skip to main content
10.1145/3498361.3538930acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

Content-agnostic backscatter from thin air

Published: 27 June 2022 Publication History

Abstract

We present CAB, a content-agnostic backscatter system that can demodulate both tag and ambient data from ambient backscattered WiFi alone. In contrast to prior ambient backscatter systems that use ambient data (content) as tag-data carriers, we focus on zero-subcarriers, which are invariant and independent for any ambient OFDM WiFi. The idea of using zero-subcarriers to convey tag data is simple and elegant. Not only does it for the first time remove the dependency of tag-data demodulation on ambient data, but it also significantly improves the practicality of ambient backscatter.
We prototype CAB using off-the-shelf FPGAs and SDRs. Extensive experiments show CAB is universal as it can work with multi-band, multi-stream, and multi-user ambient traffic, including WiFi 3/4/5/6. CAB is also high-performing since it can deliver 340.9 Mbps aggregate throughput, reaching 97% Shannon capacity. Since CAB is general, we extend it to leverage ambient LTE traffic as excitations, and the achieved tag-data BER is below 0.002%. As the first content-agnostic backscatter that delivers near Shannon-capacity throughput, we believe CAB takes a curial step forward on ubiquitous battery-free IoTs.

References

[1]
[n. d.]. 802.11a. https://standards.ieee.org/standard/802_11a-1999.html. ([n. d.]).
[2]
[n. d.]. 802.11ac. https://standards.ieee.org/standard/802_11ac-2013.html. ([n. d.]).
[3]
[n. d.]. 802.11ax. https://standards.ieee.org/standard/802_11ax-2021.html. ([n. d.]).
[4]
[n. d.]. 802.11g. https://standards.ieee.org/standard/802_11g-2003.html. ([n. d.]).
[5]
[n. d.]. 802.11n. https://standards.ieee.org/standard/802_11n-2009.html. ([n. d.]).
[6]
[n. d.]. Bluetooth. https://www.bluetooth.com/specifications/bluetooth-core-specification/. ([n. d.]).
[7]
[n. d.]. CSI Tool. https://dhalperi.github.io/linux-80211n-csitool/. ([n. d.]).
[8]
[n. d.]. FMCOMMS3. https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz. ([n. d.]).
[9]
[n. d.]. gnuradio. https://www.gnuradio.org/. ([n. d.]).
[10]
[n. d.]. LTE specification. https://www.3gpp.org/IMG/pdf/2009_10_3gpp_IMT.pdf. ([n. d.]).
[11]
[n. d.]. OpenAirInterface. https://gitlab.eurecom.fr/oai/openairinterface5g/. ([n. d.]).
[12]
[n. d.]. srsLTE. https://github.com/srsran/srsran. ([n. d.]).
[13]
[n. d.]. Twitch. https://www.twitch.tv. ([n. d.]).
[14]
[n. d.]. WISP 5.0. https://github.com/wisp/wisp5. ([n. d.]).
[15]
[n. d.]. YouTube. https://www.youtube.com. ([n. d.]).
[16]
[n. d.]. zedboard. https://digilent.com/reference/_media/zedboard:zedboard_ug.pdf. ([n. d.]).
[17]
2017. EPC C1G2 Standard. http://www.gs1.org/epcrfid/epcrfid-uhf-air-interface-protocol/2-0-1. (2017).
[18]
M. R. Abdelhamid, R. Chen, J. Cho, A. P. Chandrakasan, and F. Adib. 2020. Self-reconfigurable micro-implants for cross-tissue wireless and batteryless connectivity. In Proc. of ACM MobiCom.
[19]
D. Bharadia, K. Joshi, M. Kotaru, and S. Katti. 2015. Backfi: High throughput wifi backscatter. In Proc. of ACM SIGCOMM.
[20]
Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu. 2020. Leveraging ambient lte traffic for ubiquitous passive communication. In Proc. of ACM SIGCOMM.
[21]
Daniel Dobkin. 2012. The rf in RFID: uhf RFID in practice. Newnes.
[22]
M. Dunna, M. Meng, P.H. Wang, C. Zhang, P.P. Mercier, and D. Bharadia. 2021. SyncScatter: Enabling WiFi like synchronization and range for WiFi backscatter Communication. In Proc. of USENIX NSDI.
[23]
W. Gong, S. Chen, and J. Liu. 2017. Towards higher throughput rate adaptation for backscatter networks. In Proc. of IEEE ICNP.
[24]
W. Gong, S. Chen, J. Liu, and Z. Wang. 2018. Mobirate: Mobility-aware rate adaptation using phy information for backscatter networks. In Proc. of IEEE INFOCOM.
[25]
W. Gong, H. Liu, J. Liu, X. Fan, K. Liu, Q. Ma, and X. Ji. 2018. Channel-aware rate adaptation for backscatter networks. IEEE/ACM Transactions on Networking 26, 2 (2018), 751--764.
[26]
W. Gong, H. Liu, K. Liu, Q. Ma, and Y. Liu. 2016. Exploiting channel diversity for rate adaptation in backscatter communication networks. In Proc. of IEEE INFOCOM.
[27]
W. Gong, J. Liu, and Z. Yang. 2016. Fast and reliable unknown tag detection in large-scale RFID systems. In Proc. of ACM MobiHoc.
[28]
W. Gong, J. Liu, and Z. Yang. 2017. Efficient unknown tag detection in large-scale RFID systems with unreliable channels. IEEE/ACM Transactions on Networking 25, 4 (2017), 2528--2539.
[29]
W. Gong, I. Stojmenovic, A. Nayak, K. Liu, and H Liu. 2015. Fast and scalable counterfeits estimation for large-scale RFID systems. IEEE/ACM Transactions on Networking 24, 2 (2015), 1052--1064.
[30]
W. Gong, L. Yuan, Q. Wang, and J. Zhao. 2020. Multiprotocol backscatter for personal IoT sensors. In Proc. of ACM CONEXT.
[31]
V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. 2016. Inter-technology backscatter: Towards internet connectivity for implanted devices. In Proc. of ACM SIGCOMM.
[32]
J. Jang and F. Adib. 2019. Underwater Backscatter Networking. In Proc. of ACM SIGCOMM.
[33]
P. Kamalinejad, K. Keikhosravy, R. Molavi, S. Mirabbasi, and Vcm Leung. 2014. An ultra-low-power CMOS voltage-controlled ring oscillator for passive RFID tags. In Proc. of IEEE NEWCAS.
[34]
B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. 2014. Wi-Fi backscatter: Internet connectivity for RF-powered devices. In Proc. of ACM SIGCOMM.
[35]
B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. 2016. Passive wi-fi: Bringing low power to wi-fi transmissions. In Proc. of USENIX NSDI.
[36]
K. K. Lee, K. Granhaug, and N. Andersen. 2014. A study of low-power crystal oscillator design. In Proc. of IEEE NORCHIP.
[37]
K. C.-J. Lin, S. Gollakota, and D. Katabi. 2011. Random access heterogeneous MIMO networks. (2011).
[38]
H. Liu, W. Gong, L. Chen, W. He, K. Liu, and Y. Liu. 2014. Generic composite counting in RFID systems. In Proc. of IEEE ICDCS.
[39]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. 2013. Ambient backscatter: wireless communication out of thin air. In Proc. of ACM SIGCOMM.
[40]
X. Liu, Z. Chi, W. Wang, Y. Yao, P. Hao, and T. Zhu. 2021. Verification and Redesign of OFDM Backscatter. In Proc. of USENIX NSDI.
[41]
Y. Ma, Z. Luo, C. Steiger, G. Traverso, and F. Adib. 2018. Enabling deep-tissue networking for miniature medical devices. In Proc. of ACM SIGCOMM.
[42]
M. H. Mazaheri, A. Chen, and O. Abari. 2021. mmTag: a millimeter wave backscatter network. In Proc. of ACM SIGCOMM.
[43]
S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith. 2018. Towards battery-free HD video streaming. In Proc. of USENIX NSDI.
[44]
Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. 2018. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proc. of ACM SIGCOMM.
[45]
H. Rahul, H. Hassanieh, and D. Katabi. 2010. SourceSync: A distributed wireless architecture for exploiting sender diversity. In Proc. of ACM SIGCOMM.
[46]
Hamid Shafiee, Behzad Nourani, and M Khoshgard. 2004. Estimation and compensation of frequency offset in DAC/ADC clocks in OFDM systems. In Proc. of IEEE ICC.
[47]
Michael Speth, Stefan A Fechtel, Gunnar Fock, and Heinrich Meyr. 1999. Optimum receiver design for wireless broad-band systems using OFDM. I. IEEE Transactions on Communications 47, 11 (1999), 1668--1677.
[48]
V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota. 2017. Lora backscatter: Enabling the vision of ubiquitous connectivity. In Proc. of ACM IMWUT.
[49]
V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R. Smith. 2015. Powering the next billion devices with Wi-Fi. In Proc. of ACM CONEXT.
[50]
J. K. Tan. 2006. An adaptive orthogonal frequency division multiplexing baseband modem for wideband wireless channels. Ph.D. Dissertation.
[51]
Stewart J Thomas, Eric Wheeler, Jochen Teizer, and Matthew S Reynolds. 2012. Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems. IEEE Transactions on Microwave Theory and Techniques 60, 4 (2012), 1175--1182.
[52]
D. Tse and P. Viswanath. 2005. Fundamentals of wireless communication. Cambridge university press.
[53]
D. Vasisht, S. Kumar, and D. Katabi. 2016. Decimeter-level localization with a single WiFi access point. In Proc. of USENIX NSDI.
[54]
J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. 2012. Efficient and reliable low-power backscatter networks. In Proc. of ACM SIGCOMM.
[55]
Q. Wang, S. Chen, J. Zhao, and W. Gong. 2021. RapidRider: Efficient WiFi Backscatter with Uncontrolled Ambient Signals. In Proc. of IEEE INFOCOM.
[56]
C.-Y. Wu, N. Singhal, and P. Krahenbuhl. 2018. Video compression through image interpolation. In Proc. of ECCV RFID.
[57]
M. Zhang, S. Chen, J. Zhao, and W. Gong. 2021. Commodity-level BLE backscatter. In Proc. of ACM MobiSys.
[58]
P. Zhang, D. Bharadia, K. Joshi, and S. Katti. 2016. Hitchhike: Practical backscatter using commodity wifi. In Proc. of ACM SenSys.
[59]
P. Zhang, C. Josephson, D. Bharadia, and S. Katti. 2017. Freerider: Backscatter communication using commodity radios. In Proc. of ACM CONEXT.
[60]
P. Zhang, M. Rostami, P. Hu, and D. Ganesan. 2016. Enabling practical backscatter communication for on-body sensors. In Proc. of ACM SIGCOMM.
[61]
J. Zhao, W. Gong, and J. Liu. 2018. Spatial Stream Backscatter Using Commodity WiFi. In Proc. of ACM MobiSys.
[62]
J. Zhao, W. Gong, and J. Liu. 2018. X-tandem: Towards multi-hop backscatter communication with commodity wifi. In Proc. of ACM MobiCom.
[63]
J. Zhao, W. Gong, and J. Liu. 2020. Towards scalable backscatter sensor mesh with decodable relay and distributed excitation. In Proc. of ACM MobiSys.
[64]
J. Zhao, W. Gong, and J. Liu. 2021. Microphone array backscatter: an application-driven design for lightweight spatial sound recording over the air. In Proc. of ACM MobiCom.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MobiSys '22: Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services
June 2022
668 pages
ISBN:9781450391856
DOI:10.1145/3498361
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. OFDM
  2. backscatter
  3. internet of things

Qualifiers

  • Research-article

Funding Sources

Conference

MobiSys '22

Acceptance Rates

Overall Acceptance Rate 274 of 1,679 submissions, 16%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)155
  • Downloads (Last 6 weeks)13
Reflects downloads up to 26 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media