algorithm A that satisfies both the con-
ditions above. In Appendix B and Appendix C, we show that both IGD and GIGA satisfy these
conditions. In fact, recent results by Ross and Bagnell (2011); Poggio et al. (2011) seem to indicate
a close connection between sensitivity and regret for online learning algorithms . We leave further
investigation of the interplay between sensitivity and regret as a topic for future research.

Now, given A that satisfies both (1) and (2), we transform it into a private algorithm by per-
turbing xt+1 (output of A at t-th step) by a small amount of noise, whose magnitude is fixed by
the noise parameter β in Algorithm 1. Let x̃t+1 be the perturbed output which might lie outside
the convex set C. As OCP requires each output to lie in C, we project x̃t+1 back to C and output
the projection x̂t+1. Note that our Private OCP (POCP) algorithm also stores the “uncorrupted”
iterate xt+1, which is used in the next step. See Algorithm 1 for a pseudo-code of our method.

Now, using the above two assumptions along with concentration bounds for Gaussian noise, we
obtain privacy and regret guarantees for our Private OCP algorithm. Using the sensitivity assump-
tion, it is easy to prove differential privacy for the output of any fixed time step. However, we need
to provide differential privacy jointly over all time steps, which is the main technical novelty of our
work. See Sections 3.1 and 3.2 for a detailed analysis of privacy and regret guarantees, respectively.

3.1. Privacy Analysis for POCP

Under the assumption (1), changing one function in the cost function sequence F can lead to a
change of at most λA/t in the t-th output of A. Intuitively, adding a noise of the same order should
make the output of Algorithm 1 at the t-th step “almost independent” of any fixed cost function and
hence, differentially private. We make this idea precise in the following lemma.
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Algorithm 1 Private OCP Method (POCP)
1: Input: OCP algorithm A, cost function sequence F = 〈f1, · · · , fT 〉 and the convex set C
2: Parameter: privacy parameters (ε, δ)
3: Choose x1 and x̂1 randomly from C
4: for t = 1 to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: OCP Update: xt+1 ← A(〈f1, . . . , ft〉, 〈x1, . . . ,xt〉, C)
7: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id),

where β = λAT
0.5+c

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
and c =

ln 1
2ε

ln(2/δ)

2 lnT

8: Output x̂t+1 = argminx∈C
(
‖x− x̃t+1‖22

)
9: end for

Lemma 1 Let A be an OCP algorithm that satisfies the sensitivity assumption (1) and let λA be
the sensitivity parameter. Fix the noise parameter in Algorithm 1 as

β = λAT
0.5+c

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
for c > 0. Then, the output at the t-th step of the Algorithm 1,

x̂t+1, is (
√
ε

T 0.5+c ,
δ
T )-differentially private.

See appendix A.1 for a proof of the above lemma.
The above lemma shows that the output at each step of Algorithm 1 is (

√
ε

T 0.5+c ,
δ
T )-differentially

private. Hence, a simple composition argument guarantees (T 0.5−c√ε, δ)-differential privacy for
all the steps (Dwork and Lei, 2009). Thus, setting c = 0.5 makes the outputs at every time step
(ε, δ)-differentially private. However, this requires that a noise of variance ∼ O(T/t) be added at
each step. This means that the noise added to any fixed output is much larger than the effect of
incoming function ft and thus can lead to an arbitrarily high regret.

To avoid this problem and obtain better regret bounds, we exploit the interdependence between
the iterates (and outputs) of our algorithm. For this purpose, we use a lemma by Dwork et al. (2010b,
Lemma III.2) that bounds the relative entropy of two random variables in terms of the L∞ norm of
the ratio of their probability densities and also a proof technique developed by Hardt and Rothblum
(2010); Hardt et al. (2010) for the problem of releasing differentially private datasets.

Now we state the privacy guarantee for Algorithm 1 over all T iterations.

Theorem 1 (POCP Privacy) Let A be an OCP algorithm that satisfies the sensitivity assumption
(1) with sensitivity parameter λA. Then, the POCP algorithm (Algorithm 1) with the noise pa-

rameter β = λAT
0.5+c

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
is (3ε, 2δ)-differentially private for c =

(ln( 1
2ε

ln 2
δ )

2 lnT .

The proof of this theorem is included in Appendix A.2.

3.2. Utility (Regret) Analysis for POCP

In this section, we provide a generic regret bound analysis for our POCP algorithm (see Algorithm
1). The regret bound of POCP depends on the regretRA(T ) of the non-private OCP algorithm A.
For typical OCP algorithms like IGD, GIGA ,RA(T ) = O(log T ), assuming each cost function ft
is strongly convex.
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Theorem 2 (POCP Regret) Let A be an OCP algorithm that satisfies sensitivity assumption (1),
and let λA be the corresponding sensitivity parameter. Also, let RA(T ) be the regret of A over
T -time steps, and L > 0 be the maximum Lipschitz constant of any function ft. Then, the expected
regret of our POCP algorithm (Algorithm 1) satisfies:

E

[
T∑
t=1

ft(x̂t)

]
−min

x∈C

T∑
t=1

ft(x) ≤ 2
√
dL(λA + ‖C‖2)

√
T

ln2 T
δ

ε
+RA(T ),

where x ∈ Rd and ‖C‖2 is the diameter of the convex set C.

The above theorem shows that in expectation, POCP(A) algorithm has an additional regret of
Õ(
√
dT ) compared to the regret of A. We present a detailed proof of this theorem in Section A.3.

The main idea is to bound the total effect of noise on the regret via bounding the effect of noise
on the output of individual iterations. Using Chebyshev’s inequality, we can also obtain a high
probability bound on the regret (see Corollary 3 in Section A.4).

4. Logarithmic regret for Quadratic Cost Functions

In Appendix B, we describe a differentially private algorithm (PIGD) with Õ(
√
T ) regret for any

strongly convex Lipschitz continuous cost functions. In this section we show that by restricting the
input cost functions to be quadratic functions only, we can design a differentially private algorithm
that incurs only logarithmic regret.

For simplicity of exposition, we consider cost functions of the form:

ft(x) =
1

2
(yt − vTt x)2 +

α

2
‖x‖2, (3)

whereα > 0. For such cost functions we show that there is an algorithm that incurs justO(poly(log T ))
regret while providing (ε, δ)-differential privacy.

Our Private Quadratic Follow the Leader (PQFTL) algorithm at a high level is a noisy version
of the Follow the Leader (FTL) algorithm. Now, for the specific case of quadratic cost function (3)
with C = Rd, FTL updates can be re-written as:

QFTL : xt+1 = (tαI + Vt)
−1(ut), (4)

where Vt = Vt−1 + vtv
T
t and ut = ut−1 + ytvt with V0 = 0 and u0 = 0.

Using elementary linear algebra and assuming |yt|, ‖vt‖2 ≤ R, we can show that ‖xt+1‖2 ≤
2R/α, ∀t ≤ T . Now, using Theorem 2 of Kakade and Shalev-Shwartz (2008) along with our bound
on ‖xt+1‖2, we obtain the following regret bound for the QFTL algorithm:

RQFTL(T ) ≤ R4(1 + 2R/α)2

α
log T. (5)

Furthermore, we can show that the QFTL algorithm (see Equation 4) also satisfies assumption 1.
Hence, similar to Appendix B, we can obtain a differentially private variant of QFTL with Õ(

√
T )

regret. However, we show that using the special structure of QFTL updates, we can improve the
regret to O(poly(log T )).
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The key observation is that each QFTL update is dependent on the function sequence F through
Vt and ut only. Hence, computing Vt and ut in a differentially private manner would imply differ-
ential privacy for our QFTL updates as well. Furthermore, each Vt and ut themselves are just sums
of individual “atoms” (vτvTτ for Vt and yτvτ for ut). This special structure of Vt and ut facilitates
usage of a generalization of the “tree-based” technique for computing privacy preserving partial
sums proposed by Dwork et al. (2010a). Note that the “tree-based” technique to compute sums
(Algorithm 5 in Appendix D.2) adds significantly lower amount of noise at each step than what is
added by our POCP algorithm (see Algorithm 1). Hence, it leads to a significantly better regret.

Algorithm 4 (in Appendix D.1) provides a pseudo-code of our PQFTL method. At each step t,
V̂t and ût are computed by perturbing Vt and ut (to preserve privacy) using PrivateSum algorithm
(see Algorithm 5 in Appendix D.2). Next, V̂t and ût are used in the QFTL update (4) to obtain the
next iterate x̂t+1.

Theorem 3 (PQFTL Privacy) Let F be a sequence of quadratic functions, where ft(x; yt,vt) =
1
2(yt − vTt x)2 + α

2 ||x||
2
2. Then, PQFTL (Algorithm 4) is (ε, δ)-differentially private.

In Appendix D.2, we show how one can compute partial sums privately by only adding a noise of
variance poly − log(T ). The proof then follows by observing that the computation of the output at
time step t can be done by computing appropriate partial sums privately. The complete proof is in
Appendix D.1 of the appendix.

Theorem 4 (PQFTL Regret) Let F be a sequence of quadratic functions, where ft(x; yt,vt) =
1
2(yt − vTt x)2 + α

2 ||x||
2
2. Let R be the maximum L2 norm of any vt and |yt|. Then, w.p. at

least ≥ 1 − exp(−d/2), the regret bound of PQFTL (Algorithm 4) satisfies : RPQFTL(T ) =

Õ
(
R6 log 1

δ
εα3

√
d log1.5 T

)
.

The regret follows by using regret bound of QFTL algorithm and by accounting for noise at each
step t. See Appendix D.1 for a detailed proof.

5. Application to Offline Learning

In Section 3, we proposed a generic framework for differentially private OCP algorithms with
sub-linear regret bounds. Recently, Kakade and Tewari (2008) showed that OCP algorithms with
sub-linear regret bounds can be used to solve several offline learning problems as well. In this
section, we exploit this connection to provide a generic differentially private framework for a large
class of offline learning problems as well.

In related works, Chaudhuri et al. (2011); Rubinstein et al. (2009) also proposed methods to
obtain differentially private algorithms for offline learning problems. However, as discussed later
in the section, our method is more practical and obtains better error bounds for the same level of
privacy. It also covers a wider range of problems than Chaudhuri et al. (2011).

First, we describe the standard offline learning model that we use. Consider a domain Z and an
arbitrary distribution DZ over Z from which the training data is generated. Let D = 〈z1, · · · , zT 〉
be the training dataset, where each zi is drawn i.i.d. from the distribution DZ . Typically, zi is a
tuple of a training point and its label. Also, consider a loss function ` : C×Z → R+, where C ⊆ Rd
is a (potentially unbounded) convex set. Let `(·; ·) be a L-Lipschitz (in the first parameter) convex
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function. Intuitively, the loss function quantifies the goodness of a learned model x ∈ C w.r.t. the
training data. Now, the goal is to solve the following Risk Minimization problem:

min
x∈C

Ez∼DZ [`(x; z)]. (6)

Let x∗ be the optimal solution to (6), i.e., x∗ = arg minx∈C Ez∼DZ [`(x; z)]. Recently, Kakade and
Tewari (2008) provided a stochastic offline learning algorithm to obtain an additive approximation
to (6) via OCP. The algorithm of Kakade and Tewari (2008) is as follows: execute any reasonable
OCP algorithmA (like IGD or GIGA ) on the function sequence F , where ft = `(x; zt) + α

2 ‖x‖
2.

Note that each zt is sampled i.i.d. from DZ . Also, if the convex set C required in OCP is an
unbounded set, then it can be set to be an L2 ball of radius ‖x∗‖2, i.e, C = {x : x ∈ Rd, ‖x‖2 ≤
‖x∗‖2}. In practice, ‖x∗‖ can be estimated using cross validation, which is analogous to tuning the
regularization parameter in standard learning problems like SVM.

Let x1, · · · ,xT be the sequence of outputs produced by A. Then, the output of the stochastic
offline learning algorithm is given by, x̃ = 1

T

∑T
t=1 xt. Kakade and Tewari (2008) show that x̃ is a

reasonable approximation to x∗ with provable approximation error (see Theorem 12).
To produce differentially private output, we add noise of an appropriate variance to the output

x̃ and project it back to C. That is,

POL : x̂ = argminx∈C ‖x− x̃− b‖22, b ∼ N (0, β2Id), β = 2
√

2(L+α‖x∗‖2) lnT
Tεp

√
ln 1

δ + εp.

We refer to this algorithm as Private Offline Learning (POL) and provide a detailed pseudo-code in
Algorithm 6 (Appendix E). Next, we show that POL (Algorithm 6) is differentially private.

Theorem 5 (POL Privacy) Private Offline Learning (POL) algorithm (see Algorithm 6) is (εp, δ)-
differentially private.

See appendix E.1 for a detailed proof. At a high level, the proof follows from the L2-sensitivity
analysis of the IGD algorithm.

Next, we provide a utility guarantee for POL, i.e., a bound on the approximation error for the
Risk Minimization problem (6). See appendix E.2 for a detailed proof. The main tool in the proof is
a bound on the approximation error for the stochastic offline learning by Kakade and Tewari (2008).

Theorem 6 (POL Utility (Approximation Error in Eq. 6)) Let L be the Lipschitz bound on the
loss function ` and T be the total number of points in the training dataset D = {z1, . . . ,zT }. Let
(εp, δ) be the differential privacy parameters, d the dimensionality, C > 0 a global constant. Then,
with probability at least 1− γ,

Ez∼DZ [`(x̂; z)]−min
x∈C

Ez∼DZ [`(x; z)] ≤ εg,

when the number of points sampled (T ) satisfies,

T ≥ C max

(√
dL(L+εg/‖x∗‖2)

√
ln 1
γ

ln 1
δ

εgεp
,

(L+εg/‖x∗‖2)2‖x∗‖22 lnT ln lnT
γ

ε2g

)
.

Comparison to existing differentially private offline learning methods: We now compare our
POL algorithm for private (offline) Risk Minimization with the existing methods (Chaudhuri et al.,
2011; Rubinstein et al., 2009):
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• Better error bound: Our Theorem 6 improves the sample complexity bounds of Chaudhuri
et al. (2011); Rubinstein et al. (2009) by a factor of

√
d. We believe the difference is primarily

due to our use of Gaussian noise instead of Gamma noise added by the existing methods.
• More practical: Both Chaudhuri et al. (2011); Rubinstein et al. (2009) need to compute the

exact optimal solution to the optimization problem that they consider and it not clear if their
privacy guarantees hold if one can obtain only an approximate solution to their respective
optimization problems. In contrast, our method uses an explicit iterative method for solving
(6) and provides privacy and utility guarantees even if the algorithm stops early.

Remark: Note that (Chaudhuri et al., 2011) does not allow the loss function ` to be non-
differentiable and the convex set C to be bounded. In comparison both (Rubinstein et al., 2009) and
our POL method support non-differentiable loss functions and bounded convex sets. Also, note that
our
√
d sample complexity bound does not contradict the corresponding Ω(d) lower bound proved

by Chaudhuri and Hsu (2011). Reason being, we use (ε, δ)-differential privacy notion which is a
less strict notion of privacy than the ε-differential privacy notion used by Chaudhuri and Hsu (2011).

6. Discussion

6.1. Other Differentially Private Algorithms

Recall that in Appendix B, we described our Private IGD algorithm that achieves Õ(
√
T ) regret

for any sequence of strongly convex, Lipschitz continuous functions. While, this class of functions
is reasonably broad, we can further drop the strong convexity condition as well, albeit with higher
regret. To this end, we perturb each ft and apply IGD over f̃t = ft + α√

t
||x − x0||22, where x0 is

randomly picked point from the convex set C. We can then show that using this perturbation “trick”,
we can obtain a regret of Õ(T 2/3).

We now briefly discuss another OCP algorithm, namely, Exponentially Weighted Online Opti-
mization algorithm (Hazan et al., 2007). This algorithm does not directly fit into our POCP frame-
work, and is not wide-spread in practice due to relatively inefficient updates (see (Hazan et al., 2007)
for more discussion). However, for completeness, we note that by using techniques similar to our
POCP framework and using exponential mechanism (see McSherry and Talwar (2007)), one can
analyze this algorithm as well to guarantee differential privacy along with Õ(

√
T ) regret.

6.2. POCP algorithm when the number of iterations (T ) is not known

Algorithm 1 requires the number of iterations T to be known apriori, as the amount of noise to be
added at each step depends on T . However, in many practical situations T might not be known in
advance. We address this problem by using the standard doubling trick.

At a high level, the idea is the following: rather than adding enough noise to provide (
√
ε

T 0.5 ,
δ
T )-

differentially private for the output at each time step (as is done in Algorithm 1), we provide it-
eration dependent guarantees. That is, at the t-th iteration, we add enough noise to guarantee
(
√

ε
2blog2 tc

, δ
2blog2 tc

)-differential privacy for the output at time step t. Hence, we make the out-

put in first iteration (
√
ε, δ)-private, and of the second and the third iteration (

√
ε
2 ,

δ
2)-private, and

so on.
Repeating the analysis of Algorithm 1 with this modification, we obtain (3ε log T, δ log2 T +

2/T 2ε)-differential privacy while incurring the same regret as Theorem 2 (see Appendix F). Now, to
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get differential privacy guarantee with constant ε′, δ′, we need to set ε = ε′/ log T and δ = δ′/ log T ,
which is still dependent on T . However, the dependence on T is significantly weaker now, and an
estimate of T within a factor of poly(T ) will weaken the privacy by a constant only.
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Appendix A. Differentially Private Online Convex Programming

A.1. Proof of Lemma 1

Proof First, note that x̂t+1 is obtained by projecting x̃t+1 on C. Thus if x̃t+1 is (ε′, δ′)-differentially
private then x̂t+1 is also (ε′, δ′)-differentially private . Therefore, we prove the lemma for x̃t+1.

Let F and F ′ be two input function sequences that differ in exactly one entry. Suppose xt+1 and
x′t+1 are the uncorrupted outputs of the OCP algorithmA (before adding noise) on input sequences
F and F ′, respectively. Similarly, let x̃t+1 = xt+1 +bt+1 and x̃′t+1 = x′t+1 +bt+1 be the perturbed
t-th step outputs of the algorithm A on sequences F and F ′ (see Algorithm 1, Step 7). Now by the
definition of differential privacy (see Definition 2), x̃t+1 is (ε1,

δ
T )-differential private, if for any

measurable set Ω ⊆ Rd:

Pr[x̃t+1 ∈ Ω] ≤ eε1 Pr[x̃′t+1 ∈ Ω] + δ/T.

Recall that bt+1 ∼ N (0, β
2

t2
Id). We have (x̃t+1−xt+1)T∆xt+1 = bt+1

T∆xt+1 ∼ N (0, β
2

t2
‖∆xt+1‖22),

where ∆xt+1 = xt+1 − x′t+1.
Also, using the low sensitivity property (1) of the OCP algorithm A, ‖∆xt+1‖ ≤ λA

t . Thus,

Pr

[∣∣(x̃t+1 − xt+1)T∆xt+1

∣∣ ≥ βλA
t2

z

]
= Pr

[∣∣bt+1
T∆xt+1

∣∣ ≥ βλA
t2

z

]
≤ Pr

[∣∣bt+1
T∆xt+1

∣∣ ≥ β

t
‖xt+1 − x′t+1‖2z

]
,

≤ e−
z2

2 ,

where z > 0, and the second inequality follows from Mill’s inequality. Setting R.H.S. ≤ δ
T , we

have z ≥
√

2 ln T
δ .

Let G ⊆ Rd be a “good” set defined by:

b ∈ G iff
∣∣bT∆xt+1

∣∣ ≤ βλA
t2

√
2 ln

T

δ
. (7)

Note that,

Pr[bt+1 6∈ G] = Pr

[∣∣bt+1
T∆xt+1

∣∣ ≥ βλA
t2

√
2 ln

T

δ

]
≤ δ

T
. (8)

We now bound Pr[x̃t+1 ∈ Ω]:

Pr[x̃t+1 ∈ Ω] ≤ Pr[x̃t+1 ∈ Ω∧bt+1 ∈ G]+Pr[bt+1 6∈ G] ≤ Pr[x̃t+1 ∈ Ω∧bt+1 ∈ G]+
δ

T
. (9)

For the purpose of brevity, we define the following notation (which we will be using in the later
parts of the proof): for a given set S ⊆ Rd and a vector x ∈ Rd, the set {y : y +x ∈ S} is denoted
as S − x.
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Let us define Ψ = {x :
∣∣(x− xt+1)T∆xt+1

∣∣ ≤ βλA
t2

√
2 ln T

δ }. As bt+1 ∼ N (0, β
2

t2
Id),

Pr[x̃t+1 ∈ Ω ∧ bt+1 ∈ G] =

∫
b∈Ω−xt+1∩Ψ−xt+1

exp

(
− ||b||

2
2

2β2/t2

)
db

=

∫
x∈Ω∩Ψ

exp

(
−||x− xt+1||22

2β2/t2

)
dx (10)

Now, for x ∈ Ω ∩Ψ:

exp
(
− t2||x−xt+1||22

2β2

)
exp

(
− t2||x−x′t+1||22

2β2

) = exp

(
t2

2β2
∆xTt+1(2x− xt+1 − x′t+1)

)
,

= exp

(
t2

2β2

(
2∆xTt+1(x− xt+1)− ‖∆xt+1‖22

))
,

≤ exp

(
t2

2β2

(
2|∆xTt+1(x− xt+1)|+ ‖∆xt+1‖22

))
,

≤ exp

(
λA
β

√
2 ln

T

δ
+
λ2
A

2β2

)
,

≤ eε1 , (11)

where ε1 =
√
ε

T 0.5+c and β is as given in the Lemma statement. The second last inequality follows
from the definition of G and the sensitivity assumption (1).

Hence, using (9), (10), and (11), we get:

Pr[x̃t+1 ∈ Ω] ≤
∫

x∈Ω∩Ψ

eε1 exp

(
−
t2||x− x′t+1||22

2β2

)
dx +

δ

T
≤ eε1 Pr[x̃′t+1 ∈ Ω] +

δ

T
. (12)

This completes the proof.

We use the following result from Dwork et al. (2010b) in our proof of Theorem 1.

Lemma 2 (Dwork et al. (2010b)) Suppose that random variables Y andZ satisfy maxx
Pr(Y=x)
Pr(Z=x) ≤

ε and maxx
Pr(Z=x)
Pr(Y=x) ≤ ε. Then,

D(Y ||Z) = EZ
[
ln

Pr(Z = x)

Pr(Y = x)

]
≤ ε2,

where D(Y ||Z) is the KL-divergence between probability distribution of Y and Z.
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A.2. Proof of Theorem 1

Proof Following the notation in the proof of Lemma 1, let Gt+1 be the t-th step “good set” defined
as:

b ∈ Gt+1 iff
∣∣bT∆xt+1

∣∣ ≤ βλA
t2

√
2 ln

T

δ
, (13)

where ∆xt+1 = xt+1 − x′t+1 for 1 ≤ t ≤ T .
Now, using (8), for each time step t,

Pr[bt+1 6∈ Gt+1] ≤ δ

T
. (14)

By union bound, the probability that every output vector bt+1 ∈ Gt+1 for 1 ≤ t ≤ T , is at least
1− T · δT = 1− δ. That is,

Pr[∃t s.t. bt+1 6∈ Gt+1] ≤ δ. (15)

For a random variable x and any point a ∈ Rd, let pdf[x = a] denote the probability density
function of the random variable x evaluated at the point a.
Now, define the following sequence of functions with ξ being some event in the event space,

Zt+1(at+1; ξ) = ln

(
pdf[x̃t+1 = at+1 | ξ]
pdf[x̃′t+1 = at+1 | ξ]

)
,

where at+1 ∈ Rd. Recall that x̃t+1 = xt+1 + bt+1 and x̃′t+1 = x′t+1 + bt+1. Hence, the pdfs in
the above equation are associated with the random choice of the noise vectors bt+1 which is drawn
from a multivariate Gaussian.

Using Lemma 1, we have that at each time step t, the output x̃t+1 of Algorithm 1 is (
√
ε

T 0.5+c ,
δ
T )-

differentially private. That is, for 1 ≤ t ≤ T ,

−
√
ε

T 0.5+c
≤ Zt+1(at+1; bt+1 ∈ Gt+1) = ln

(
pdf[x̃t+1 = at+1 | bt+1 ∈ Gt+1]

pdf[x̃′t+1 = at+1 | bt+1 ∈ Gt+1]

)
≤
√
ε

T 0.5+c
.

Using Lemma 2 along with the observation above, we obtain:

Ebt+1 [Zt+1(x̃t+1; bt+1 ∈ Gt+1)] ≤ 2ε

T 1+2c
.

Now, letL(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) =
∑T

t=1 Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈
GT+1). Since each bt+1 is sampled independently and the randomness in both x̃t+1 and Zt+1(x̃t+1; b2 ∈
G2 · · · , bT+1 ∈ GT+1) is only due to bt+1, therefore: i) for 1 ≤ t ≤ T , Zt+1(x̃t+1; b2 ∈
G2 · · · , bT+1 ∈ GT+1) = Zt+1(x̃t+1; bt+1 ∈ Gt+1), and ii) each entry in the sequence x̃t+1s
for 1 ≤ t ≤ T and each entry in the sequence Zt+1(x̃t+1; bt+1 ∈ Gt+1)s for 1 ≤ t ≤ T are
independent. Now, using independence of x̃t+1’s and the bound given above,

Eb2,··· ,bT+1
[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1)] =

T∑
t=1

Ebt+1 [Zt+1(x̃t+1; bt+1 ∈ Gt+1)]

≤ 2Tε

T 1+2c
≤ 2ε

T 2c
≤ 2ε.
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Note also that for every 1 ≤ t ≤ T and at+1 ∈ Rd, |Zt+1(at+1; bt+1 ∈ Gt+1)| ≤
√
ε

T 0.5+c (from
Lemma 1). Thus, using independence of Zt+1(x̃t+1)s along with Azuma-Hoeffding inequality,

Pr[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) ≥ 2ε+ ε] ≤ 2 exp

(
−2ε2

T × ε
T 1+2c

)
≤ 2 exp

(
−2εT 2c

)
.

(16)

Now, setting RHS ≤ δ, we get: δ ≥ 2 exp
(
−2εT 2c

)
. Hence, we select c =

(ln( 1
2ε

ln 2
δ

)

2 lnT .
Using (16) along with the selected value of c, we have, with probability at least 1 − δ over the

draws of at+1 from x̃t+1 ,

T∑
t=1

ln

(
pdf[x̃t+1 = at+1 | bt+1 ∈ Gt+1]

pdf[x̃′t+1 = at+1 | bt+1 ∈ Gt+1]

)
≤ 3ε.

That is, with probability at least 1− δ, over the draw of ∀a2, . . . ,aT+1 ∈ Rd,

ΠT
t=1 pdf(x̃t+1 = at+1 | bt+1 ∈ Gt+1) ≤ e3ε ΠT

t=1 pdf(x̃′t+1 = at+1 | bt+1 ∈ Gt+1).

Hence, given that bt+1 ∈ Gt+1 for 1 ≤ t ≤ T , with at least 1− δ probability each x̃t+1 (1 ≤ t ≤ T )
is 3ε-differentially private.

Now, using (15), Pr[∃t s.t. bt+1 6∈ Gt+1] ≤ δ. Hence, with probability at least 1 − 2δ over
the choice of b2, · · · , bT+1, each x̃t+1 is 3ε-differentially private. Therefore, (3ε, 2δ)-differential
privacy now follows using a standard argument similar to (9).

A.3. Proof of Theorem 2

Proof Let x̂1, · · · , x̂T be the output of the POCP algorithm. By the Lipschitz continuity of the cost
functions ft we have,

T∑
t=1

ft(x̂t)−min
x∈C

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) + L
T∑
t=1

||x̂t − xt||2,

≤ RA(T ) + L

T∑
t=1

||x̂t − xt||2. (17)

Since at any time t ≥ 1, x̂t is the projection of x̃t on the convex set C, we have

||xt+1 − x̂t+1||2 ≤ ||xt+1 − x̃t+1||2 = ||bt+1||2, ∀1 ≤ t ≤ T − 1,

where bt+1 is the noise vector added in the t-th iteration of the POCP algorithm. Therefore,

L

T∑
t=1

||xt − x̂t||2 ≤ L

(
‖C‖2 +

T−1∑
t=1

||bt+1||2

)
. (18)
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Now, bt+1 ∼ N (0d, β
2

t2
Id) where

β = λAT
0.5+c

√
2

ε

(
ln
T

δ
+

√
ε

T 0.5+c

)
.

Therefore, ||bt+1||2 follows Chi-distribution with parameters µ =
√

2β
t

Γ((d+1)/2)

Γ(d/2) and σ2 =
β2

t2
(d− µ2).

Using c =
ln ( 1

2ε
ln 2
δ

)

2 lnT ,

E[
T−1∑
t=1

||bt+1||2] ≤
√

2βΓ((d+ 1)/2)

Γ(d/2)

∫ T−1

1

1

t
dt,

≤ Γ((d+ 1)/2)

Γ(d/2)
λA
√
T lnT

√√√√√ 2

ε2
ln

2

δ

ln
T

δ
+

ε√
T
2 ln 2

δ

,
≤ 2
√
dλA
√
T

ln2 T
δ

ε
. (19)

The theorem now follows by combining (17), (18), (19).

A.4. High-probability Utility Guarantee for Algorithm POCP

Corollary 3 Let L > 0 be the maximum Lipschitz constant of any function ft in the sequence F ,
RA(T ) , the regret of the non-private OCP algorithm A over T -time steps and λA, the sensitivity
parameter of A (see (1)). Then with probability at least 1 − γ, the regret of our Private OCP
algorithm (Algorithm 1) satisfies:

T∑
t=1

ft(x̂t)−min
x∈C

T∑
t=1

ft(x) ≤ 2
√
dL(λA + ‖C‖2)

√
T

ln2 T
δ

ε
√
γ

+RA(T ),

where d is the dimensionality of the output space, ‖C‖2 is the diameter of C.

Appendix B. Implicit Gradient Descent Algorithm

In this section we consider the Implicit Gradient Descent (IGD) algorithm by Kulis and Bartlett
(2010) and present a differentially private version using our generic framework (see Algorithm 1).
At each step t, IGD selects the output xt+1 using:

IGD : xt+1 ← argmin
x∈C

1

2
||x− xt||22 + ηtft(x), (20)

where ηt = 1
αt , α > 0 is the minimum strong convexity parameter of any ft, t ≤ T . Now, if each

ft(x) is a Lipschitz continuous strongly convex function, then a simple modification to the proof by
Kulis and Bartlett (2010) shows O(log T ) regret for IGD, i.e. RIGD(T ) = O(log T ).
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Algorithm 2 Private Implicit Gradient Descent (PIGD)
1: Input: Cost function sequence F = 〈f1, · · · , fT 〉 and the convex set C
2: Parameter: privacy parameters (ε, δ), maximum Lipschitz constant L and minimum strong

convexity parameter α of any function in F
3: Choose x1 and x̂1 randomly from C
4: for t = 1 to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: Learning rate: ηt = 1

αt
7: IGD Update: xt+1 ← argminx∈C

(
1
2‖x− xt‖22 + ηtft(x)

)
8: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id), where β =

2LT 0.5+c

α

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
and c =

ln 1
2ε

ln(2/δ)

2 lnT

9: Output x̂t+1 = argminx∈C
(
‖x− x̃t+1‖22

)
10: end for

Now, we instantiate our generic POCP framework using the IGD algorithm. See Algorithm 2
for a pseudo-code of our Private IGD (PIGD) algorithm. Similar to POCP, our PIGD algorithm
also adds an appropriately calibrated noise at each step to obtain differentially private outputs x̂t+1.

Now, to use generic privacy analysis of our POCP framework, we need to show that IGD
satisfies sensitivity bound of (1). To this end, in the following lemma we bound sensitivity of IGD
at each step. At a high level, our proof uses optimality of each output xt+1 along with strong
convexity of each ft.

Lemma 4 (IGD Sensitivity) L2-sensitivity (see Definition 3) of the IGD algorithm is 2L
αt for the

t-th iterate, where L is the maximum Lipschitz constant of any function fτ , 1 ≤ τ ≤ t.

Proof [Proof of Lemma 4] We prove the lemma using mathematical induction.
Base Case (t = 1): As x1 is chosen randomly, it’s value doesn’t depend on the underlying dataset.
Induction Step (t = τ + 1): Consider the following function that is optimized at the (τ + 1)-step
of IGD:

f̃τ (x) =
1

2
‖x− xτ‖22 + ητfτ (x).

As fτ is α strongly convex, the strong convexity coefficient of the above given function is τ+1
τ .

Now using strong convexity of f̃τ and the fact that at optima xτ+1, 〈5f̃τ (xτ+1),x− xτ+1〉 ≥
0,∀x ∈ C, we get:

f̃τ (x′τ+1) ≥ f̃τ (xτ+1) +
τ + 1

2τ
‖xτ+1 − x′τ+1‖22. (21)

Now, we consider two cases:

• F − F ′ = {fτ}: Define f̃ ′τ (x) = 1
2‖x−xτ‖2 + ητf

′
τ (x) and let x′τ+1 = argminx∈C f̃

′
τ (x).

Then, similar to (21), we get:

f̃ ′τ (xτ+1) ≥ f̃ ′τ (x′τ+1) +
τ + 1

2τ
‖xτ+1 − x′τ+1‖22. (22)

Adding (21) and (22), we get:

‖xτ+1−x′τ+1‖22 ≤
1

α(τ + 1)
|fτ (x′τ+1)+f ′τ (xτ+1)−fτ (xτ+1)−f ′τ (x′τ+1)| ≤ 2L

α(τ + 1)
‖xτ+1−x′τ+1‖2.
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Lemma now follows using simplification.

• F−F ′ = {fi}, i < τ : Define f̃ ′τ (x) = 1
2‖x−x

′
τ‖2+ητfτ (x) and let x′τ+1 = argminx∈C f̃

′
τ (x).

Then, similar to (21), we get:

f̃ ′τ (xτ+1) ≥ f̃ ′τ (x′τ+1) +
τ + 1

2τ
‖xτ+1 − x′τ+1‖22. (23)

Adding (21) and (23), we get:

‖xτ+1−x′τ+1‖22 ≤
τ

τ + 1
|(xτ+1−x′τ+1) ·(xτ −x′τ )| ≤ τ

τ + 1
‖xτ+1−x′τ+1‖2‖xτ −x′τ‖2.

The lemma now follows using the induction hypothesis.

Using the above lemma and Theorem 1, privacy guarantee for PIGD follows directly.

Theorem 7 (PIGD Privacy) PIGD (see Algorithm 2) is (3ε, 2δ)-differentially private.

Next, the utility (regret) analysis of our PIGD algorithm follows directly using Theorem 2 along
with the regret bound of the IGD algorithm,RIGD(T ) = O((L

2

α + ||C||2) log T ).

Theorem 8 (PIGD Regret) Let L be the maximum Lipschitz constant and let α be the minimum
strong convexity parameter of any function ft in the function sequence F . Then the expected regret
of the private IGD algorithm over T steps is Õ(

√
dT ). Specifically,

E[
T∑
t=1

ft(x̂t)]−min
x∈C

T∑
t=1

ft(x)) ≤ C

(
(L2/α+ ‖C‖2)

√
d ln2 T

δ

ε

√
T

)
,

where C > 0 is a constant and d is the dimensionality of the output space.

In this section and in Appendix C, we provide transformation of two standard online learning al-
gorithms into corresponding privacy preserving algorithms with provable regret. In both these ex-
amples, we show low-sensitivity of the corresponding learning algorithms and use our analysis of
POCP to obtain privacy and utility bounds. We can obtain similar low-sensitivity bounds for several
other OCP algorithms such as Follow The Leader (FTL), Follow the Regularized Leader (FTRL)
etc, and hence use those methods with our POCP framework as well. Our low-sensitivity proofs
should be of independent interest as well, as they point to a connection between stability (sensi-
tivity) and low-regret (online learnability)—an active topic of research in the learning community
(Ross and Bagnell, 2011; Poggio et al., 2011).

Appendix C. Private GIGA Algorithm

In this section, we apply our general differential privacy framework to the Generalized Infinitesimal
Gradient Ascent (GIGA) algorithm (Zinkevich, 2003), which is one of the most popular algorithms
for OCP. GIGA is a simple extension of the classical projected gradient method to the OCP prob-
lem. Specifically, the iterates xt+1 are obtained by a projection onto the convex set C, of the output
of the gradient descent step xt − ηt 5 ft(xt) where ηt = 1/αt, and α is the minimum strong
convexity parameter of any function ft in F .
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Algorithm 3 Private GIGA (PGIGA)
1: Input: Cost function sequence F = 〈f1, · · · , fT 〉 and the convex set C
2: Parameter: Privacy parameters (ε, δ), Lipschitz continuity (L) and strong convexity (α) bound

on the function sequence F , tq = 2L2
G/α

2

3: Choose x1, . . . ,xtq−1 and x̂1, . . . , x̂tq−1 randomly from C, incurring a cost of
∑tq−1

t=1 ft(x̂t)
4: for t = tq to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: Step Size: ηt = 2

αt
7: GIGA Update: xt+1 ← argminx∈C

(
‖xt − ηt 5 ft(xt)‖22

)
8: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id), where β =

2GT 0.5+c

α

√
2
ε

(
ln T

δ +
√
ε

T 0.5+c

)
where c =

ln 1
2ε

ln(2/δ)

2 lnT

9: Output x̂t+1 = argminx∈C
(
‖x− x̃t+1‖22

)
10: end for

For the rest of this section, we assume that each of the function ft in the input function sequence
F are differentiable, Lipschitz continuous gradient and strongly convex. Note that this is a stricter
requirement than our private IGD algorithm where we require only the Lipschitz continuity of ft.

Proceeding similar to IGD, we obtain a privacy preserving version of the GIGA algorithm using
our generic POCP framework (See Algorithm 1). Algorithm 3 details the steps involved in our
Private GIGA (PGIGA) algorithm. Note that PGIGA has an additional step (Step 3) compared to
POCP (Algorithm 1). This step is required to prove the sensitivity bound in Lemma 5 given below.

Furthermore, we provide the privacy and regret guarantees for our PGIGA algorithm using
Theorem 1 and Theorem 2. To this end, we first show that GIGA satisfies the sensitivity assumption
mentioned in (1).

Lemma 5 (GIGA Sensitivity) Let α > 0 be the minimum strong convexity parameter of any func-
tion ft in the function sequence F . Also, let LG be the maximum Lipschitz continuity parameter of
the gradient of any function ft ∈ F and let G = maxτ ‖ 5 ft(x)‖2, ∀x ∈ C. Then, L2-sensitivity
(see Definition 3) of the GIGA algorithm is 2G

αt for the t-th iterate, where 1 ≤ t ≤ T .

Proof Let xt+1 and x̃′t+1 be the t-th iterates when GIGA is applied to F and F ′, respectively. Using
this notation, to prove the L2 sensitivity of GIGA, we need to show that:

‖xt+1 − x′t+1‖ ≤
2G

αt

We prove the above inequality using mathematical induction.
Base Case (1 ≤ t ≤ tq = 2L2

G/α
2 + 1): As x1, . . . ,xtq are selected randomly, their value doesn’t

depend on the underlying dataset. Hence, xt = x′t, ∀1 ≤ t ≤ tq.
Induction Step t = τ > 2L2

G/α
2 + 1: We consider two cases:
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• F − F ′ = {fτ}: Since the difference between F and F ′ is only the τ -th function, hence
xτ = x′τ . As C is a convex set, projection onto C always decreases distance, hence:

‖xτ+1 − x′τ+1‖2 ≤ ‖(xτ − ητ 5 fτ (xτ ))− (xτ − ητ 5 f ′τ (xτ ))‖2,
= ητ‖ 5 fτ (xτ )−5f ′τ (xτ )‖2,

≤ 2G

ατ
.

Hence, lemma holds in this case.

• F − F ′ = {fi}, i < τ : Again using convexity of C, we get:

‖xτ+1 − x′τ+1‖22 ≤ ‖(xτ − ητ 5 fτ (xτ ))− (x′τ − ητ 5 fτ (x′τ ))‖22,
= ‖xτ − x′τ‖22 + η2

τ‖ 5 fτ (xτ )−5fτ (x′τ )‖22
− 2ητ (xτ − x′τ )T (5fτ (xτ )−5fτ (x′τ )),

≤ (1 + η2
τL

2
G)‖xτ − x′τ‖22 − 2ητ (xτ − x′τ )T (5fτ (xτ )−5fτ (x′τ )),

(24)

where the last equation follows using Lipschitz continuity of 5ft. Now, using strong con-
vexity:

(xτ − x′τ )T (5fτ (xτ )−5fτ (x′τ )) ≥ α‖xτ − x′τ‖22.

Combining the above observation and the induction hypothesis with (24):

‖xτ+1 − x′τ+1‖22 ≤
(
1 + L2

Gη
2
τ − 2αητ

)
· 4G2

(τ − 1)2
. (25)

Lemma now follows by setting ητ = 2
ατ and τ > 2L2

G
α2 .

Using the lemma above with the privacy analysis of POCP (Theorem 1), the privacy guarantee for
PGIGAfollows immediately.

Theorem 9 (PGIGA Privacy) PGIGA (see Algorithm 3) is (3ε, 2δ)-differentially private.

Next, using the regret bound analysis for GIGA from Hazan et al. (2007) (Theorem 1) along with
Theorem 2, we get the following utility (regret bound) analysis for our PGIGA algorithm. Here
again, ignoring constants, the regret simplifies to Õ(

√
dT ).

Theorem 10 (PGIGA Regret) Let α > 0 be the minimum strong convexity parameter of any func-
tion ft in the function sequence F . Also, let LG be the maximum Lipschitz continuity parameter of
the gradient of any function ft ∈ F and let G = maxτ ‖ 5 ft(x)‖2, ∀x ∈ C. Then, the expected
regret of PGIGA satisfies

E[RPGIGA(T )] ≤
4
√
d(G/α+ ‖C‖2)G ln2 T

δ

ε

√
T +

2G2

α
(1 + log T ) +

2L2
GG||C||2
α2

where ||C||2 is the diameter of the convex set C and d is the dimensionality of the output space.
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Algorithm 4 Private Follow the Leader for Quadratic Cost (PQFTL)
1: Input: cost function sequence F = 〈f1, · · · , fT 〉, where each ft(x; yt,vt) = (yt − vTt x)2 +

α
2 ||x||

2
2

2: Parameter: privacy parameters (ε, δ), R = max(maxt ||vt||2,maxt |yt|)
3: Initialize x̂1 = 0d

4: Initialize empty binary trees BV and Bu, a data structure to compute V̂t and ût—differentially
private versions of Vt and ut

5: for t = 1 to T − 1 do
6: Cost: Lt(x̂t) = ft(x̂t) = (yt − vTt x̂t)

2 + α
2 ||x̂t||

2
2

7: (V̂t, B
V )← PrivateSum(vtv

T
t , B

V , t, R2, ε2 ,
δ
2 , T ) (see Algorithm 5)

8: (ût, B
u)← PrivateSum(ytvt, B

u, t, R, ε2 ,
δ
2 , T ) (see Algorithm 5)

9: QFTL Update: x̂t+1 ← (tαI + V̂t)
−1(ût)

10: Output x̂t+1

11: end for

Proof Observe that for the first tq =
2L2

G
α2 iterations PGIGA outputs random samples from C. The

additional regret incurred during this time is bounded by a constant (w.r.t. T) that appears as the
last term in the regret bound given above. For iterations t ≥ tq, the proof follows directly by using
Theorem 2 and regret bound of GIGA. Note that we use a slightly modified step-size ηt = 2/αt,
instead of the standard ηt = 1/αt. This difference in the step size increases the regret of GIGA as
given by Hazan et al. (2007) by a factor of 2.

Appendix D. Logarithmic regret for Quadratic Cost Functions: Appendix

D.1. Privacy and Utility Analysis of PQFTL for Quadratic Cost Functions

Proof [Proof of Theorem 3] Using Theorem 11 (stated in Section D.2), both V̂t and ût are each
( ε2 ,

δ
2)-differentially private w.r.t. vt and yt, ∀t and hence w.r.t. the function sequence F. Now, x̂t+1

depends on F only through [V̂t, ût]. Hence, the theorem follows using a standard composition ar-
gument (Dwork et al., 2006b; Dwork and Lei, 2009).

Proof [Proof of Theorem 4] Using definition of regret,

RPQFTL =

T∑
t=1

ft(x̂t)− argmin
x∗

T∑
t=1

ft(x
∗) =

T∑
t=1

ft(xt)− argmin
x∗

T∑
t=1

ft(x
∗) +

T∑
t=1

(ft(x̂t)− ft(xt)),

≤ RQFTL(T ) +

T∑
t=1

(ft(x̂t)− ft(xt)),

≤ R4(1 + 2R/α)2

α
log T +

T∑
t=1

(ft(x̂t)− ft(xt)),

(26)
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where last inequality follows using (5).
Now, as ft(x) is a (R+ α)-Lipschitz continuous gradient function,

ft(x̂t)− ft(xt) ≤ ((vTt xt − yt)vt + αxt)
T (x̂t − xt) +

R+ α

2
‖x̂t − xt‖2,

≤ R(2R2/α+R+ 2)‖x̂t − xt‖+
R+ α

2
‖x̂t − xt‖2, (27)

where last inequality follows using Cauchy-Schwarz inequality and the fact that ‖xt‖2 ≤ 2R/α.
We now bound ||x̂t+1 − xt+1||2. Let V̂t = Vt + At and ût = ut + βt where At and βt are the

noise additions introduced by the Private Sum algorithm (Algorithm 5).
Now, from the step 9 of PQFTL (Algorithm 4) we have,

(V̂t + tαI)x̂t+1 = ût ⇔ (
1

t
V̂t + αI)x̂t+1 =

1

t
ût. (28)

Similarly, using QFTL update (see (4)) we have,

(
1

t
Vt + αI)xt+1 =

1

t
ut. (29)

Using (28) and (29):

(
1

t
V̂t + αI)(x̂t+1 − xt+1) =

1

t
βt −

1

t
Atxt+1. (30)

Now, using V̂t = Vt +At and the triangle inequality we have,

||(1

t
V̂t + αI)(x̂t+1 − xt+1)||2 ≥ ||(

1

t
Vt + αI)(x̂t+1 − xt+1)||2 − ||

1

t
At(x̂t+1 − xt+1)||2 (31)

Furthermore,

||1
t
At(x̂t+1 − xt+1)||2 ≤

1

t
||At||2||x̂t+1 − xt+1||2 (32)

Thus by combining (30), (31), (32) and using the fact that the smallest eigenvalue of (1
tVt + αI) is

lower-bounded by α,

1

t
||βt||2 +

1

t
‖At‖2‖xt+1‖2 ≥ |α−

||At||2
t
||x̂t+1 − xt+1||2 (33)

Now using Theorem 11 each entry of the matrix At is drawn from N (0, σ2 log T ) for σ2 =
R2

ε2
log2 T log log T

δ . Thus the spectral norm of At, ||At||2 is bounded by 3σ
√
d with probability

at least 1− exp(−d/2). Similarly, ||βt||2 ≤ 3σ
√
d, with probability at least 1− exp(−d/2). Also,

||xt||2 ≤ 2R/α. Using the above observation with (33),

||x̂t+1 − xt+1||2 ≤
σ
√
d

t
· 3 + 6R/α

|α− 6σ
√
dR

αt |
. (34)

Using (26), (27), and (34), we get (with probability at least 1− exp(−d/2)):

RPQFTL(T ) ≤ R4(1 + 2R/α)2

α
log T

+ 3
√
dR(2R2/α+R+ 2)(1 + 2R/α)(1 + log T )

1

ε

√
log T log

√
log T

δ
. (35)
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(a) (b)

Figure 1: Binary Tree for T = 8. Each node in the tree has noise drawn according to N (0, σ2Id)
including the leaves. The label of any node is obtained by concatenating the labels of the
edges on the unique path joining the root to the node. (a): w1,w2, ..,w7 are the input
vectors that have arrived till time step t = 7. Each internal node is obtained by adding
noise from N (0, σ2Id) to the sum of input vectors in the sub-tree rooted at the node. To
return the partial sum at t = 7, return the sum of the nodes in thick red. The dotted nodes
are unpopulated. (b): figure depicts the change in the data structure after the arrival of
w8. Now the partial sum at t = 8 is obtained by using just one node denoted in thick red.

Hence w.h.p.,

RPQFTL(T ) = Õ

(
R6 log 1

δ

εα3

√
d log1.5 T

)
.

D.2. Computing Partial Sums Privately

In this section, we consider the problem of computing partial sums while preserving differential
privacy. Formally, let D = 〈w1,w2, · · · ,wT 〉 be a sequence of vectors, where at each time step t,
a vector wt ∈ Rd is provided. Now, the goal is to output partial sums Wt =

∑t
τ=1wτ at each time

step t, without compromising the privacy of the data vectors in D. Note that by treating a matrix
as a long vector obtained by concatenation of its rows, we can use the same approach to compute
partial sums of matrices as well.

Now, notice that the L2-sensitivity of each partial sum is O(R) (R = maxt ‖wt‖2), as changing
one wτ can change any partial sum by an additive factor of 2R. Hence, a naı̈ve method is to add

O(R

√
log 1

δ

ε ) noise at t-th to obtain (ε, δ)-privacy for the output at a fixed step t. Using standard
composition argument, the overall privacy of such a scheme over T iterations would be (Tε, Tδ).

Hence, to get a constant (ε′, δ′) privacy, we would need to add O(RT

√
log T

δ′
ε′ ) noise. In contrast,

our method, which is based on a generalization of the technique in Dwork et al. (2010a), is able

to provide the same level of privacy by adding only O(R log T

√
log log T

δ′
ε′ ) noise. We first provide a

high level description of the algorithm and then provide a detailed privacy and utility analysis.
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Algorithm 5 Private Sum(wt,B, t, R, ε, δ, T )
Require: Data vector wt, current binary tree B, current vector number t, R a bound on ||wt||2,

privacy parameters ε and δ, total number of vectors T , dimensionality of vectors d
1: if t = 1 then
2: Initialize the binary tree B over T leaves with all nodes
3: σ2 ← R2

ε2
log2 T log log T

δ
4: end if
5: st ← the string representation of t in binary
6: Bst ← wt //Populate the st-th entry of B
7: B̂st ← Bst + bst , where bst ∼ N (0, σ2Id)
8: Let St is the set of all ancestors s of st in the tree B, such that all the leaves in the sub-tree

rooted at s are already populated
9: for all s ∈ St do

10: Bs ← Bs◦0 + Bs◦1 // Bs is the value at node with label s (without noise)
11: B̂s ← Bs + bs, where bs ∼ N (0, σ2Id) // B̂s is the noisy value at node with

label s
12: end for
13: Find the minimum set of already populated nodes in B that can compute

∑t
τ=1 wτ . Formally,

starting from the left, for each bit position i in st such that st(i) = 1, form strings sq =
st(1) ◦ ... ◦ st(i− 1) ◦ 0 of length i. Let s1, s2, ..., sQ be all such strings, where Q ≤ log T . For
example, if st = 110 then the strings obtained this way are: 0 and 10

14: Output: (Ŵt =
∑Q

q=1 B̂sq ,B)

Following Dwork et al. (2010a), we first create a binary tree B where each leaf node corresponds
to an input vector in D. We denote a node at level i (root being at level 0) with strings in {0, 1}i in
the following way: For a given node in level i with label s ∈ {0, 1}i, the left child of s is denoted
with the label s◦0 and the right child is denoted with s◦1. Here the operator ◦ denotes concatenation
of strings. Also, the root is labeled with the empty string .

Now, each node s in the tree B contains two values: Bs and B̂s, where Bs is obtained by the
summation of vectors in each of the leaves of the sub-tree rooted at s, i.e., Bs =

∑
j:j=s◦r

r∈{0,1}k−i
wj .

Also, B̂s = Bs + bs is a perturbation of Bs, bs ∼ N (0, σ2Id), and σ is as given in Lemma 6.
A node in the tree is populated only when all the vectors that form the leaves of the sub-tree

rooted at the node have arrived. Hence, at time instant t we receive vector wt and populate the
nodes in the tree B for which all the leaves in the sub-tree rooted at them have arrived. To populate
a node labeled s, we compute Bs = Bs◦0 + Bs◦1, the sum of the corresponding values at its two
children in the tree and also B̂s = Bs + bs, bs ∼ N (0, σ2Id).

As we prove below in Lemma 6, for a i-th level node which is populated and has label s ∈
{0, 1}i, B̂s contains an (ε, δ)-private sum of the 2k−i vectors that correspond to the leaves of the
sub-tree rooted at s. Now, to output a differentially private partial sum at time step t, we add up
the perturbed values at the highest possible nodes that can be used to compute the sum. Note, that
such a summation would have at most one node at each level. See Figure 1 for an illustration. We
provide a pseudo-code of our method in Algorithm 5.
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Theorem 11 states privacy as well as utility guarantees of our partial sums method (Algorithm 5).
We first provide a technical lemma which we later use in our proof of Theorem 11.

Let B̂(D) denote the set of all perturbed node values B̂s, ∀s obtained by applying Algorithm 5
on dataset D. Also, D and D′ be two datasets that differ in at most one entry, say wt.

Lemma 6 Let B̂s(D) = Bs(D) + bs, where bs ∼ N (0, σ2Id) for σ2 = R2

ε2
log2 T log log T

δ . Then,
for any t and any Θs ∈ Rd,

pdf[B̂s(D) = Θs] ≤ e
ε

log T pdf[B̂s(D
′) = Θs] +

δ

log T

where D and D′ are two datasets differing in exactly one entry.

Proof Let ∆ = Bs(D)−Bs(D
′). Note that ‖∆‖2 ≤ R. Now, consider the following ratio:

pdf[B̂s(D) = Θs]

pdf[B̂s(D′) = Θs]
=

exp
||Θs−Bs(D)||22

2σ2

exp
||Θs−Bs(D′)||22

2σ2

= exp
||∆||22 − 2∆T (Bs(D

′)−Θs)

2σ2
,

≤ exp
R2 + 2|∆T (Bs(D

′)−Θs)|
2σ2

. (36)

Now, ∆T (Bs(D
′) − Θs) follows N (0, ||∆||22σ2). For a random variable V ∼ N (0, 1), and for all

γ > 1, pdf[|V | > γ] ≤ e−γ2/2 ( Mill’s inequality ). Thus,

pdf[|∆T (Bs(D
′)−Θs)| ≥ Rσγ] ≤ pdf[|∆T (Bs(D

′)−Θs)| ≥ ||∆||2σγ] ≤ exp(
−γ2

2
)

Lemma follows by setting γ = 2
√

ln log T
δ in the equation above and combining it with (36).

Next, we provide formal privacy and utility guarantees for Algorithm 5. Our proof is inspired by a
technique developed by Dwork et al. (2010a).

Theorem 11 (Algorithm 5: Privacy and Utility) Let D = 〈w1, · · · ,wT 〉 be a dataset of vectors
with wt ∈ Rd being provided online at each time step t. Let R = maxi≤T ||wi||2 and σ2 =
R2

ε2
log2 T log log T

δ . Let Wt =
∑t

τ=1 wτ be the partial sum of the entries in the dataset D till
the t-th entry. Then, ∀t ∈ [T ], following are true for the output of Algorithm 5 with parameters
(t, ε, δ, R, T ).

• Privacy: The output Ŵt is (ε, δ)-differentially private.

• Utility: The output Ŵt has the following distribution: Ŵt ∼ N (Wt, kσ
2Id), where k ≤

dlog T e.

Proof Utility: Note that Line 14 of the Algorithm 5 adds at most dlog T e vectors B̂s (correspond-
ing to the chosen nodes of the binary tree B). Now each of the selected vectors B̂s is generated by
adding a noise bs ∼ N (0, σ2Id). Furthermore, each bs is generated independent of other noise vec-
tors. Hence, the total noise in the output partial sum Ŵt has the following distribution: N (0, kσ2Id),
where k ≤ dlog T e.
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Algorithm 6 Private Offline Learning (POL)
1: Input: Input dataset D = 〈z1, · · · , zT 〉 and the convex set C
2: Parameter: Privacy parameters (εp, δ), generalization error parameter εg, Lipschitz bound L

on the loss function `, bound on ‖x∗‖2
3: If C = Rd then set C = {x : x ∈ Rd, ‖x‖2 ≤ ‖x∗‖2}.
4: Choose x1 randomly from C
5: Set α← εg

‖x∗‖22
6: Initialize s = x1

7: for t = 1 to T − 1 do
8: Learning rate: ηt = 1

αt
9: IGD Update: xt+1 ← argminx∈C

(
1
2‖x− xt‖22 + ηt(`(x; zt) + α

2 ‖x‖
2
2)
)

10: Store sum: s← s + xt+1

11: end for
12: Average: x̃← s

T

13: Noise Addition: x̄← x̃ + b, where b ∼ N (0d, β2Id) and β = 2
√

2(L+α‖x∗‖2) lnT
Tεp

√
ln 1

δ + εp

14: Output x̂ = argminx∈C
(
‖x− x̄‖22

)
Privacy: First, we prove that B̂(D) is (ε, δ)-differentially private. As defined above, let D and

D′ be the two datasets (sequences of input vectors) that differ in exactly one entry. Let S ⊂ R2T−1.
Now,

Pr[B̂(D) ∈ S]

Pr[B̂(D′) ∈ S]
=

∫
Θ∈S pdf[B̂(D) = Θ]∫
Θ∈S pdf[B̂(D′) = Θ]

.

Note that noise (bs) at each node s is generated independently of all the other nodes. Hence,

pdf[B̂(D) = Θ]

pdf[B̂(D′) = Θ]
=

Πs pdf[B̂s(D) = Θs]

Πs pdf[B̂s(D′) = Θs]
.

Since D and D′ differ in exactly one entry, B(D) and B(D′) can differ in at most log T nodes.
Thus at most log T ratios in the above product can be different from one. Now, by using Lemma 6
to bound each of these ratios and then using composability argument Dwork et al. (2006b); Dwork
and Lei (2009) over the log T nodes which have differing values in B(D) and B(D′),

Pr[B̂(D) = Θ] ≤ eε Pr[B̂(D′) ∈ Θ] + δ,

i.e., B̂(D) is (ε, δ)-differentially private.
Now, each partial sum is just a deterministic function of B̂(D). Hence, (ε, δ)-differential pri-

vacy of each partial sum follows directly by (ε, δ)-differential privacy of B̂(D).

Appendix E. Offline Learning
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E.1. Proof of Theorem 5

Proof Recall that to prove differential privacy, one needs to show that changing one training point
from the dataset D doesn’t lead to significant change in the algorithm’s output x̂ which is a pertur-
bation of x̃ = 1

T

∑T
t=1 xt. Hence, we need to show that the L2-sensitivity (see Definition 3) of x̃ is

low.
Now let x′1, · · · ,x′T be the sequence of outputs produced by the IGD algorithm used in Al-

gorithm 6 when executed on a dataset D′ which differs in exactly one entry from D. To estimate
the sensitivity of x̃, we need to bound || 1T

∑T
t=1(xt − x′t)||2. Now, using triangle inequality and

Lemma 4, we get:

|| 1
T

T∑
t=1

(xt − x′t)||2 ≤
1

T

T∑
t=1

‖xt − x′t‖2 ≤
1

T

T∑
t=2

2L′

t− 1
≤ 2L′ lnT

T
, (37)

where L′ is the maximum Lipschitz continuity coefficient of `(x, zt) + α
2 ‖x‖

2
2, ∀t over the set C.

Using the fact that ‖C‖2 = ‖x∗‖2, we obtain L′ = L+ α‖x∗‖2.
The theorem now follows using L2-sensitivity of x̃ (see (37)) and an argument similar to that of

the proof for Lemma 1.

E.2. Proof of Theorem 6

Before proving the utility guarantee, we first rewrite the approximation error incurred by x̃ =
1
T

∑T
t=1 xt, as derived by Kakade and Tewari (2008).

Theorem 12 (Approximation Error in Risk Minimization (Eq. 6) Kakade and Tewari (2008))
LetRA(T ) be the regret for the online algorithm A. Then with probability at least 1− γ,

Ez∼DZ [`(x̃; z)]− Ez∼DZ [`(x∗; z)] ≤ α

2
‖x∗‖2 +

RA(T )

T
+

4

T

√
L′2RA(T ) ln(4 lnT

γ )

α

+
max{16L′2

α , 6} ln(4 lnT
γ )

T

where L′ = L + α‖x∗‖2, L is the Lipschitz continuity bound on the loss function ` and α is the
strong convexity parameter of the function sequence F .

With this result in place, we now proceed to the proof for Theorem 6.
Proof To prove the result, we upper bound Ez∼DZ [`(x̂; z)]− Ez∼DZ [`(x∗; z)] as:

Ez∼DZ [`(x̂; z)]− Ez∼DZ [`(x∗; z)] = Ez∼DZ [`(x̂; z)]− Ez∼DZ [`(x̃; z)]

+ Ez∼DZ [`(x̃; z)]− Ez∼DZ [`(x∗; z)],

≤ L||x̂− x̃||2 + Ez∼DZ [`(x̃; z)− `(x∗; z)],
= L||b||2 + Ez∼DZ [`(x̃; z)− `(x∗; z)], (38)

where the second inequality follows using Lipschitz continuity of ` and the last equality follows by
the noise addition step (Step 13) of Algorithm 6.
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From the tail bound on the norm of a Gaussian random vector, it follows that with probability
at least 1− γ

2 ,

||b||2 ≤ 3
√
dβ

√
ln

1

γ
≤ 12

√
dL′

lnT

Tεp

√
ln

1

γ
ln

1

δ
, (39)

where L′ = L + εg/‖x∗‖2, L is the Lipschitz continuity parameter of `. Note that in Line 5 of
Algorithm 6 we set the strong convexity parameter α =

εg
||x∗||22

.
Now, regret bound of IGD is given by:

RIGD(T ) = O(||x∗||2 +
L′2

α
lnT ), (40)

Thus, by combining (38), (39), (40), and Theorem 12, with probability at least 1− γ,

Ez∼DZ [`(x̂; z)]−min
x∈C

Ez∼DZ [`(x; z)] ≤ εg
2

+ C

√
dL(L+

εg
‖x∗‖2 ) lnT

√
ln 1

γ ln 1
δ

εpT

+ C
(L+

εg
‖x∗‖2 )2‖x∗‖22 lnT ln lnT

γ

εgT
,

where C > 0 is a global constant.
The result now follows by bounding the RHS above by εg.

Appendix F. POCP with Weak Dependence on T

In this section, we propose our modified POCP method with weaker dependence on T . As men-
tioned in Section 6.2, we use a doubling trick to reduce dependence on T . At each step t, we

add noise with variance β = λA

√
2blog2 tc+1

ε

(
ln 2blog2 tc

δ +
√

ε
2blog2 tc

)
. This noise is enough to

guarantee (
√

ε
2blog2 tc

, δ
2blog2 tc

)-differential privacy for each iterate xt+1. That is in the first step,

we guarantee (
√
ε, δ) differential privacy and in the next two steps, (

√
ε/2, δ/2) differential pri-

vacy, and so on. Now, using arguments similar to Theorem 1, we can obtain privacy guarantee for
our modified OCP algorithm (see Algorithm 7) as well. We formalize our privacy guarantee for
Algorithm 7 in the theorem below.

Theorem 13 Algorithm 7 is (3ε log2 T, δ log2 T + 2
T 2ε )-differentially private.

Proof The proof follows the general outline of the proof of Theorem 1. However, the major
difference in this case is that the output in t-th iteration is guaranteed to be (

√
ε

2blog2 tc
, δ

2blog2 tc
)-

differentially private. Proceeding as in the proof of Theorem 1, define Gt+1 as:

b ∈ Gt+1 iff
∣∣bT∆xt+1

∣∣ ≤ βλA
t2

√
2 ln

2blog2 tc

δ
, (41)
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Algorithm 7 Private OCP Algorithm with weak dependence on T
1: Input: OCP algorithm A, cost function sequence F = 〈f1, · · · , fT 〉 and the convex set C
2: Parameter: privacy parameters (ε, δ)
3: Choose x1 and x̂1 randomly from C
4: for t = 1 to T − 1 do
5: Cost: Lt(x̂t) = ft(x̂t)
6: OCP Update: xt+1 ← A(〈f1, . . . , ft〉, 〈x1, . . . ,xt〉, C)
7: Noise Addition: x̃t+1 ← xt+1 + bt+1, bt+1 ∼ N (0d, β

2

t2
Id), where β =

λA

√
2blog2 tc+1

ε

(
ln 2blog2 tc

δ +
√

ε
2blog2 tc

)
8: Output x̂t+1 = argminx∈C

(
‖x− x̃t+1‖22

)
9: end for

where ∆xt+1 = xt+1 − x′t+1 for 1 ≤ t ≤ T . Just as in the proof of Theorem 1, for each time step
1 ≤ t ≤ T ,

Pr[bt+1 6∈ Gt+1] ≤ δ

2blog2 tc
. (42)

Now, by a union bound, the probability that the output vectors bt+1 ∈ Gt for every 1 ≤ t ≤ T is
at least 1 −

∑T
t=1

δ
2blog2 tc

= 1 − δ log2 T . Now, define the sequence of functions with ξ being any
event in the event space,

Zt+1(at+1; ξ) = ln

(
pdf[x̃t+1 = at+1 | ξ]
pdf[x̃′t+1 = at+1 | ξ]

)
,

where at+1 ∈ Rd. Recall that x̃t+1 = xt+1 + bt+1 and x̃′t+1 = x′t+1 + bt+1. Hence, the pdfs in
the above equation are associated with the random choice of the noise vectors bt+1 which is drawn
from a multivariate Gaussian.

Using Lemma 1, we have that at each time step t, the output x̃t+1 of Algorithm 7 is (
√
ε

T 0.5+c ,
δ
T )-

differentially private. That is, for 1 ≤ t ≤ T ,

−
√

ε

2blog2 tc
≤ Zt+1(at+1; bt+1 ∈ Gt+1) = ln

(
pdf[x̃t+1 = at+1 | bt+1 ∈ Gt+1]

pdf[x̃′t+1 = at+1 | bt+1 ∈ Gt+1]

)
≤
√

ε

2blog2 tc
.

Let L(x̃2, · · · , x̃T+1; ξ) =
∑T

t=1 Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1). Since each bt+1

is sampled independently and the randomness in both x̃t+1 and Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈
GT+1) is only due to bt+1, therefore: i) for 1 ≤ t ≤ T , Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) =
Zt+1(x̃t+1; bt+1 ∈ Gt+1), and ii)each entry in the sequence x̃t+1s for 1 ≤ t ≤ T and each entry in
the sequence Zt+1(x̃t+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1)s for 1 ≤ t ≤ T are independent. Now, using
independence of x̃t+1’s and the bound given above,

Ex̃2,··· ,x̃T+1
[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1)] =

T∑
t=1

Ebt+1 [Zt+1(x̃t+1; bt+1 ∈ Gt+1)]

≤
T∑
t=1

2ε

2blog2 tc
≤ 2ε log2 T.
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Note also that for every 1 ≤ t ≤ T and at+1 ∈ Rd, |Zt+1(at+1; bt+1 ∈ Gt+1)| ≤
√

ε
2blog2 tc

.
By the Azuma-Hoeffding inequality,

Pr[L(x̃2, · · · , x̃T+1; b2 ∈ G2 · · · , bT+1 ∈ GT+1) ≥ 3ε log2 T ] ≤ 2 exp

(
−2ε2 log2

2 T

ε log2 T

)
≤ 2 exp(−2ε log2 T ).

Hence, with probability at least 1− 2T−2ε over the draws of at+1 ∈ Rd from x̃t+1, we have:

ΠT
t=1 pdf(x̃t+1 = at+1 | bt+1 ∈ Gt+1) ≤ e3εΠT

t=1 pdf(x̃′t+1 = at+1 | bt+1 ∈ Gt+1).

Now, Pr[∃t s.t. bt+1 /∈ Gt+1] ≤ δ log2 T . Thus, again using a union bound, we have the required
result.

Regret of the modified POCP algorithm: Note that, in the modified POCP algorithm, the vari-
ance of the noise added to xt+1, at time-step t, is always less than the variance of the corresponding
noise added in the POCP algorithm. Here, the regret incurred by our modified POCP algorithm
(see Algorithm 7) is bounded by the regret incurred by the original POCP algorithm.

Appendix G. Empirical Results

In this section we study the privacy and utility (regret) trade-offs for two of our private OCP
approaches under different practical settings. Specifically, we consider the practically important
problem of online linear regression and online logistic regression. For online linear regression
we apply our PQFTL approach (see Algorithm 4) and for online logistic regression we apply our
PIGD method (see Algorithm 2). For both the problems, we compare our method against the of-
fline optimal and the non-private online version and show the regret/accuracy trade-off with privacy
parameters. We show that our methods learn a meaningful hypothesis (a hyperplane for both the
problems) while privacy of the data is provably preserved due to our differential privacy guarantees.

G.1. Online Linear Regression (OLR)

Online linear regression (OLR) requires solving for xt at each step so that squared error in the
prediction is minimized. Specifically, we need to find xt in an online fashion such that

∑
t(yt −

gTt xt)
2 +α‖xt‖2 is minimized. OLR is a practically important learning problem and have a variety

of practical applications in domains such as finance (Kivinen and Warmuth, 1995).
Now, note that we can directly apply our PQFTL approach (see Section 4) to this problem to

obtain differentially private iterates xt with the regret guaranteed to be logarithmic. Here, we apply
our PQFTL algorithm for the OLR problem on a synthetic dataset as well as a benchmark real-
world dataset, namely “Year Prediction” (Frank and Asuncion, 2010). For the synthetic dataset,
we fix x∗, generate data points gt of dimensionality d = 10 by sampling a multivariate Gaussian
distribution and obtain the target yt = gTt x

∗ + η, where η is random Gaussian noise with standard
variance 0.01. We generate T = 100, 000 such input points and targets. The Year Prediction dataset
is 90-dimensional and contains around 500, 000 data points. For both the datasets, we set α = 1 and
at each step apply our PQFTL algorithm. We measure the optimal offline solution using standard
ridge regression and also compute regret obtained by the non-private FTL algorithm.

Figure 2 (a) and (b) shows the average regret (i.e., regret normalized by the number of entries
T ) incurred by PQFTL for different privacy level ε on synthetic and Year Prediction data. Note that
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Method Accuracy
Non-private IGD 68.1%

PIGD (ε = 20, δ = 0.01) 66.3%
PIGD (ε = 10, δ = 0.01) 62.7%
PIGD (ε = 1, δ = 0.01) 59.4%

PIGD (ε = 0.1, δ = 0.01) 58.3%

(a) (b) (c)

Figure 2: Privacy vs Regret. (a), (b): Average regret (normalized by the number of iterations)
incurred by FTL and PQFTL with different levels of privacy ε on the synthetic 10-
dimensional data and Year Prediction Data. Note that the regret is plotted on a log-scale.
PQFTL obtained regret of the order of 1e − 2 even with high privacy level of ε = 0.01.
(c): Classification accuracy obtained by IGD and PIGD algorithm on Forest-covertype
dataset. PIGD learns a meaningful classifier while providing privacy guarantees, espe-
cially for low privacy levels, i.e., high ε.

the y-axis is on the log-scale. Clearly, our PQFTL algorithm obtains low-regret even for reasonable
high privacy levels (ε = 0.01). Furthermore, the regret gets closer to the regret obtained by the
non-private algorithm as privacy requirements are made weaker.

G.2. Online Logistic Regression

Online logistic regression is a variant of the online linear regression where the cost function is
logistic loss rather than squared error. Logistic regression is a popular method to learn classifiers,
and has been shown to be successful for many practical problems. In this experiment, we apply our
private IGDalgorithm to the online logistic regression problem. To this end, we use the standard
Forest cover-type dataset, a dataset with two classes, 54-dimensional feature vectors and 581, 012
data points. We select 10% data points for testing purpose and run our Private IGD algorithm on the
remaining data points. Figure 2 (c) shows classification accuracy (averaged over 10 runs) obtained
by IGD and our PIGD algorithm for different privacy levels. Clearly, our algorithm is able to learn
a reasonable classifier from the dataset in a private manner. Note that our regret bound for PIGD
method is O(

√
T ), hence, it would require more data points to reduce regret to very small values,

which is reflected by a drop in classification accuracy as ε decreases.
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