To read this content please select one of the options below:

Data-driven online service supply chain: a demand-side and supply-side perspective

Lei Li (College of Management and Economics, Tianjin University, Tianjin, China)
Shaojun Ma (College of Management and Economics, Tianjin University, Tianjin, China)
Xu Han (College of Management and Economics, Tianjin University, Tianjin, China)
Chundong Zheng (Tianjin University, Tianjin, China)
Di Wang (School of Management Science and Engineering, Shanxi University of Finance and Economics, Tianjin, China)

Journal of Enterprise Information Management

ISSN: 1741-0398

Article publication date: 23 June 2020

Issue publication date: 28 January 2021

863

Abstract

Purpose

Big data analytics (BDA) and machine learning (ML) can be used to identify the influencing factors of online service supply chains (OSSCs) and can help in the formulation of optimal pricing strategies. This paper analyzes the influencing factors of customer online shopping from the demand-side perspective and formulates optimal pricing strategies from the supply-side perspective.

Design/methodology/approach

This paper uses ML and the Stackelberg game approach to discuss OSSC management. ML's feature selection algorithm is used to identify the important influencing factors of 12,330 customers' online shopping intention data using four different classifiers. The Stackelberg game approach is used to analyze the pricing strategies of integrators and suppliers in OSSCs.

Findings

First, the feature selection algorithm can improve the efficiency of optimization in big data samples of OSSCs. Second, the level of visualization and the quality of information (page value) will affect the purchase behavior of customers. Finally, the relationship between the optimal pricing and the level of visualization is obtained through the Stackelberg game approach.

Practical implications

This paper reveals the phenomenon of “mystery customers,” and the results of this paper can provide insights and suggestions regarding the decision-making behavior of integrators and suppliers in OSSC management.

Originality/value

Considering customer behavior intention, this paper uses a data-driven method to explore the influencing factors and pricing strategies of OSSCs. The empirical results enrich the existing OSSC management research, proposing that the level of product visualization and information quality plays an important role in OSSCs.

Keywords

Acknowledgements

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (No. 71874120), the Social Sciences Major Project Foundation of Tianjin Education Committee (Grant No. 2017JWZD02) and the Postgraduate Research and Innovation Project of Tianjin (No.2019YJSB185, 2019YJSB186).

Citation

Li, L., Ma, S., Han, X., Zheng, C. and Wang, D. (2021), "Data-driven online service supply chain: a demand-side and supply-side perspective", Journal of Enterprise Information Management, Vol. 34 No. 1, pp. 365-381. https://doi.org/10.1108/JEIM-11-2019-0352

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles