Document Open Access Logo

Destroying Densest Subgraphs Is Hard

Authors Cristina Bazgan , André Nichterlein , Sofia Vazquez Alferez



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.6.pdf
  • Filesize: 0.83 MB
  • 17 pages

Document Identifiers

Author Details

Cristina Bazgan
  • Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France
André Nichterlein
  • Algorithmics and Computational Complexity, Technische Universität Berlin, Germany
Sofia Vazquez Alferez
  • Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France

Acknowledgements

We thank anonymous reviewers of SWAT 2024 for their detailed comments improving the presentation.

Cite As Get BibTex

Cristina Bazgan, André Nichterlein, and Sofia Vazquez Alferez. Destroying Densest Subgraphs Is Hard. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.SWAT.2024.6

Abstract

We analyze the computational complexity of the following computational problems called Bounded-Density Edge Deletion and Bounded-Density Vertex Deletion: Given a graph G, a budget k and a target density τ_ρ, are there k edges (k vertices) whose removal from G results in a graph where the densest subgraph has density at most τ_ρ? Here, the density of a graph is the number of its edges divided by the number of its vertices. We prove that both problems are polynomial-time solvable on trees and cliques but are NP-complete on planar bipartite graphs and split graphs. From a parameterized point of view, we show that both problems are fixed-parameter tractable with respect to the vertex cover number but W[1]-hard with respect to the solution size. Furthermore, we prove that Bounded-Density Edge Deletion is W[1]-hard with respect to the feedback edge number, demonstrating that the problem remains hard on very sparse graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Graph modification problems
  • NP-hardness
  • fixed-parameter tractability
  • W-hardness
  • special graph classes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Béla Bollobás. Random Graphs, pages 215-252. Springer New York, New York, NY, 1998. URL: https://doi.org/10.1007/978-1-4612-0619-4_7.
  2. Marthe Bonamy, Benjamin Lévêque, and Alexandre Pinlou. Graphs with maximum degree Δ ≥ 17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable. Discrete Mathematics, 317:19-32, 2014. Google Scholar
  3. Oleg V Borodin, Alexandr Kostochka, and Matthew Yancey. On 1-improper 2-coloring of sparse graphs. Discrete Mathematics, 313(22):2638-2649, 2013. Google Scholar
  4. Oleg V Borodin and Alexandr V Kostochka. Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most 1. Siberian mathematical journal, 52(5):796-801, 2011. Google Scholar
  5. Dario Cavallaro and Till Fluschnik. Feedback vertex set on hamiltonian graphs. In 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2021), volume 12911 of Lecture Notes in Computer Science, pages 207-218. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-86838-3_16.
  6. Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of parameterized algorithms and the complexity of edge modification. Comput. Sci. Rev., 48:100556, 2023. URL: https://doi.org/10.1016/J.COSREV.2023.100556.
  7. William H. Cunningham. Optimal attack and reinforcement of a network. J. Assoc. Comput. Mach., 32(3):549-561, 1985. Google Scholar
  8. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  9. Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad A. Kanj, Frances A. Rosamond, and Ondrej Suchý. What makes equitable connected partition easy. In In Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC 2009), volume 5917 of LNCS, pages 122-133. Springer, 2009. Google Scholar
  10. Jessica Enright and Kitty Meeks. Deleting edges to restrict the size of an epidemic: a new application for treewidth. Algorithmica, 80:1857-1889, 2018. Google Scholar
  11. Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53-61, 2009. URL: https://doi.org/10.1016/J.TCS.2008.09.065.
  12. András Frank and Éva Tardos. An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica, 7(1):49-65, 1987. URL: https://doi.org/10.1007/BF02579200.
  13. Vincent Froese, André Nichterlein, and Rolf Niedermeier. Win-win kernelization for degree sequence completion problems. J. Comput. Syst. Sci., 82(6):1100-1111, 2016. URL: https://doi.org/10.1016/J.JCSS.2016.03.009.
  14. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete problems. In Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC '74, pages 47-63, New York, NY, USA, 1974. Association for Computing Machinery. Google Scholar
  15. A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of California at Berkeley, USA, 1984. Google Scholar
  16. Arthur M. Hobbs. Network survivability. In Applications of discrete mathematics, pages 332-353. McGraw-Hill, New York, 1991. Google Scholar
  17. Lavanya Kannan, Arthur Hobbs, Hong-Jian Lai, and Hongyuan Lai. Transforming a graph into a 1-balanced graph. Discrete Appl. Math., 157(2):300-308, 2009. Google Scholar
  18. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):415-440, 1987. URL: https://doi.org/10.1287/moor.12.3.415.
  19. Michael Kopreski and Gexin Yu. Maximum average degree and relaxed coloring. Discrete Mathematics, 340(10):2528-2530, 2017. Google Scholar
  20. G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331-340, 1970. Google Scholar
  21. Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on the densest subgraph problem and its variants. CoRR, abs/2303.14467, 2023. URL: https://doi.org/10.48550/arXiv.2303.14467.
  22. H. W. Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research, 8(4):538-548, 1983. URL: http://www.jstor.org/stable/3689168.
  23. Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A parameterized approach. J. Comput. Syst. Sci., 78(1):179-191, 2012. URL: https://doi.org/10.1016/J.JCSS.2011.02.001.
  24. Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|)|e|) algoithm for finding maximum matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science (sfcs 1980), pages 17-27, 1980. URL: https://doi.org/10.1109/SFCS.1980.12.
  25. Wojciech Nadara and Marcin Smulewicz. Decreasing the Maximum Average Degree by Deleting an Independent Set or a d-Degenerate Subgraph. Electron. J. Comb., 29(1), 2022. Google Scholar
  26. Jaroslav Nešetřil and Patrice Ossona de Mendez. Prolegomena, pages 21-60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. Google Scholar
  27. André Nichterlein. Degree-constrained editing of small-degree graphs. PhD thesis, Berlin Institute of Technology, 2015. URL: https://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/6520.
  28. Yury Orlovich, Alexandre Dolgui, Gerd Finke, Valery Gordon, and Frank Werner. The complexity of dissociation set problems in graphs. Discrete Appl. Math., 159(13):1352-1366, 2011. Google Scholar
  29. Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory. Networks, 12(2):141-159, 1982. URL: https://doi.org/10.1002/NET.3230120206.
  30. Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer programming. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 974-988, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00060.
  31. Andrzej Ruciński and Andrew Vince. Strongly balanced graphs and random graphs. Journal of graph theory, 10(2):251-264, 1986. Google Scholar
  32. Siqian Shen and J Cole Smith. Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks, 60(2):103-119, 2012. Google Scholar
  33. Wenying Xi and Wensong Lin. On maximum p3-packing in claw-free subcubic graphs. J. Comb. Optim., 41(3):694-709, April 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail