Electrical Engineering and Systems Science > Systems and Control
[Submitted on 27 Mar 2024]
Title:Differentially Private Dual Gradient Tracking for Distributed Resource Allocation
View PDF HTML (experimental)Abstract:This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents' decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.