skip to main content
research-article

Detailed spatio-temporal reconstruction of eyelids

Published: 27 July 2015 Publication History

Abstract

In recent years we have seen numerous improvements on 3D scanning and tracking of human faces, greatly advancing the creation of digital doubles for film and video games. However, despite the high-resolution quality of the reconstruction approaches available, current methods are unable to capture one of the most important regions of the face - the eye region. In this work we present the first method for detailed spatio-temporal reconstruction of eyelids. Tracking and reconstructing eyelids is extremely challenging, as this region exhibits very complex and unique skin deformation where skin is folded under while opening the eye. Furthermore, eyelids are often only partially visible and obstructed due to self-occlusion and eyelashes. Our approach is to combine a geometric deformation model with image data, leveraging multi-view stereo, optical flow, contour tracking and wrinkle detection from local skin appearance. Our deformation model serves as a prior that enables reconstruction of eyelids even under strong self-occlusions caused by rolling and folding skin as the eye opens and closes. The output is a person-specific, time-varying eyelid reconstruction with anatomically plausible deformations. Our high-resolution detailed eyelids couple naturally with current facial performance capture approaches. As a result, our method can largely increase the fidelity of facial capture and the creation of digital doubles.

Supplementary Material

ZIP File (a44-bermano.zip)
Supplemental files

References

[1]
Alexander, O., Fyffe, G., Busch, J., Yu, X., Ichikari, R., Jones, A., Debevec, P., Jimenez, J., Danvoye, E., Antionazzi, B., et al. 2013. Digital ira: creating a real-time photoreal digital actor. In ACM SIGGRAPH 2013 Posters.
[2]
Bando, Y., Kuratate, T., and Nishita, T. 2002. A simple method for modeling wrinkles on human skin. In Proc. Pacific Graphics.
[3]
Beeler, T., and Bradley, D. 2014. Rigid stabilization of facial expressions. ACM Trans. Graph. 33, 4 (July), 44:1--44:9.
[4]
Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH).
[5]
Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 75:1--75:10.
[6]
Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., and Gross, M. 2012. Coupled 3d reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4 (July), 117:1--117:10.
[7]
Bérard, P., Bradley, D., Nitti, M., Beeler, T., and Gross, M. 2014. High-quality capture of eyes. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 33, 6.
[8]
Bermano, A. H., Bradley, D., Beeler, T., Zund, F., Nowrouzezahrai, D., Baran, I., Sorkine-Hornung, O., Pfister, H., Sumner, R. W., Bickel, B., and Gross, M. 2014. Facial performance enhancement using dynamic shape space analysis. ACM Trans. Graphics 33, 2.
[9]
Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Trans. Graphics (Proc. SIGGRAPH), 33.
[10]
Bickel, B., Lang, M., Botsch, M., Otaduy, M. A., and Gross, M. 2008. Pose-space animation and transfer of facial details. In Proc. SCA, 57--66.
[11]
Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. Visualization and Computer Graphics, IEEE Transactions on 14, 1, 213--230.
[12]
Bouaziz, S., Wang, Y., and Pauly, M. 2013. Online modeling for realtime facial animation. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 40:1--40:10.
[13]
Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM Trans. Graphics (Proc. SIGGRAPH), 99.
[14]
Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 41:1--41:10.
[15]
Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In ECCV. Springer, 25--36.
[16]
Canny, J. 1986. A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 6, 679--698.
[17]
Cao, X., Wei, Y., Wen, F., and Sun, J. 2012. Face alignment by explicit shape regression. In IEEE CVPR, 2887--2894.
[18]
Cao, C., Weng, Y., Lin, S., and Zhou, K. 2013. 3d shape regression for real-time facial animation. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 41:1--41:10.
[19]
Cao, C., Hou, Q., and Zhou, K. 2014. Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graphics (Proc. SIGGRAPH) 33, 4, 43:1--43:10.
[20]
Cootes, T. F., Edwards, G. J., and Taylor, C. J. 2001. Active appearance models. IEEE Transactions on pattern analysis and machine intelligence 23, 6, 681--685.
[21]
Deng, Z., Lewis, J., and Neumann, U. 2005. Automated eye motion using texture synthesis. CGA 25, 2.
[22]
Dutreve, L., Meyer, A., and Bouakaz, S. 2011. Easy acquisition and real-time animation of facial wrinkles. Comput. Animat. Virtual Worlds 22, 2-3, 169--176.
[23]
Feng, W.-W., Yu, Y., and Kim, B.-U. 2010. A deformation transformer for real-time cloth animation. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 4, 108:1--108:9.
[24]
François, G., Gautron, P., Breton, G., and Bouatouch, K. 2009. Image-based modeling of the human eye. IEEE TVCG 15, 5, 815--827.
[25]
Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. In ACM Trans. Graphics (Proc. SIGGRAPH Asia), vol. 32, 158:1--158:10.
[26]
Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 129:1--129:10.
[27]
Huang, H., Chai, J., Tong, X., and Wu, H.-T. 2011. Leveraging motion capture and 3d scanning for high-fidelity facial performance acquisition. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 74:1--74:10.
[28]
Kähler, K., Haber, J., Yamauchi, H., and Seidel, H.-P. 2002. Head shop: Generating animated head models with anatomical structure. In Proc. SCA, 55--63.
[29]
Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., and O'Brien, J. F. 2013. Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 87:1--87:8.
[30]
Klaudiny, M., and Hilton, A. 2012. High-detail 3d capture and non-sequential alignment of facial performance. In 3DIM-PVT.
[31]
Larboulette, C., and Cani, M.-P. 2004. Real-time dynamic wrinkles. In Proc. Computer Graphics Int., 522--525.
[32]
Le, B. H., Ma, X., and Deng, Z. 2012. Live speech driven head-and-eye motion generators. IEEE TVCG 18, 11, 1902--1914.
[33]
Lee, S. P., Badler, J. B., and Badler, N. I. 2002. Eyes alive. ACM Trans. Graphics (Proc. SIGGRAPH) 21, 3, 637--644.
[34]
Li, H., Yu, J., Ye, Y., and Bregler, C. 2013. Realtime facial animation with on-the-fly correctives. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 42:1--42:10.
[35]
Li, J., Xu, W., Cheng, Z., Xu, K., and Klein, R. 2015. Lightweight wrinkle synthesis for 3d facial modeling and animation. Computer-Aided Design 58, 0, 117--122.
[36]
Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Eurographics Symposium on Rendering, 183--194.
[37]
Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. 2008. Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 27, 5, 121.
[38]
Magnenat-Thalmann, N., Kalra, P., Luc Leveque, J., Bazin, R., Batisse, D., and Querleux, B. 2002. A computational skin model: Fold and wrinkle formation. Trans. Info. Tech. Biomed. 6, 4, 317--323.
[39]
Müller, M., and Chentanez, N. 2010. Wrinkle meshes. In Proc. SCA, 85--92.
[40]
Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on 12, 7 (Jul), 629--639.
[41]
Peterson, M. F., and Eckstein, M. P. 2012. Looking just below the eyes is optimal across face recognition tasks. Proceedings of the National Academy of Sciences 109, 48.
[42]
Popa, T., Zhou, Q., Bradley, D., Kraevoy, V., Fu, H., Sheffer, A., and Heidrich, W. 2009. Wrinkling captured garments using space-time data-driven deformation. Computer Graphics Forum (Proc. Eurographics) 28, 2, 427--435.
[43]
Rhee, T., Hwang, Y., Kim, J. D., and Kim, C. 2011. Real-time facial animation from live video tracking. In Proc. SCA.
[44]
Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: Augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 29, 6, 157:1--157:8.
[45]
Ruhland, K., Andrist, S., Badler, J., Peters, C., Badler, N., Gleicher, M., Mutlu, B., and McDonnell, R. 2014. Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems. In Eurographics State of the Art Reports, 69--91.
[46]
Sagar, M. A., Bullivant, D., Mallinson, G. D., and Hunter, P. J. 1994. A virtual environment and model of the eye for surgical simulation. In Proceedings of Computer Graphics and Interactive Techniques, 205--212.
[47]
Seiler, M., Spillmann, J., and Harders, M. 2012. Enriching coarse interactive elastic objects with high-resolution data-driven deformations. In Proc. SCA, 9--17.
[48]
Shi, F., Wu, H.-T., Tong, X., and Chai, J. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 33.
[49]
Smith, M. L., Cottrell, G. W., Gosselin, F., and Schyns, P. G. 2005. Transmitting and decoding facial expressions. Psychological Science 16, 3, 184--189.
[50]
Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry processing, vol. 4.
[51]
Suwajanakorn, S., Kemelmacher-Shlizerman, I., and Seitz, S. M. 2014. Total moving face reconstruction. In ECCV.
[52]
Trutoiu, L. C., Carter, E. J., Matthews, I., and Hodgins, J. K. 2011. Modeling and animating eye blinks. ACM Trans. Appl. Percept. 8, 3.
[53]
Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 31, 6.
[54]
Wang, H., Hecht, F., Ramamoorthi, R., and O'Brien, J. F. 2010. Example-based wrinkle synthesis for clothing animation. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 4, 107:1--107:8.
[55]
Warburton, M., and Maddock, S. 2014. Physically-based forehead animation including wrinkles. Comput. Animat. Virtual Worlds.
[56]
Weise, T., Bouaziz, S., Li, H., and Pauly, M. 2011. Real-time performance-based facial animation. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 77:1--77:10.
[57]
Weissenfeld, A., Liu, K., and Ostermann, J. 2010. Video-realistic image-based eye animation via statistically driven state machines. The Visual Computer 26, 9, 1201--1216.
[58]
Wu, C., Varanasi, K., Liu, Y., Seidel, H.-P., and Theobalt, C. 2011. Shading-based dynamic shape refinement from multi-view video under general illumination. In ICCV.
[59]
Zhang, Y., Sim, T., and Tan, C. 2005. Simulating wrinkles in facial expressions on an anatomy-based face. In Proc. ICCS, 207--215.
[60]
Zurdo, J. S., Brito, J. P., and Otaduy, M. A. 2013. Animating wrinkles by example on non-skinned cloth. IEEE TVCG 19, 1, 149--158.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 4
August 2015
1307 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2809654
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2015
Published in TOG Volume 34, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. eyelid modeling
  2. eyelid reconstruction
  3. facial performance capture

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)6
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media