Desert Roughness Retrieval Using CYGNSS GNSS-R Data
Abstract
:1. Introduction
2. Studied Site and Database
2.1. Studied Site
2.2. Database
2.2.1. Satellite Data
- (1)
- CYGNSS reflectivity values should range between −35 dB and −5 dB;
- (2)
- Incidence angles should range between 0° and 30°;
- (3)
- DDM signal-to-noise ratio (SNR) should be greater than 3 dB;
- (4)
- (receiver antenna gain towards SP) should be greater than 5 dB;
- (5)
- Data corresponding to terrain at altitudes greater than 650 m above the WGS84 ellipsoid model of the Earth should be removed.
2.2.2. Ground Measurements of Aerodynamic Roughness
3. Methodology
3.1. CYGNSS Data Normalisation
3.2. Temporal Stability of CYGNSS Data
3.3. Reflectivity Mapping over Sahara
4. Results and Discussions
4.1. Comparison between CYGNSS and ALOS-2 Data
4.2. Relationship between Geometric Roughness and CYGNSS Γ/ALOS-2 Sigma Naught Data
4.3. Aerodynamic Roughness Length vs. CYGNSS/ALOS-2 Data
4.4. Aerodynamic Roughness Length Mapping
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gillette, D.A.; Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res. Space Phys. 1988, 93, 14233. [Google Scholar] [CrossRef] [Green Version]
- Callot, Y.; Marticorena, B.; Bergametti, G. Geomorphological approach for modeling the surface features over arid environments in a model of dust emission: Application to the Sahara desert. Geodyn. Acta 2000, 13, 245–270. [Google Scholar] [CrossRef]
- Marticorena, B.; Kardous, M.; Bergametti, G.; Callot, Y.; Chazette, P.; Khatteli, H.; Le Hégarat-Mascle, S.; Maillé, M.; Rajot, J.; Vidal-Madjar, D.; et al. Surface and aerodynamic roughness in arid and semiarid areas and their relation to radar backscatter coefficient. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Tegen, I.; Aires, F.; Marticorena, B.; Zribi, M. Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. J. Geophys. Res. Space Phys. 2005, 110, 12. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Aumont, B.; N’Doumé, C.; Bergametti, G.; Callot, Y.; Legrand, M. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res. Space Phys. 1997, 102, 4387–4404. [Google Scholar] [CrossRef]
- Zribi, M.; Baghdadi, N.; Holah, N.; Fafin, O.; Guerin, C. Evaluation of a rough soil surface description with ASAR-ENVISAT radar data. Remote Sens. Environ. 2005, 95, 67–76. [Google Scholar] [CrossRef]
- Le Hegarat-Mascle, S.; Zribi, M.; Ribous, L. Retrieval of elevation by radarclinometry in arid or semi-arid regions. Int. J. Remote Sens. 2005, 26, 2877–2899. [Google Scholar] [CrossRef]
- Baghdadi, N.; Choker, M.; Zribi, M.; El Hajj, M.; Paloscia, S.; Verhoest, N.; Lievens, H.; Baup, F.; Mattia, F. A New Empirical Model for Radar Scattering from Bare Soil Surfaces. Remote Sens. 2016, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Gorrab, A.; Zribi, M.; Baghdadi, N.; Mougenot, B.; Fanise, P.; Chabaane, Z.L. Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images. Remote Sens. 2015, 7, 10098–10116. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Grandjean, G.; Lahondère, D.; Paillou, P.; Lasne, Y. Apport de l’imagerie satellitaire radar pour l’exploration géologique en zones arides. Comptes Rendus Geosci. 2005, 337, 719–728. [Google Scholar] [CrossRef]
- Grandjean, G.; Paillou, P.; Baghdadi, N. A Volume Scattering Model for Coupled Interpretation of Ground-Penetrating Radar (GPR) and Synthetic Aperture Radar (SAR). Subsurf. Sens. Technol. Appl. 2004, 5, 151–164. [Google Scholar] [CrossRef]
- Paillou, P.; Grandjean, G.; Baghdadi, N.; Heggy, E.; August-Bernex, T.; Achache, J. Subsurface imaging in south-central egypt using low-frequency radar: bir safsaf revisited. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1672–1684. [Google Scholar] [CrossRef]
- Martin-Neira, M. A Passive Reflectometry and Interferometry System(PARIS)- Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E.; Fabra, F.; Li, W.; Ribó, S.; Hernández-Pajares, M. Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1. Remote Sens. 2017, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Measuring Greenland Ice Sheet Melt Using Spaceborne GNSS Reflectometry from TechDemoSat-1. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Masters, D. Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens. Environ. 2004, 92, 507–520. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Torres, O.; Grant, M.S.; Masters, D. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote Sens. Environ. 2006, 100, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Vall-Llossera, M.; Valencia, E.; Marchan-Hernandez, J.; Ramos-Perez, I. Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3616–3624. [Google Scholar] [CrossRef]
- Egido, A.; Caparrini, M.; Ruffini, G.; Paloscia, S.; Santi, E.; Guerriero, L.; Pierdicca, N.; Floury, N. Global Navigation Satellite Systems Reflectometry as a Remote Sensing Tool for Agriculture. Remote Sens. 2012, 4, 2356–2372. [Google Scholar] [CrossRef] [Green Version]
- Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N. Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1522–1532. [Google Scholar] [CrossRef]
- Pei, Y.; Notarpietro, R.; Savi, P.; Cucca, M.; and Dovis, F. A Fully Software GNSS-R receiver for Soil Monitoring. Int. J. Remote Sens. 2014, 35, 2378–2391. [Google Scholar] [CrossRef]
- Sanchez, N.; Arroyo, A.A.; Martínez-Fernández, J.; Piles, M.; González-Zamora, Á.; Camps, A.; Vall-Llossera, M. On the Synergy of Airborne GNSS-R and Landsat 8 for Soil Moisture Estimation. Remote Sens. 2015, 7, 9954–9974. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Savi, P.; Canone, D.; Notarpietro, R. Estimation of Surface Characteristics Using GNSS LH-Reflected Signals: Land Versus Water. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4752–4758. [Google Scholar] [CrossRef]
- Zribi, M.; Pardé, M.; Boutin, J.; Fanise, P.; Hauser, D.; Dechambre, M.; Kerr, Y.H.; Leduc-Leballeur, M.; Reverdin, G.; Skou, N.; et al. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations. Sensors 2011, 11, 719–742. [Google Scholar] [CrossRef]
- Motte, E.; Zribi, M.; Fanise, P.; Egido, A.; Darrozes, J.; Al-Yaari, A.; Baghdadi, N.; Baup, F.; Dayau, S.; Fieuzal, R.; et al. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring. Sensors 2016, 16, 732. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Pablos, M.; Foti, G.; Gommenginger, C.; Liu, P.-W.; Judge, J. Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4730–4742. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Savi, P. Sensing soil moisture and vegetation using GNSS-R polarimetric measurement. Adv. Space Res. 2017, 59, 858–869. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Lowe, S.; Zuffada, C.; Esterhuizen, S.; Oveisgharan, S. Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere. Remote Sens. 2017, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Motte, E.; Baghdadi, N.; Baup, F.; Dayau, S.; Fanise, P.; Guyon, D.; Huc, M.; Wigneron, J.-P. Potential Applications of GNSS-R Observations over Agricultural Areas: Results from the GLORI Airborne Campaign. Remote Sens. 2018, 10, 1245. [Google Scholar] [CrossRef] [Green Version]
- Camps, A.; Vall·llossera, M.; Park, H.; Portal, G.; Rossato, L. Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture: Global and Regional Differences and Impact of Different Spatial Scales. Remote Sens. 2018, 10, 1856. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.C.; Small, E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef] [Green Version]
- Clarizia, M.P.; Pierdicca, N.; Costantini, F.; Floury, N. Analysis of CYGNSS Data for Soil Moisture Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2227–2235. [Google Scholar] [CrossRef]
- Wan, W.; Liu, B.; Zeng, Z.; Chen, X.; Wu, G.; Xu, L.; Chen, X.; Hong, Y. Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sens. 2019, 11, 854. [Google Scholar] [CrossRef] [Green Version]
- Al-Khaldi, M.M.; Johnson, J.T.; O’Brien, A.J.; Balenzano, A.; Mattia, F. Time-Series Retrieval of Soil Moisture Using CYGNSS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4322–4331. [Google Scholar] [CrossRef]
- Calabia, A.; Molina, I.; Jin, S. Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients. Remote Sens. 2020, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Pierdicca, N.; Guerriero, L.; Giusto, R.; Brogioni, M.; Egido, A. SAVERS: A Simulator of GNSS Reflections from Bare and Vegetated Soils. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6542–6554. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Gleason, S. Level 1B DDM Calibration Algorithm Theoretical Basis Document, CYGNSS Project Document 148-0137-X1, Rev1. December 2014. Available online: http://clasp-research.engin.umich.edu/missions/cygnss/reference/ATBD%20L1B%20DDM%20Calibration%20R1.pdf (accessed on 23 February 2020).
- Gleason, S.; Ruf, C.S.; O’Brien, A.J.; McKague, D.S.; OrBrien, A.J. The CYGNSS Level 1 Calibration Algorithm and Error Analysis Based on On-Orbit Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 37–49. [Google Scholar] [CrossRef]
- Balakhder, A.M.; Al-Khaldi, M.M.; Johnson, J.T. On the Coherency of Ocean and Land Surface Specular Scattering for GNSS-R and Signals of Opportunity Systems. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10426–10436. [Google Scholar] [CrossRef]
- Camps, A. Spatial Resolution in GNSS-R Under Coherent Scattering. IEEE Geosci. Remote Sens. Lett. 2020, 17, 32–36. [Google Scholar] [CrossRef]
- Ruf, C.S. DDM Data Compression and Decimation Algorithm, SPRL Tech. Memorandum 148-0046-X1. May 2013. [Google Scholar]
- Eorc. Jaxa. “Alos Data Users Handbook” Tokyo. March 2008. Available online: https://www.eorc.jaxa.jp/ALOS/en/doc/fdata/ALOS_HB_RevC_EN.pdf (accessed on 22 February 2020).
- Shimada, M.; Itoh, N.; Watanabe, M.; Moriyama, T.; Tadono, T. PALSAR initial calibration and validation results. Sens. Syst. Next-Gener. Satell. X 2006, 6361, 636103. [Google Scholar]
- Cook, K.H.; Vizy, E.K. Contemporary Climate Change of the African Monsoon Systems. Curr. Clim. Chang. Rep. 2019, 5, 145–159. [Google Scholar] [CrossRef]
- Horn, B. Hill shading and the reflectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Gorrab, A.; Baghdadi, N. A new soil roughness parameter for the modelling of radar backscattering over bare soil. Remote Sens. Environ. 2014, 152, 62–73. [Google Scholar] [CrossRef] [Green Version]
Number | Regions | Type of Terrain | Coordinates | ||
---|---|---|---|---|---|
1 | Adrar Desert—Mauritania | Dunes | 20°44′N 9°44′W | 20°18′N 9°18′W | 0.0023 |
2 | Great Eastern Erg—Algeria | Dunes | 31°36′N 7°00′E | 31°14′N 7°25′E | 0.0023 |
3 | Adrar Desert—Mauritania | Dunes | 21°48′N 7°42′W | 21°20′N 7°15′W | 0.0023 |
4 | Great Eastern Erg—Algeria | Dunes | 31°39′N 8°34′E | 31°13′N 9°03′E | 0.0023 |
5 | Bordj Badji Mokhtar—Algeria | Sandy flat surface | 23°42′N 0°59′E | 23°18′N 1°22′E | 0.01 |
6 | Tiris Zemmour Plateau—Mauritania | Rocky surface | 26°12′N 7°48′W | 25°48′N 7°18′W | 0.025 |
7 | Tamanrasset—Algeria | Rocky surface | 21°42′N 5°20′E | 21°15′N 5°48′E | 0.05 |
8 | Tamanrasset—Algeria | Rocky surface | 21°40′N 4°20′E | 21°21′N 4°48′E | 0.05 |
9 | Nafusah Plateau, Tripolitania—Libya | Rocky surface | 30°42′N 11°09′E | 30°15′N 11°12′E | 0.15 |
10 | Ubari Desert—Libya | Rocky surface(hammada) | 30°10′N 10°45′E | 29°45′N 11°12′E | 0.15 |
11 | Tassili N’Ajjer Mountains—Algeria | Mountains | 25°42′N 8°10′E | 25°18′N 8°32′E | 0.5 |
12 | Atlas Mountains—Algeria | Mountains | 33°36′N 1°18′W | 33°12′N 0°48′W | 0.873 |
13 | Tanezrouft—Algeria | Rocky surface | 26°42′N 4°54′W | 26°18′N 4°27′W | 0.05 |
14 | Tassili N’Ajjer Mountains—Algeria | Mountains | 26°12′N 8°17′E | 25°46′N 8°32′E | 0.5 |
15 | Atlas Mountains—Algeria | Mountains | 33°28′N 2°53′E | 33°12′N 3°30′E | 0.347 |
16 | Ouled Nail Mountains—Algeria | Mountains | 33°37′N 3°31′E | 33°12′N 4°01′E | 0.347 |
17 | El Eglab Massif—Algeria | Mountains | 26°59′N 3°44′W | 26°46′N 3°09′W | 0.131 |
18 | Hammada du Draa—Morocco | Rocky surface(hammada) | 27°47′N 8°43′W | 27°28′N 8°17′W | 0.131 |
19 | Tidikelt Plain—Algeria | Sandy flat surface | 26°41′N 2°00′E | 27°09′N 2°24′E | 0.0873 |
20 | Tademait Plateau—Algeria | Sandy flat surface | 28°41′N 2°40′E | 28°09′N 2°55′E | 0.0873 |
21 | Hassi Gara, Great Western Erg—Algeria | Sandy flat surface | 29°46′N 2°58′E | 29°14′N 3°35′E | 0.0873 |
22 | Tiris Zemmour Plateau—Mauritania | Sandy flat surface | 23°50′N 7°52′W | 23°27′N 7°37′W | 0.0174 |
23 | Tanerzrouft-n-Ahnet—Algeria | Sandy flat surface | 22°30′N 0°53′E | 22°17′N 0°37′E | 0.01 |
Regions | Coordinates | |
---|---|---|
Great Eastern Erg—Algeria (Algeria dunes) | 31°51′N⋯7°33′E | 31°45′N⋯7°39′E |
Great Libyan Desert—Egypt (Egypt dunes) | 28°N⋯25°36′E | 27°54′N⋯25°42′E |
Kufrah Basin—Libya | 23°54′N⋯24°9′E | 23°48′N⋯24°15′E |
Tamanarasset (Mali) | 23°49′N⋯4°46′W | 23°43′N⋯4°40′W |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stilla, D.; Zribi, M.; Pierdicca, N.; Baghdadi, N.; Huc, M. Desert Roughness Retrieval Using CYGNSS GNSS-R Data. Remote Sens. 2020, 12, 743. https://doi.org/10.3390/rs12040743
Stilla D, Zribi M, Pierdicca N, Baghdadi N, Huc M. Desert Roughness Retrieval Using CYGNSS GNSS-R Data. Remote Sensing. 2020; 12(4):743. https://doi.org/10.3390/rs12040743
Chicago/Turabian StyleStilla, Donato, Mehrez Zribi, Nazzareno Pierdicca, Nicolas Baghdadi, and Mireille Huc. 2020. "Desert Roughness Retrieval Using CYGNSS GNSS-R Data" Remote Sensing 12, no. 4: 743. https://doi.org/10.3390/rs12040743
APA StyleStilla, D., Zribi, M., Pierdicca, N., Baghdadi, N., & Huc, M. (2020). Desert Roughness Retrieval Using CYGNSS GNSS-R Data. Remote Sensing, 12(4), 743. https://doi.org/10.3390/rs12040743