Computer Science > Networking and Internet Architecture
[Submitted on 15 Nov 2023]
Title:Cross Device Federated Intrusion Detector for Early Stage Botnet Propagation in IoT
View PDFAbstract:A botnet is an army of zombified computers infected with malware and controlled by malicious actors to carry out tasks such as Distributed Denial of Service (DDoS) attacks. Billions of Internet of Things (IoT) devices are primarily targeted to be infected as bots since they are configured with weak credentials or contain common vulnerabilities. Detecting botnet propagation by monitoring the network traffic is difficult as they easily blend in with regular network traffic. The traditional machine learning (ML) based Intrusion Detection System (IDS) requires the raw data to be captured and sent to the ML processor to detect intrusion. In this research, we examine the viability of a cross-device federated intrusion detection mechanism where each device runs the ML model on its data and updates the model weights to the central coordinator. This mechanism ensures the client's data is not shared with any third party, terminating privacy leakage. The model examines each data packet separately and predicts anomalies. We evaluate our proposed mechanism on a real botnet propagation dataset called MedBIoT. Overall, the proposed method produces an average accuracy of 71%, precision 78%, recall 71%, and f1-score 68%. In addition, we also examined whether any device taking part in federated learning can employ a poisoning attack on the overall system.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.