
Curio: A Novel Solution for E�cient Storage and

Indexing in Data Warehouses

Anindya Datta
College of Computing.

Georgia Institute of Tech.
adatta@cc.gatech.edu

Krithi Ramamritham
Computer Science Dept.

Indian Institute of Technology, Bombay
krithi@cse.iitb.ernet.in

Helen Thomas
College of Computing.

Georgia Institute of Tech.
adatta@cc.gatech.edu

1 Introduction

Data warehousing and On-Line Analytical Pro-

cessing (OLAP) are becoming critical components
of decision support as advances in technology
are improving the ability to manage and retrieve
large volumes of data. Data warehousing refers
to \a collection of decision support technologies
aimed at enabling the knowledge worker (execu-
tive, manager, analyst) to make better and faster
decisions" [1]. OLAP refers to the technique of
performing complex analysis over the information
stored in a data warehouse. It is often used by
management analysts and decision makers in a
variety of functional areas such as sales and mar-
keting planning. Typically, OLAP queries look
for speci�c trends and anomalies in the base in-
formation by aggregating, ranging, �ltering and
grouping data in many di�erent ways [8]. E�-
cient query processing is a critical requirement for
OLAP because the underlying data warehouse is
very large, queries are often quite complex, and
decision support applications typically require in-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed

for direct commercial advantage, the VLDB copyright no-

tice and the title of the publication and its date appear,

and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or

to republish, requires a fee and/or special permission from

the Endowment.

Proceedings of the 25th VLDB Conference,

Edinburgh, Scotland, 1999.

teractive response times.

Two main approaches for fast OLAP query pro-
cessing have emerged:

1. Precomputation Strategies. This approach
relies on summary tables, derived tables that
house precomputed or \ready-made" answers to
queries [1]. This has been, by far, the most ex-
plored area in the context of data warehouses [3].

2. Ad-hoc Strategies. This approach to fast OLAP
query processing supports ad-hoc querying by us-
ing fast access structures on the base data such as
B+-tree indexes, bitmapped indexes [7], bit-sliced
indexes [8] and projection indexes [8].

However, in these and other index structures
proposed for OLAP, a separate set of indices or
access structures is typically maintained in addi-
tion to the base data. Given the large size of data
warehouses, storage is a non-trivial cost, and so is
the additional storage requirement due to the in-
dex structures. This is especially true given that
data and storage maintenance costs are often up
to seven times as high per year as the original
purchase cost [11]. Hence, a terabyte-sized sys-
tem, with an initial media cost of $100,000, could
cost an additional $700,000 for every year it is
operational.

Curio, a data repository and OLAP query
server, provides a potential solution to this prob-
lem. Curio is based on a novel design technique
that allows fast access to data, yet does not require
indexes [6]. Hence, Curio provides drastically im-

730

proved performance for ad-hoc queries, while si-

multaneously reducing the storage costs associ-
ated with warehousing. We brie
y describe the
underlying positional indexing techniques behind
Curio and report results from a performance com-
parison with several leading commercial relational
warehousing products in terms of query perfor-
mance. We demonstrate the improved query per-
formance of Curio over a speci�c product reported
here, namely Oracle [9].

2 The Positional Indexing Approach

We now present an example to motivate the need
for e�cient storage and retrieval in data ware-
housing environments. Figure 1 contains a simple
warehouse star schema [5], which models the 10-
year history of the sales of an automobile manu-
facturer with dealerships located around the globe
and is intended to support marketing and strate-
gic decision-making.

In conventional database design, one envisions
a set of relations or table structures, and a sepa-
rate set of indices or access structures. In a rela-
tional system, tables would be stored \as-is": each
table would be represented as a series of records
partitioned over a chain of data blocks linked by
block pointers. In addition to the base tables, for
retrieval e�ciency, index structures would typi-
cally be de�ned. More speci�cally, the SALES ta-
ble will likely be indexed on each of its four di-
mensional attributes. A large number of index-
ing schemes have been proposed in the literature.
Among these, four index types have been shown
in [8] to be particularly appropriate for data ware-
housing/OLAP and they are indeed used in both
commercial and research systems. These struc-
tures are \standard" B+-tree indexes, bitmapped

B+-tree indexes, projection indexes, and bit-sliced

indexes. While these structures have indeed im-
proved query performance, they have imposed a
signi�cant space penalty. Certain schemes, such
as the standard B+-tree and bitmapped B+-tree,
incur much more storage overhead than others
due to the nature of their structure. It is not
uncommon for a standard or bitmapped B+-tree
index on a single column of a table to be 50 to
100% of the size of the table itself.

Curio is based on the notion of vertically parti-
tioning a table into sets of attributes. By apply-
ing this idea, we can divide the SALES table in �g-

ure 1, into �ve smaller tables, as shown in �gure 2.
The new schema is then composed of 5 vertical
partitions: one for each of the dimensional at-
tributes (i.e., SALES.TimeStamp, SALES.PoS ID,
SALES.Profile ID and SALES.Product ID), and
one for the remaining columns from the original,
i.e, the business metrics of the SALES table (i.e.,
Tax, Discount and Status). Each of these par-
titions can be considered a positional index. The
resulting database size is essentially the same as
the size of the raw data in the original database
con�guration. However, we can now utilize the
separate dimensional columns of the partitioned
fact table as both elements of and indexes onto

that table. In terms of storage cost, the index-
ing is free. This indexing is made possible by a
mapping that exists between the positional index
and the original or reduced table such that one
can easily associate the elements of a record in
the positional index and the reduced table.

The ideas presented here have been extended to
develop several additional proprietary data struc-
tures and algorithms that allow e�cient join and
aggregation operations.

3 Performance Evaluation of Curio

We now present selected results from a perfor-
mance study, which compares the query process-
ing speeds of Curio with those of several existing
RDWMS products. We report the results for 3
speci�c products: Oracle (version 8.0.5) [9], Red
Brick Warehouse (version 5.1.5) [10], and DB2
Universal Database (version 5.0) [4]. All tests
were performed on a Windows NT machine hav-
ing a single 300 MHz Intel Pentium processor and
64 MB of RAM. The queries used in this exper-
iment are based on a star schema similar to the
one shown in Figure 1. For each RDWMS prod-
uct, indexes were built only on those columns used

in the test queries, thus providing a signi�cant
advantage for the above mentioned products in
terms of storage requirements. Typically, in a
warehouse environment, indexes would be built
on most (if not all) attributes, incurring signi�-
cant additional storage overhead. Where possi-
ble, we used specialized indexes to give the other
products as much of an advantage as possible. For
example, bitmapped indexes were used in Oracle
and star indexes in Red Brick.

The data for the schema were randomly gener-

731

3,650 tuples

500 tuples

30,000,000 tuples

TimeStamp
PoS ID

Product ID
Tax
Discount
Status

4 bytes
4 bytes
3 bytes
3 bytes
4 bytes
4 bytes
1 byte

23 bytes

Profile ID

100,000 tuples

1,000 tuples

Timestamp
DoW
DoM
Month
Quarter
Year

4 bytes
1 byte
1 byte
1 byte
1 byte
2 bytes

10 bytes

TIME

PoS ID
PoS Name
Zip
City
Region
State
Country

4 bytes
35 bytes
3 bytes

35 bytes
30 bytes
2 bytes

20 bytes

129 bytes

LOCATION

SALES

Income 3 bytes
1 byte
1 byte
3 bytes

1 byte
3 bytes

Age

Attribute

1 byte

13 bytes

CUSTOMER PROFILE

Product ID
Type
Make
Series
Year
Mfg Price

3 bytes
4 bytes
15 bytes
4 bytes
2 bytes
4 bytes

32 bytes

Ethnicity

PRODUCT

Mar. Status
Zip

Gender
Profile ID

: Fact Table

: Dimension Table

: Foreign-key Relation

: Key AttributeAttribute

: Non-key Attribute

Figure 1: A Simple Warehouse Star Schema

100,000 tuples

9 bytes

30,000,000 tuples

1 byte
4 bytes
4 bytes

Status
Discount
Tax

500 tuples

3,650 tuples

1,000 tuples

129 bytes

Region

LOCATION

City
Zip
PoS Name
PoS ID

30,000,000
tuples

TimeStamp
SALES

4 bytes

30,000,000
tuples

PoS ID
SALES

4 bytes

TIME

10 bytes

2 bytes
1 byte
1 byte
1 byte
1 byte
4 bytes

Year
Quarter
Month

SALES

DoM
DoW
Timestamp Profile ID

Gender

Attribute

Zip
Mar. Status
Ethnicity
Income 3 bytes

1 byte
1 byte
3 bytes

1 byte
3 bytes

Age 1 byte

13 bytes

CUSTOMER PROFILE
Profile ID

SALES

State

30,000,000
tuples

3 bytes

Country

Product ID
Type
Make
Series
Year
Mfg Price

3 bytes
4 bytes
15 bytes
4 bytes
2 bytes
4 bytes

32 bytes

4 bytes PRODUCT

35 bytes
3 bytes

30,000,000
tuples

Product ID
SALES

35 bytes

3 bytes

30 bytes
2 bytes

20 bytes

: Fact Table

: Foreign-key Relation

: Dimension Table/Column

: Ordinal Mapping

: Key AttributeAttribute

: Non-key Attribute

Figure 2: Example Warehouse Schema with Vertical Partitioning Index Scheme

ated and loaded into each RDWMS using their re-
spective bulk load utilities. Three database sizes
were considered in this experiment: 0.25 GB,
0.5 GB, and 1 GB. Database size here refers to
the size of the raw data, and thus does not in-
clude any overhead that may be added once the
data is loaded.

For each of the queries, we provide a plot of
the response times for each RWDMS at each of
the 3 data size levels. The results for all tests are
presented using bar charts. The numbers above
each bar for Red Brick, DB2, and Oracle are ra-
tios of the performance compared to that of Cu-
rio. Two queries are shown in Figure 3, a 2-way
join (Figure 3A) and a 4-way join (Figure 3B).
Curio displays a remarkable peformance advan-
tage over all other products, and this advantage
increases with the query complexity. Two aggre-
gation queries are shown in Figure 4, a 2-way join
with 1 GROUP BY column (Figure 4A) and a 4-way
join with 3 GROUP BY columns (Figure 4B). The
performance advantage of Curio is similar, but on
a greater scale.

4 Conclusion

We have presented Curio, an e�cient OLAP
query engine and data repository based on a sim-
ple data storage and indexing scheme. Clearly,
one of the main advantages of this approach lies
in the fact that essentially indexing is provided
\for free". Our demonstration at VLDB shows
that Curio is highly e�ective in reducing storage
requirements while also delivering excellent query
performance. To this end we demonstrate its su-
perior performance with a set of typical OLAP
queries and compare the run-times under Curio
against a leading commercial relational warehous-
ing product.

References

[1] S. Chauduri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD

Record, 26(1):65{74, March 1997.

[2] International Data Corp. Data warehousing tools:
1998 worldwide markets and trends, report 17622,
1998.

732

0

100

200

300

400

500

600

0.25 0.5 1.0

Raw Data Size (GB)

���
���
���
���

���
���
���
���

Curio

Red Brick

DB2

Oracle

���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

[A] 2-Way Join

3.2

15.3

3.2

7.6

1.8

8.9

10.6

13.0

12.0

0

100

200

300

400

500

600

0.25 0.5 1.0

Raw Data Size (GB)

���
���
���
���

���
���
���
���

Curio

Red Brick

DB2

Oracle

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

[B] 4-Way Join

18.6

11.6
9.6

9.0

13.6
14.0

14.7

2.7

12.1

Figure 3: Response Times for Non-Aggregation Queries

���
���
���
���

���
���
���
���

Curio

Red Brick

DB2

Oracle

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����

����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

[A] 2-Way Join, 1 GROUP BY

0
0.25 0.5 1.0

Raw Data Size (GB)

200

400

600

800

1000

1200

1400

3.8
6.2 7.9

6.3

14.6

1.3

14.2

20.0

5.3

���
���
���
���

���
���
���
���

Curio

Red Brick

DB2

Oracle

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��� �������� ����

����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

[B] 4-Way Join, 3 GROUP BY

0
0.25 0.5 1.0

Raw Data Size (GB)

2000

4000

6000

8000

12000

14000

10000

11.1 11.3

176.2

51.2

117.5

95.8 95.8

349.5

39.8

Figure 4: Response Times for Aggregation Queries

[3] V. Harinarayan, A. Rajaraman, and J.D. Ull-
man. Implementing data cubes e�ciently. In
Proc. ACM SIGMOD, pages 205{216, Montreal,
Canada, June 4-6 1996.

[4] IBM Corp. Db2 universal database version 5.0 for
windows nt, 1997.

[5] R. Kimball. The Data Warehouse Toolkit. J. Wi-
ley & Sons, Inc., �rst edition, 1996.

[6] Muninn Technologies, LLC. Curio: A
novel solution for e�cient storage and index-
ing in data warehouses. White Paper, URL:
http://www.muninn.com, 1999.

[7] P. O'Neil. Model 204 architecture and perfor-
mance. In 2nd Intl. Workshop on High Perfor-

mance Transaction Systems (HPTS), volume 359
of Springer-Verlag Lecture Notes on Computer

Science, pages 40{59. Springer-Verlag, Asilomar,
CA, 1987.

[8] P. O'Neil and D. Quass. Improved query perfor-
mance with variant indexes. In Proc. ACM SIG-

MOD Intl. Conf. on Management of Data, pages
38{49, Tucson, AZ, May 13-15 1997.

[9] Oracle Corp. Oracle8 enterprise edition release
8.0.5 for windows nt, 1998.

[10] Red Brick Systems. Red brick warehouse version
5.1 for windows nt, 1998.

[11] D. Simpson. Corral your storage management
costs. Datamation, pages 88{93, April 1997.

733

