Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Mar 2023]
Title:Diff-ID: An Explainable Identity Difference Quantification Framework for DeepFake Detection
View PDFAbstract:Despite the fact that DeepFake forgery detection algorithms have achieved impressive performance on known manipulations, they often face disastrous performance degradation when generalized to an unseen manipulation. Some recent works show improvement in generalization but rely on features fragile to image distortions such as compression. To this end, we propose Diff-ID, a concise and effective approach that explains and measures the identity loss induced by facial manipulations. When testing on an image of a specific person, Diff-ID utilizes an authentic image of that person as a reference and aligns them to the same identity-insensitive attribute feature space by applying a face-swapping generator. We then visualize the identity loss between the test and the reference image from the image differences of the aligned pairs, and design a custom metric to quantify the identity loss. The metric is then proved to be effective in distinguishing the forgery images from the real ones. Extensive experiments show that our approach achieves high detection performance on DeepFake images and state-of-the-art generalization ability to unknown forgery methods, while also being robust to image distortions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.