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A b s t r a c t 

Recent research in formalizing effects of actions 
on a world in the presence of constraints have 
mostly concentrated on non-defeasible specifi­
cations, where the effect of actions and con­
straints are strict ly specified. In this paper we 
show how to incorporate defeasibility into the 
specifications. In our approach we consider ex­
tensions of the high level language A of Gel-
fond and Lifschitz and introduce defeasible con­
straints and effect propositions. While direct 
semantics of A does not need a logical language, 
our semantics is defined using extended logic 
programming. This is due to the defeasibility 
of the specification. 

1 I n t r o d u c t i o n a n d M o t i v a t i o n 
Recent research in formalizing effects of actions on a 
world in the presence of constraints have mostly concen­
trated on non-defeasible specifications, where the effect 
of actions and constraints are strictly specified1. The 
focus of these research was more on solving the frame 
problem and other problems such as the qualification 
and the ramification problem, and it made sense to start 
w i th non-defeasible specifications. 

In this paper we show how to incorporate defeasibility in 
the specification without loosing any of the good proper­
ties of previous specification languages. It is important 
to consider defeasible specifications for the same reason 
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1 Among the various approaches, the strictness of the high 
level specification language of A [5] and its successors [6], 
and the language used by Sandewal [10] is clear. Although, 
Reiter [9] and his group do not use a particular specification 
language per se, the syntactic restriction they put on how the 
effect axioms and constraints can be initially specified in first-
order logic, and the dependence of the compilation process 
that follows on the input syntax amounts to a specification 
language. 
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jorge@eecs.uic.eduas the necessity of non-rnonotonic theories in knowledge 
representation and common-sense reasoning. The spec­
ifications are not definite and un-modifiable and may 
evolve. Our language should allow easy evolution or in 
the words of McCarthy, they should be 'elaboration tol­
erant1. We take a first step in this direction by allowing 
defeasible specifications. 

In our approach we consider2 extensions of the high level 
language A of Gelfond and Lifschitz [5] and introduce 
defeasible constraints and effect propositions. Direct se­
mantics of A and many of its early successors (part icu­
larly, the formalization of transition functions that map 
state-action pairs to states) do not use a logical language. 
But our formalization of the transition function is done 
using extended logic programming. This is due to the 
defeasibility of the specification. (Earlier, Baral [1] and 
McCain and Turner [8] use logic programming and infer­
ence rules respectively, to formalize transition functions 
in presence of causal constraints.) We then show how 
with minor modifications to the logic programming spec­
ification plus the addition of a few rules we can reason 
about the effect of a sequence of actions. 

The necessity of defeasible specifications may be illus­
trated by the following example from [12]. Suppose we 
have a lamp with a switch on the side. Turning the 
switch causes an internal circuit in the lamp to flip be­
tween close (not open) and open. We can say then that 
the effect of executing the action turning.switch causes 
the circuit to close if it was open; or it wi l l cause the 
switch to open if it was not open. It is also the case that 
when the circuit is close (not open) the light in the lamp 
is on, and when the circuit is open the light is off. Notice 
that although the state of the light is determined by the 
state of the circuit, the state of the light is indirectly 
affected by the action of turning the switch. This indi­
rect effect is known in action theories as a ramification 
of the action. In an action description language such 
as AC [11] this action domain may be described by the 

2 We consider this language due to its simplicity. Our ideas 
are important for other specification languages and their for­
malizations. We would consider the impact of defeasible spec­
ifications on them in the full version of this paper. 

BARAL & LOBO 1441 



following propositions:3 

(i) 
(2) 
(3) 
(4) 

Ramification effects are usually derived from the state 
of fluents,4 while direct effects come from the execution 
of an action. An equivalent formulation can be wri t ten 
using Lin's formalization [7] or the state specifications of 
Baral [1j. 

Suppose now that we can also unplug the lamp and that 
a consequence of this action is that there wi l l be no power 
going through the lamp. We can add to our description 
the following proposition to cover this action: 

(5) 

If there is no power going through the lamp the light 
in the lamp can never be on (this is regardless of the 
state of the circuit). We then must add the following 
ramif ication proposition: 

(6) 

Notice too, this proposition together wi th the previous 
propositions may create contradictions or forbid certain 
sequences of actions. For example, executing the se­
quence [unplug Jamp, turning switch] creates problems 
because there wi l l be a state where the circuit is not open 
that causes the l ight to be on, and at the same time the 
l ight can not be on since the lamp is unplugged and there 
is no power going through the lamp. The problem is that 
a closed circuit not always, but normally, causes the light 
in lamp to be on.5 Thus, the causality in proposition (4) 
must be defeasible. 

In the following section we present ADC, an action de­
scription language w i th defeasible causality propositions. 
To make it easier for the reader we have excluded many 
of the other features of action description languages such 
as constraints, that are described in the literature. Most 
of these can be easily added to ADC. Following our ex­
ample, we start by describing how we can specify defeasi­
ble ramification effects. Later in Section 5 we show how 
our framework can also be used to capture defeasibtlity 
of the direct effect of actions. 

3 At this point we appeal to the intuition of the reader 
with the meaning of the language. In the following sections 
we will present a formal description of an action language 
similar to AC. 

4Symbols that are used to represent the state of the world 
are called fluents. In this example the fluents are open and 
light_on. 

5There are many other reasons why a closed circuit may 
not cause the light to be on. It could be that the bulb in the 
lamp is burned, or there was a storm that blacked out the 
entire neighborhood. 

2 The language ATX 
The language ADC has two disjoint non-empty sets 
of symbols called fluents and actions, and four kinds 
of propositions: initial propositions, effect propositions, 
sufficiency propositions and defeasible sufficiency propo­
sitions. An in i t ia l proposition is an expression of the 
form 

initially / (7) 
where / is a fluent l i teral. A fluent literal is either a fluent 
or a fluent preceded by A fluent l i teral is negative if 
it is preceded by otherwise it is called positive. An 
effect proposition is an expression of the form 

(8) 

where a is an action, and / and and each of p 1 , . . . , p n 

is a fluent l i teral. If n = 0 we wi l l wri te: 

a causes / (9) 

Two effect propositions wi th preconditions p 1 , . . . , p n 

and q1,.. .,qm respectively are said to be contradictory 
if they describe the effect of the same action a on com­
plementary fs, and 

Non-defeasible and defeasible sufficiency propositions 
are expressions of the form: 

P 1 , . . . , p n suff ices f o r / (10) 
p 1 , . . . , p n n o r m a l l y suff ices f o r / (11) 

where / and each is a fluent l i teral . A 
domain description is a collection of in i t ia l , effect, suffi­
ciency and defeasible sufficiency propositions. The in i ­
t ial propositions are referred to as facts and the other 
propositions are referred to as causal laws. 

3 Trans i t ion funct ions of ADC 
We take a slightly different approach in defining the se­
mantics of the language ADC. Most of the action de­
scription languages [11; 6; 2] that are inspired by A have 
an independent characterization wi thout involving any 
of the standard logical formalisms, such as logic pro­
gramming, default logic, circumscription, classical logic, 
etc. But when we allow defeasible causality and keep 
open the possibility of hierarchies of such causality it 
is not clear if we can avoid using standard logical for­
malisms and have independent characterizations. 

An inherent component of semantics of action descrip­
t ion languages is the transit ion function Res f rom ac­
tions and states to power set of states, where a state is 
a set of fluents. Intuit ively, if we say that 
execution of action a in a state s may take us to the 
state s'. When we have only deterministic actions we 
can treat Res as a function f rom actions and states to 
states. 

In this section we define the transit ion function of ADC 
through a translation of the domain description into an 
extended logic program. (We use the answer set seman­
tics of extended logic programs [4].) Given a set of causal 
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laws D, an action a, and a state .s, we construct an 
extended logic program and use its answer 
sets to define Res(a,s). The extended logic program 

uses variables of three sorts: situation vari­
ables S, S1,..., fluent variables F, F\,..., and action 
variables A,A1, — 

For convenience, we use the following notations. The 
atom Holds(f,s) denotes the literal holds(f,s) i f / is 
a positive fluent l iteral and the literal .s) if 
/ is a negative fluent l i teral. Also, for any fluent /, 

By Holds{f,s) we denote the 
literal which is complementary to Holds(f,s). In addi­
t ion, we wi l l have an special postfix function symbol ' 
that we wi l l apply to fluents and fluent variables. It is 
used to distinguish negative from positive fluent literals 
occurring as predicate arguments.6 

We now describe the construction of the program 
which consists of the translations of the indi­

vidual propositions in D and certain other rules. 

T r a n s l a t i o n 3.1 

This rule is motivated by the minimality consideration 
which states that only changes that happens to a state 
as a result of an action a are the ones dictated by the 
direct and indirect effects of the action. If a has a direct 
effect on a fluent F (resp. the negated fluent F') , we say 
that that F (resp. F') is abnormal with respect to a in 
s. Thus, we expect a60(F, a, s) (resp. ab0 (F ' , a, .s)) to be 
true (see i tem 3 below). Similarly, if If a has an indirect 
effect on a fluent F (resp. the negated fluent F') , we say 
that that F (resp. F') is abnormal with respect to a in 
s. Thus, we expect ab1(F, a,s) (resp. ab 1 (F ' ,a , * ) ) to be 
true (see item 4 below). 

3. Translating Effect propositions 

For each effect proposition of the form (8) in D which 
describes the effect of the action a, l contains 
the fol lowing rules: 

6We could have used instead of ' and write 
but the unary negation is already used as 

predicate negation in extended logic programs. 
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The effect rules depend on the in i t ia l state S which wi l l 
be part of any answer set of the program. Hence, the set 

wi l l also be part of any answer set. Therefore, f rom the 
th i rd and fourth non-defeasible rules we get that the set: 

wi l l be part of any answer set too. The inertia rules, 
based on the in i t ia l state, wi l l t ry to make the fluent 
literals power, -light_on and open true in the situation 
re8(turning switch, s\). We can ignore the ab1 predi­
cates since there are no defeasible rules. However, abo in 
E blocks open and abo in ND blocks - l ight-on. Hence, 
the inert ia rules generate the set 

No other holds l i teral w i th situation argument 
res(turning_ight,8\) or abo predicate wi th th i rd argu­
ment s1 w i l l be in any answer set. Notice too, that the 
evaluation of the rules was stratif ied, first the effect rules, 
then the non-defeasible rules and finally the inertia rules. 
Hence, it is easy to see that Res(turning_switch, s1) = 
s2 and it is completely determined by 

It can also be shown that Res(turningswitch,s2) = s1. 

E x a m p l e 3.2 If we add to the previous example the 
causal laws (5) and (6), we can see that the answer set 
of is inconsistent. This is because we 
wi l l have the effect rule: 

holds(power, res(unplug, s2)) (12) 

that is unconditionally true, and the following two non-
defeasible sufficiency rules: 

The literal -holds(open,S2) is part of the in i t ia l 
database, open' wi l l never appear in the first argument 
of any abo in the translation and ab\ is irrelevant in the 
example. 
E x a m p l e 3.3 In this final example, we show the cor­
rect representation of the problem. We need the causal 
laws (1), (2), (5) and (6), plus the defeasible sufficiency 
propositions: 

In this case the second non-defeasible sufficiency rule 
from the previous example is replaced by the rule 

and this rule wi l l not be justif ied since the fol lowing rule 
is also part of the translation 

which is justif ied by (12). O 

Observe that the translation presented above is equiv­
alent to a simpler version where, we replace both abo 
and ab1 by ab, and in the first rule of step 5 we re­
place not ab0(f,A,s) by not Hold8(f,re8(A,S)).8 This 
is similar to Turner's [11] use of 
not Holds(f, res(A,S)) instead of an abnormal predi­
cate to define sufficiency propositions. However, w i th 
Turner's translation there is no obvious way to add de­
feasible causality to his formalism. Furthermore, the 
structure of our translation (compared to Gelfond's sug­
gestion) allows us to easily add more levels of defeasi­
ble propositions; i.e., defeasible propositions that can be 
defeated by other defeasible propositions9 which could 

8 This simplification was suggested by Michael Gelfond. 
The subtle use of the not Holds(f,res(A, S)) instead of 
Holda(f,res(A, S)) was first introduced in [5] to reason about 
actions in presence of incomplete information. 

9Geffner in [3] also deals with hierarchy of defeasible 
propositions by assigning non-negative integer priorities to 
them and then characterizes them using an approach based 
on infinitesimal probabilities. We plan to compare our ap­
proaches in the full paper. 
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be also be defeated by other propositions. In general, 
when there are several levels of defeasibility the guard 
not Holds(f,res(A,S)) can be used in the last (mean­
ing highest) but one layer. A l l layers below that need 
an ab predicate. In the language AVC the lowest layer 
corresponds to inert ia, the next layer corresponds to the 
defeasible causality and the highest layer is the effect 
propositions and non-defeasible causality propositions. 

4 Semantics of AVC and a logic 
p r o g r a m m i n g t rans lat ion 

In this section we use the formalization of Res to present 
a semantics of AVC which allows us to make inferences 
about the effect of a sequence of actions. 

An interpretation is a partial function from sequences 
of actions to states such that: 

(1) The empty sequence [ ] belongs to the domain of 
and 

4.1 Logic programming characterization 
We can modify the translation to give a 
logic programming characterization of AVC. (Note that 

only characterizes the effect of a single ac­
tion and to characterize AVC we need to be able to 
reason about sequences of actions.) We introduce a 
new predicate p_holds (which intuit ively means 'possibly 
holds') and replace all occurrences of holds(f,res(a,s)) 
and -holds(f,res(a,s)) in the steps 1, 3, 4 and 5, and 
the head of the rules in step 2, by p.holds(f, res(a, S)) 
and p-holds(f',res(a, S)). We then modify step 2 by re­
placing the constants a and s, by the variables A and S. 
Then, we add the following rules:11 

The first rule verifies if the effects produced by actions 
when we are trying to reach the situation S are contra­
dictory. This indicates that S should be unreachable. 
The second rule says that S is reachable otherwise.12 

And, finally we add rules to make sure that sufficiency 
propositions are true w.r.t. the in i t ia l state SO. For a 
non-defeasible sufficiency proposition of the form (10) 
we add the rules: 
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5 Defeasible effect proposi t ions 
Our new approach of defining the semantics of the ac­
tion language as a logic program gives us the flexibility 
to directly add defeasible effect propositions to AVC. 
Consider the following effect proposition. 

open-faucet causes water_on_sink. 

However, in the rare occasion when the pipe is blocked 
the action wi l l not have any effect13. A better description 
for the effect proposition would be: 



open-faucet normal ly_causes water_on _ s i n k . 

The constraint about the case when the pipe is blocked 
can then be specified as: 

pipe Mocked suff ices f o r 

In general, we wi l l call a defeasible effect proposition an 
expression of the form 

a normal ly_causes (14) 

where a is an action, and / and and each of p 1 , . . . ,pn 

is a fluent l i teral. 

To describe the semantics of a domain description D 
wi th defeasible effect propositions we expand the pro­
gram I I (D ,a ,s ) as follows. 

6. Translating Defeasible Effect propositions 

For each defeasible effect proposition of the form (14) in 
D which describes the effect of the action a, 
contains the fol lowing rules: 

We also need to add to the two rules of the translation of 
non-defeasible sufficiency propositions the following rule 
(step 4 of the original transformation): 

To expand the logic programming characterization of 
AVC domains we merely need to replace the Holds in 
the rules of part (6) w i th the corresponding p_holds and 
proposition 4.1 holds for the new domain descriptions. 

In the above formalization we assumed that defeasible ef­
fect propositions are overridden by non-defeasible causal 
rules and defeasible effect propositions do not contradict 
w i th non-defeasible effect propositions. A different for­
malization can be given when we modify the assumptions 
such as (i) allowing defeasible effect propositions to con­
tradict w i th non-defeasible effect propositions and giving 
non-defeasible effect propositions a higher prior i ty; (i i) 
giving effect propositions higher prior i ty than sufficiency 
propositions. The new formalizations wi l l mainly express 
the pr ior i ty between the different abnormal predicates. 
We wi l l discuss this in greater detail in the ful l paper. 

6 Conclus ion 
We have showed how to formalize defeasible causality in 
action theories. We used logic programming to encode 
the defeasible causalities. It is not clear to us if use of a 
logical formalism can be avoided (in the spirit of A [5]) 
while encoding defeasibility, particularly when we allow 
several level of defeasibility. In the ful l paper we wi l l add 
addit ional examples involving several levels of defeasibil­
i ty and discuss how defeasibility can be incorporated in 
other specification languages. To make our point clear 

we avoided addit ional constructs and features. Most of 
these can be easily added to the proposed language, and 
we wi l l need default logic (as in [11]), instead of logic pro­
gramming, to encode defeasibility when we allow fluent 
formulas instead of fluent literals. 
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