Computer Science > Robotics
[Submitted on 11 Oct 2024 (v1), last revised 14 Oct 2024 (this version, v2)]
Title:DCNet: A Data-Driven Framework for DVL Calibration
View PDF HTML (experimental)Abstract:Autonomous underwater vehicles (AUVs) are underwater robotic platforms used in a variety of applications. An AUV's navigation solution relies heavily on the fusion of inertial sensors and Doppler velocity logs (DVL), where the latter delivers accurate velocity updates. To ensure accurate navigation, a DVL calibration is undertaken before the mission begins to estimate its error terms. During calibration, the AUV follows a complex trajectory and employs nonlinear estimation filters to estimate error terms. In this paper, we introduce DCNet, a data-driven framework that utilizes a two-dimensional convolution kernel in an innovative way. Using DCNet and our proposed DVL error model, we offer a rapid calibration procedure. This can be applied to a trajectory with a nearly constant velocity. To train and test our proposed approach a dataset of 276 minutes long with real DVL recorded measurements was used. We demonstrated an average improvement of 70% in accuracy and 80% improvement in calibration time, compared to the baseline approach, with a low-performance DVL. As a result of those improvements, an AUV employing a low-cost DVL, can achieve higher accuracy, shorter calibration time, and apply a simple nearly constant velocity calibration trajectory. Our results also open up new applications for marine robotics utilizing low-cost, high-accurate DVLs.
Submission history
From: Zeev Yampolsky [view email][v1] Fri, 11 Oct 2024 13:47:40 UTC (1,929 KB)
[v2] Mon, 14 Oct 2024 09:47:10 UTC (1,929 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.