Computer Science > Machine Learning
[Submitted on 16 Oct 2024 (v1), last revised 19 Oct 2024 (this version, v2)]
Title:Data-Driven Gyroscope Calibration
View PDFAbstract:Gyroscopes are inertial sensors that measure the angular velocity of the platforms to which they are attached. To estimate the gyroscope deterministic error terms prior mission start, a calibration procedure is performed. When considering low-cost gyroscopes, the calibration requires a turntable as the gyros are incapable of sensing the Earth turn rate. In this paper, we propose a data-driven framework to estimate the scale factor and bias of a gyroscope. To train and validate our approach, a dataset of 56 minutes was recorded using a turntable. We demonstrated that our proposed approach outperforms the model-based approach, in terms of accuracy and convergence time. Specifically, we improved the scale factor and bias estimation by an average of 72% during six seconds of calibration time, demonstrating an average of 75% calibration time improvement. That is, instead of minutes, our approach requires only several seconds for the calibration.
Submission history
From: Zeev Yampolsky [view email][v1] Wed, 16 Oct 2024 12:03:37 UTC (841 KB)
[v2] Sat, 19 Oct 2024 19:52:47 UTC (841 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.