Computer Science > Computation and Language
[Submitted on 7 Mar 2024 (v1), last revised 14 Dec 2024 (this version, v3)]
Title:TEGEE: Task dEfinition Guided Expert Ensembling for Generalizable and Few-shot Learning
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) exhibit the ability to perform in-context learning (ICL), where they acquire new tasks directly from examples provided in demonstrations. This process is thought to operate through an implicit task selection mechanism that involves extracting and processing task definitions from these demonstrations. However, critical questions remain: Which is more essential -- task extraction or definition? And how can these capabilities be further improved? To address these questions, we propose \textbf{TEGEE} (Task Definition Guided Expert Ensembling), a method that explicitly extracts task definitions and generates responses based on specific tasks. Our framework employs a dual 3B model approach, with each model assigned a distinct role: one focuses on task definition extraction, while the other handles learning from demonstrations. This modular approach supports the hypothesis that extracting task definitions is more vital than processing the task itself. Empirical evaluations show that TEGEE performs comparably to the larger LLaMA2-13B model. By leveraging a modular design, our approach extends traditional ICL from few-shot to many-shot learning, supporting an unlimited number of demonstrations and enhancing continual learning capabilities.
Submission history
From: Yiming Liang [view email][v1] Thu, 7 Mar 2024 05:26:41 UTC (1,204 KB)
[v2] Sun, 16 Jun 2024 06:44:50 UTC (1,204 KB)
[v3] Sat, 14 Dec 2024 14:39:57 UTC (1,212 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.