
Defeasible Specif ications in A c t i o n Theor ies
C h i t t a B a r a l *

Computer Science Department
Universi ty of Texas at El Paso

El Paso, Texas 79968
U.S.A

chitta@cs. utep. edu

A b s t r a c t

Recent research in formalizing effects of actions
on a world in the presence of constraints have
mostly concentrated on non-defeasible specifi­
cations, where the effect of actions and con­
straints are strict ly specified. In this paper we
show how to incorporate defeasibility into the
specifications. In our approach we consider ex­
tensions of the high level language A of Gel-
fond and Lifschitz and introduce defeasible con­
straints and effect propositions. While direct
semantics of A does not need a logical language,
our semantics is defined using extended logic
programming. This is due to the defeasibility
of the specification.

1 I n t r o d u c t i o n a n d M o t i v a t i o n
Recent research in formalizing effects of actions on a
world in the presence of constraints have mostly concen­
trated on non-defeasible specifications, where the effect
of actions and constraints are strictly specified1. The
focus of these research was more on solving the frame
problem and other problems such as the qualification
and the ramification problem, and it made sense to start
w i th non-defeasible specifications.

In this paper we show how to incorporate defeasibility in
the specification without loosing any of the good proper­
ties of previous specification languages. It is important
to consider defeasible specifications for the same reason

* Support was provided by the National Science Founda­
tion, under grant Nr. IRI-9501577.

+ Support was provided by Argonne National Laboratory
under contract Nr. 963042401.

1 Among the various approaches, the strictness of the high
level specification language of A [5] and its successors [6],
and the language used by Sandewal [10] is clear. Although,
Reiter [9] and his group do not use a particular specification
language per se, the syntactic restriction they put on how the
effect axioms and constraints can be initially specified in first-
order logic, and the dependence of the compilation process
that follows on the input syntax amounts to a specification
language.

J o r g e L o b o +

Department of EECS
Univ. of Il l inois at Chicago

851 S. Morgan St
Chicago, IL 60607, USA

jorge@eecs.uic.eduas the necessity of non-rnonotonic theories in knowledge
representation and common-sense reasoning. The spec­
ifications are not definite and un-modifiable and may
evolve. Our language should allow easy evolution or in
the words of McCarthy, they should be 'elaboration tol­
erant1. We take a first step in this direction by allowing
defeasible specifications.

In our approach we consider2 extensions of the high level
language A of Gelfond and Lifschitz [5] and introduce
defeasible constraints and effect propositions. Direct se­
mantics of A and many of its early successors (part icu­
larly, the formalization of transition functions that map
state-action pairs to states) do not use a logical language.
But our formalization of the transition function is done
using extended logic programming. This is due to the
defeasibility of the specification. (Earlier, Baral [1] and
McCain and Turner [8] use logic programming and infer­
ence rules respectively, to formalize transition functions
in presence of causal constraints.) We then show how
with minor modifications to the logic programming spec­
ification plus the addition of a few rules we can reason
about the effect of a sequence of actions.

The necessity of defeasible specifications may be illus­
trated by the following example from [12]. Suppose we
have a lamp with a switch on the side. Turning the
switch causes an internal circuit in the lamp to flip be­
tween close (not open) and open. We can say then that
the effect of executing the action turning.switch causes
the circuit to close if it was open; or it wi l l cause the
switch to open if it was not open. It is also the case that
when the circuit is close (not open) the light in the lamp
is on, and when the circuit is open the light is off. Notice
that although the state of the light is determined by the
state of the circuit, the state of the light is indirectly
affected by the action of turning the switch. This indi­
rect effect is known in action theories as a ramification
of the action. In an action description language such
as AC [11] this action domain may be described by the

2 We consider this language due to its simplicity. Our ideas
are important for other specification languages and their for­
malizations. We would consider the impact of defeasible spec­
ifications on them in the full version of this paper.

BARAL & LOBO 1441

following propositions:3

(i)
(2)
(3)
(4)

Ramification effects are usually derived from the state
of fluents,4 while direct effects come from the execution
of an action. An equivalent formulation can be wri t ten
using Lin's formalization [7] or the state specifications of
Baral [1j.

Suppose now that we can also unplug the lamp and that
a consequence of this action is that there wi l l be no power
going through the lamp. We can add to our description
the following proposition to cover this action:

(5)

If there is no power going through the lamp the light
in the lamp can never be on (this is regardless of the
state of the circuit). We then must add the following
ramif ication proposition:

(6)

Notice too, this proposition together wi th the previous
propositions may create contradictions or forbid certain
sequences of actions. For example, executing the se­
quence [unplug Jamp, turning switch] creates problems
because there wi l l be a state where the circuit is not open
that causes the l ight to be on, and at the same time the
l ight can not be on since the lamp is unplugged and there
is no power going through the lamp. The problem is that
a closed circuit not always, but normally, causes the light
in lamp to be on.5 Thus, the causality in proposition (4)
must be defeasible.

In the following section we present ADC, an action de­
scription language w i th defeasible causality propositions.
To make it easier for the reader we have excluded many
of the other features of action description languages such
as constraints, that are described in the literature. Most
of these can be easily added to ADC. Following our ex­
ample, we start by describing how we can specify defeasi­
ble ramification effects. Later in Section 5 we show how
our framework can also be used to capture defeasibtlity
of the direct effect of actions.

3 At this point we appeal to the intuition of the reader
with the meaning of the language. In the following sections
we will present a formal description of an action language
similar to AC.

4Symbols that are used to represent the state of the world
are called fluents. In this example the fluents are open and
light_on.

5There are many other reasons why a closed circuit may
not cause the light to be on. It could be that the bulb in the
lamp is burned, or there was a storm that blacked out the
entire neighborhood.

2 The language ATX
The language ADC has two disjoint non-empty sets
of symbols called fluents and actions, and four kinds
of propositions: initial propositions, effect propositions,
sufficiency propositions and defeasible sufficiency propo­
sitions. An in i t ia l proposition is an expression of the
form

initially / (7)
where / is a fluent l i teral. A fluent literal is either a fluent
or a fluent preceded by A fluent l i teral is negative if
it is preceded by otherwise it is called positive. An
effect proposition is an expression of the form

(8)

where a is an action, and / and and each of p 1 , . . . , p n

is a fluent l i teral. If n = 0 we wi l l wri te:

a causes / (9)

Two effect propositions wi th preconditions p 1 , . . . , p n

and q1,.. .,qm respectively are said to be contradictory
if they describe the effect of the same action a on com­
plementary fs, and

Non-defeasible and defeasible sufficiency propositions
are expressions of the form:

P 1 , . . . , p n suff ices f o r / (10)
p 1 , . . . , p n n o r m a l l y suff ices f o r / (11)

where / and each is a fluent l i teral . A
domain description is a collection of in i t ia l , effect, suffi­
ciency and defeasible sufficiency propositions. The in i ­
t ial propositions are referred to as facts and the other
propositions are referred to as causal laws.

3 Trans i t ion funct ions of ADC
We take a slightly different approach in defining the se­
mantics of the language ADC. Most of the action de­
scription languages [11; 6; 2] that are inspired by A have
an independent characterization wi thout involving any
of the standard logical formalisms, such as logic pro­
gramming, default logic, circumscription, classical logic,
etc. But when we allow defeasible causality and keep
open the possibility of hierarchies of such causality it
is not clear if we can avoid using standard logical for­
malisms and have independent characterizations.

An inherent component of semantics of action descrip­
t ion languages is the transit ion function Res f rom ac­
tions and states to power set of states, where a state is
a set of fluents. Intuit ively, if we say that
execution of action a in a state s may take us to the
state s'. When we have only deterministic actions we
can treat Res as a function f rom actions and states to
states.

In this section we define the transit ion function of ADC
through a translation of the domain description into an
extended logic program. (We use the answer set seman­
tics of extended logic programs [4].) Given a set of causal

1442 TEMPORAL REASONING

laws D, an action a, and a state .s, we construct an
extended logic program and use its answer
sets to define Res(a,s). The extended logic program

uses variables of three sorts: situation vari­
ables S, S1,..., fluent variables F, F\,..., and action
variables A,A1, —

For convenience, we use the following notations. The
atom Holds(f,s) denotes the literal holds(f,s) i f / is
a positive fluent l iteral and the literal .s) if
/ is a negative fluent l i teral. Also, for any fluent /,

By Holds{f,s) we denote the
literal which is complementary to Holds(f,s). In addi­
t ion, we wi l l have an special postfix function symbol '
that we wi l l apply to fluents and fluent variables. It is
used to distinguish negative from positive fluent literals
occurring as predicate arguments.6

We now describe the construction of the program
which consists of the translations of the indi­

vidual propositions in D and certain other rules.

T r a n s l a t i o n 3.1

This rule is motivated by the minimality consideration
which states that only changes that happens to a state
as a result of an action a are the ones dictated by the
direct and indirect effects of the action. If a has a direct
effect on a fluent F (resp. the negated fluent F') , we say
that that F (resp. F') is abnormal with respect to a in
s. Thus, we expect a60(F, a, s) (resp. ab0 (F ' , a, .s)) to be
true (see i tem 3 below). Similarly, if If a has an indirect
effect on a fluent F (resp. the negated fluent F') , we say
that that F (resp. F') is abnormal with respect to a in
s. Thus, we expect ab1(F, a,s) (resp. ab 1 (F ' ,a , *)) to be
true (see item 4 below).

3. Translating Effect propositions

For each effect proposition of the form (8) in D which
describes the effect of the action a, l contains
the fol lowing rules:

6We could have used instead of ' and write
but the unary negation is already used as

predicate negation in extended logic programs.

BARAL & LOBO 1443

The effect rules depend on the in i t ia l state S which wi l l
be part of any answer set of the program. Hence, the set

wi l l also be part of any answer set. Therefore, f rom the
th i rd and fourth non-defeasible rules we get that the set:

wi l l be part of any answer set too. The inertia rules,
based on the in i t ia l state, wi l l t ry to make the fluent
literals power, -light_on and open true in the situation
re8(turning switch, s\). We can ignore the ab1 predi­
cates since there are no defeasible rules. However, abo in
E blocks open and abo in ND blocks - l ight-on. Hence,
the inert ia rules generate the set

No other holds l i teral w i th situation argument
res(turning_ight,8\) or abo predicate wi th th i rd argu­
ment s1 w i l l be in any answer set. Notice too, that the
evaluation of the rules was stratif ied, first the effect rules,
then the non-defeasible rules and finally the inertia rules.
Hence, it is easy to see that Res(turning_switch, s1) =
s2 and it is completely determined by

It can also be shown that Res(turningswitch,s2) = s1.

E x a m p l e 3.2 If we add to the previous example the
causal laws (5) and (6), we can see that the answer set
of is inconsistent. This is because we
wi l l have the effect rule:

holds(power, res(unplug, s2)) (12)

that is unconditionally true, and the following two non-
defeasible sufficiency rules:

The literal -holds(open,S2) is part of the in i t ia l
database, open' wi l l never appear in the first argument
of any abo in the translation and ab\ is irrelevant in the
example.
E x a m p l e 3.3 In this final example, we show the cor­
rect representation of the problem. We need the causal
laws (1), (2), (5) and (6), plus the defeasible sufficiency
propositions:

In this case the second non-defeasible sufficiency rule
from the previous example is replaced by the rule

and this rule wi l l not be justif ied since the fol lowing rule
is also part of the translation

which is justif ied by (12). O

Observe that the translation presented above is equiv­
alent to a simpler version where, we replace both abo
and ab1 by ab, and in the first rule of step 5 we re­
place not ab0(f,A,s) by not Hold8(f,re8(A,S)).8 This
is similar to Turner's [11] use of
not Holds(f, res(A,S)) instead of an abnormal predi­
cate to define sufficiency propositions. However, w i th
Turner's translation there is no obvious way to add de­
feasible causality to his formalism. Furthermore, the
structure of our translation (compared to Gelfond's sug­
gestion) allows us to easily add more levels of defeasi­
ble propositions; i.e., defeasible propositions that can be
defeated by other defeasible propositions9 which could

8 This simplification was suggested by Michael Gelfond.
The subtle use of the not Holds(f,res(A, S)) instead of
Holda(f,res(A, S)) was first introduced in [5] to reason about
actions in presence of incomplete information.

9Geffner in [3] also deals with hierarchy of defeasible
propositions by assigning non-negative integer priorities to
them and then characterizes them using an approach based
on infinitesimal probabilities. We plan to compare our ap­
proaches in the full paper.

1444 TEMPORAL REASONING

file:///resiA

be also be defeated by other propositions. In general,
when there are several levels of defeasibility the guard
not Holds(f,res(A,S)) can be used in the last (mean­
ing highest) but one layer. A l l layers below that need
an ab predicate. In the language AVC the lowest layer
corresponds to inert ia, the next layer corresponds to the
defeasible causality and the highest layer is the effect
propositions and non-defeasible causality propositions.

4 Semantics of AVC and a logic
p r o g r a m m i n g t rans lat ion

In this section we use the formalization of Res to present
a semantics of AVC which allows us to make inferences
about the effect of a sequence of actions.

An interpretation is a partial function from sequences
of actions to states such that:

(1) The empty sequence [] belongs to the domain of
and

4.1 Logic programming characterization
We can modify the translation to give a
logic programming characterization of AVC. (Note that

only characterizes the effect of a single ac­
tion and to characterize AVC we need to be able to
reason about sequences of actions.) We introduce a
new predicate p_holds (which intuit ively means 'possibly
holds') and replace all occurrences of holds(f,res(a,s))
and -holds(f,res(a,s)) in the steps 1, 3, 4 and 5, and
the head of the rules in step 2, by p.holds(f, res(a, S))
and p-holds(f',res(a, S)). We then modify step 2 by re­
placing the constants a and s, by the variables A and S.
Then, we add the following rules:11

The first rule verifies if the effects produced by actions
when we are trying to reach the situation S are contra­
dictory. This indicates that S should be unreachable.
The second rule says that S is reachable otherwise.12

And, finally we add rules to make sure that sufficiency
propositions are true w.r.t. the in i t ia l state SO. For a
non-defeasible sufficiency proposition of the form (10)
we add the rules:

BARAL & LOBO 1445

5 Defeasible effect proposi t ions
Our new approach of defining the semantics of the ac­
tion language as a logic program gives us the flexibility
to directly add defeasible effect propositions to AVC.
Consider the following effect proposition.

open-faucet causes water_on_sink.

However, in the rare occasion when the pipe is blocked
the action wi l l not have any effect13. A better description
for the effect proposition would be:

open-faucet normal ly_causes water_on _ s i n k .

The constraint about the case when the pipe is blocked
can then be specified as:

pipe Mocked suff ices f o r

In general, we wi l l call a defeasible effect proposition an
expression of the form

a normal ly_causes (14)

where a is an action, and / and and each of p 1 , . . . ,pn

is a fluent l i teral.

To describe the semantics of a domain description D
wi th defeasible effect propositions we expand the pro­
gram I I (D ,a ,s) as follows.

6. Translating Defeasible Effect propositions

For each defeasible effect proposition of the form (14) in
D which describes the effect of the action a,
contains the fol lowing rules:

We also need to add to the two rules of the translation of
non-defeasible sufficiency propositions the following rule
(step 4 of the original transformation):

To expand the logic programming characterization of
AVC domains we merely need to replace the Holds in
the rules of part (6) w i th the corresponding p_holds and
proposition 4.1 holds for the new domain descriptions.

In the above formalization we assumed that defeasible ef­
fect propositions are overridden by non-defeasible causal
rules and defeasible effect propositions do not contradict
w i th non-defeasible effect propositions. A different for­
malization can be given when we modify the assumptions
such as (i) allowing defeasible effect propositions to con­
tradict w i th non-defeasible effect propositions and giving
non-defeasible effect propositions a higher prior i ty; (i i)
giving effect propositions higher prior i ty than sufficiency
propositions. The new formalizations wi l l mainly express
the pr ior i ty between the different abnormal predicates.
We wi l l discuss this in greater detail in the ful l paper.

6 Conclus ion
We have showed how to formalize defeasible causality in
action theories. We used logic programming to encode
the defeasible causalities. It is not clear to us if use of a
logical formalism can be avoided (in the spirit of A [5])
while encoding defeasibility, particularly when we allow
several level of defeasibility. In the ful l paper we wi l l add
addit ional examples involving several levels of defeasibil­
i ty and discuss how defeasibility can be incorporated in
other specification languages. To make our point clear

we avoided addit ional constructs and features. Most of
these can be easily added to the proposed language, and
we wi l l need default logic (as in [11]), instead of logic pro­
gramming, to encode defeasibility when we allow fluent
formulas instead of fluent literals.

References
[1] C. Baral. Reasoning about Actions : Non-

deterministic effects, Constraints and Qualif ication.
In Proc. of I JCAI 95, pages 2017-2023, 1995.

[2] C. Baral, M. Gelfond, and A. Provett i . Representing
Actions: Laws, Observations and Hypothesis. Jour­
nal of Logic Programming, 31(1-3):201-243, May
1997.

[3] H. Geffner. A qualitative model for Temporal rea­
soning wi th incomplete informat ion. In AAAI 96,
pages 1176-1181. 1996.

[4] M. Gelfond and V. Lifschitz. Classical negation in
logic programs and disjunctive databases. New Gen-
eration Computing, pages 365-387, 1991.

[5] M. Gelfond and V. Lifschitz. Representing actions
and change by logic programs. Journal of Logic
Programming, 17(2,3,4):301 323, 1993.

[6] G. Kartha and V. Lifschitz. Actions wi th indirect
effects: Preliminary report. In KR 94 pages 341
350, 1994.

[7] F. L in . Embracing causality in specifying the indi­
rect effects of actions. In Proc. of 1JCAI 95, pages
1985-1993,95.

[8] N. McCain and M. Turner. A causal theory of ram­
ifications and qualifications. In Proc. of IJCAI 95,
pages 1978-1984, 95.

[9] R. Reiter. The frame problem in the situation calcu­
lus: A simple solution (sometimes) and a complete­
ness result for goal regression. In V. Lifschitz, edi­
tor, Artificial Intelligence and Mathematical Theory
of Computation, pages 359-380. Academic Press,
1991.

[10] E. Sandewall. The range of applicabil i ty of some
non-monotonic logics for strict inertia. Journal
of Logic and Computation, 4(5):581-616, October
1994.

[11] H. Turner. Representing actions in default logic:
A situation calculus approach. In Proceedings of
the Symposium in honor of Michael Gelfond 's 50th
birthday (also in Common Sense 96), 1995.

[12] Y. Zhang. Compi l ing causality into action theories.
In Proc, of Common Sense 96, pages 263-270,1996.

1446 TEMPORAL REASONING

