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Abstract. The goal of this work is to formally provide a general defi-
nition of a multimedia recommendation system (MMRS), in particular
a content-based MMRS (CB-MMRS), and to shed light on different ap-
plications of multimedia content for solving a variety of tasks related to
recommendation. We would like to disambiguate the fact that multime-
dia recommendation is not only about recommending a particular media
type (e.g., music, video), rather there exists a variety of other applica-
tions in which the analysis of multimedia input can be usefully exploited
to provide recommendations of various kinds of information.

1 Introduction

The World Wide Web is a huge resource of digital multimedia information. In
early years of the WWW, the available digital resources were mainly constituted
of texts. For this reason, the first search engines and, later, content-based rec-
ommender systems relied merely on text analysis. Nowadays, the information
available on the Web is provided by several different media types, which include
text, audio, video, and images. Moreover, different media types can co-exist in
documents such as for example Web pages. Vertical search engines and recom-
mender systems have been developed to cope with the problem of accessing or
recommending specific media objects. While some media types are not related
to others (e.g., texts), other media types, such as videos, can be considered as
structured entities, possibly composite of other media types; for example a movie
is a video object composed of a sequence of images and of an audio stream, and
can further possibly carry a text (subtitles). The aim of this paper is twofold:
on the one hand, we propose a general definition of content-based multimedia
recommender system (CB-MMRS), which comprises both systems working with
one media type (vertical approach) and systems working with multiple media
types (e.g., videos when exploiting the composite of image, audio, and textual
information). Moreover we propose a general recommendation model of com-
posite media objects, where the recommendation relies on the computation of
distinct utility values, one for each media type in the composite object, and a
final utility is computed by aggregating such values. This can pave the way for
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novel recommendation techniques. As a second contribution, we discuss a variety
of tasks where MM content can be exploited for effective recommendation, and
we categorize them along different axes.

2 Content-Based Multimedia Recommendation Systems

We characterize a content-based multimedia recommendation system (CB-MMRS)
by specifying its main components.

1. Multimedia Items: In the literature [1], a multimedia item (aka multime-
dia object or document) refers to an item which can be a text, image, audio,
or video. Formally, a multimedia item I in its most general form is repre-
sented by the triple: I = (IV , IA, IT ) in which IV , IA, IT refer to the visual,
aural, and textual components (aka modalities), respectively. While text can
be considered an atomic media type (meaning it consists of a single textual
modality IT ), other media types including audio, image, and video can be
either atomic or composite, as in the latter case they may contain multiple
modalities. For example, an audio item that represents a performance of a
classical music piece can be seen as an atomic media type (using IA). On the
other hand, a pop song with lyrics can be regarded as composite (using IA
and IT ); an image of a scene is atomic (using IV ) while an image of a news
article is composite (using IV and IT ); finally a silent movie is atomic (using
IV ) while a movie with sound is composite (using IA, IV and/or IT ). We
still use the term multimedia item while referring to all these media types
regardless of the fact that they are atomic or composite. A CB-MMRS is a
system that is able to store and manage MM items.

2. Multimedia Content-Based Representation: Developing a CB-MMRS
relies on content-based (CB) descriptions according to distinct modalities
(IV , IA, IT ). These CB descriptors are usually extracted by applying some
form of signal processing specific to each modality, and are described based
on specific features. Examples of such features for images are color and tex-
ture; for text they include words and n-grams.
A CB-MMRS is a system that is able to process MM items and represent
each modality in terms of a feature vector fm = [f1 f2 ... fnm

] ∈ Rnm where
m ∈ {V,A, T} represents the visual, audio or textual modality.4

3. Recommendation Model: A CB-MMRS adopts a (personalized) recom-
mendation model and provides suggestions for items by measuring the in-
terest of user on CB characteristics of items in hand [2].
Given a target user u, to whom the recommendation will be provided, and a
collection of MM items I = {I1, I2, ..., I|I|}, the task of MM recommendation
is to identify the MM item i∗ that satisfies

i∗ = argmax
i

R(u, Ii), Ii ∈ I (1)

4 We step aside our attention from end-to-end learning performed by deep neural
networks where the intermediate step of feature extraction is not done explicitly.
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Table 1: Conceptual goals, inputs, and outputs of MMRS. CF: Collaborative
Filtering, CB: Content-based, pref= preference. MM-driven RS refer to systems
which exploit multimedia content not necessarily to represent items or in the
core recommendation model, exploiting MM content to represent users (e.g., via
analyzing their facial expressions). The output of MM-driven RS can be various
form of information not necessarily bounded to MM such as RS exploiting MM
content to recommend a non-media item (e.g., recommend place of interest based
on user-generated photos).

Approach Conceptual Goal input output

CF-MMRS
Recommend me MM items by leveraging

the preference of my peers/myself.
target user pref. +
community pref.

MM item

CB-MMRS
Recommend me MM items based on the

MM content of the items I liked in the past.
target user pref. +

MM content
MM item

MM-driven RS
Give me recommendations based on the

content of the MM items and other
sources of information (ratings, context, etc.).

MM content +
other info

various

where R(u, Ii) is the estimated utility of item i for the user u on the basis
of which the items are ranked [3]. The utility can be only estimated by
the RS to judge how much an item is worth being recommended, and its
prediction lies at the core of a recommendation model. The utility estimation
(or prediction) is done based on a particular recommendation model, e.g.,
collaborative-filtering (CF) or content-based filtering (CBF), which typically
involves knowledge about users, items, and the core utility function itself [2].
A comparison of such systems is provided in Table 1. While the community
of RS for long has considered CF-MMRS or CB-MMRS using pure metadata
(textual) as the only form of MMRS, in this paper, we focus our attention on
CB-MMRS exploiting different media types and the constituting modalities.

Depending on the number of modalities leveraged, we can categorize CB-
MMRS as unimodal or multimodal. For example, unimodal CB-MMRS can
produce satisfactory results for the recommendation of text (e.g., a piece of
news), but not for image, audio, and video. Users’ diverse information needs
are more likely to be satisfied by multimodal recommendation mechanisms.

In a multimodal CB-MMRS, the estimated utility of item i to the user u can
be decomposed into several specific utilities computed across each modality
in a MM item:

R(u, Ii) = F (Rm(u, Ii)), m ∈ {V,A, T} (2)

where Rm(U, Ii) denotes the utility of item Ii for user u with regards to
modality m ∈ {V,A, T}, and F is an aggregation function of the estimated
utilities for each modality. Based on the semantics of the aggregation, dif-
ferent functions can be employed, each implying a particular interpretation
of the affected process.
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Aggregation operators can be roughly classified as conjunctive, disjunctive,
and averaging [4,5]. Conjunctive operators include the minimum (min) and
functions that are upper-bounded by the minimum

R(u, Ii) <= min (Rm(u, Ii)), ∀m ∈ {V,A, T} (3)

Disjunctive operators include the maximum (max) and those functions lower-
bounded by the maximum. Based on the choice of distinct aggregation op-
erator, different aggregation values are obtained.

We make an illustrative example to clarify the importance of these aggrega-
tion operators. Suppose a MMRS should recommend a movie to a user. It
is further known by the system that the user is likely to watch a fast-paced
movie filmed with abrupt camera shot changes (visual), with rapid music
tempo (audio), and with textual keywords that describe the movie as ener-
getic or fast (textual). In such a case, if we set the aggregation function to
(min), the system will follow a conservative/pessimistic approach and would
require all the three audio plus visual plus textual modalities to contain the
aforementioned properties, so the corresponding item can be considered as
a good candidate for recommendation. Oppositely, the max operator adopts
an optimistic approach and would only require one of the three modalities to
include the desired property, making the utility of such item higher. There-
fore, these two aggregation operators have distinct semantics which can be
leveraged depending on the particular recommendation application at hand.

The min and the max functions set a lower bound and an upper bound,
respectively, for averaging aggregation operators, (e.g., arithmetic mean, ge-
ometric mean, or harmonic mean). For instance, in the field of multimedia
information retrieval (MMIR), it is common to use the weighted average
linear combination

R(u, Ii) =
∑
m

wmRm(u, Ii) (4)

where wm is a weight factor indicating the importance of modality m. When
we focus our attention on a specific modality, the problem is similar to a
standard CBF problem in which a linear model can be used among others,
for example

Rm(u, Ii) =
∑
j

wmjRmj(u, fmj) (5)

where wmj is a weight factor indicating the importance of the feature fmj , the
j-th feature in modality m. Equations 4 and 5 are called the inter-modality
and intra-modality fusion functions in MMIR. Application of different ag-
gregation operators for CB-MMRS and generally MMRS remain open for
exploitation in future works.
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3 Multimedia Content for Tasks Related to
Recommender Systems

Multimedia content can be leveraged in RS that recommend a media type or a
non-media item to the user. Multimedia content can be also exploited for certain
tasks that are related to RS, but are not directly part of the core recommendation
approach or item model. Examples include the exploitation of web cam videos to
identify the target user’s emotional state [6], or in general her head/posture [7],
which in turn can be used to personalize recommendations [8,9]. Another exam-
ple is the use of audio content features to model transitions or learn sequences
from music playlists, e.g., continuously increasing energy level of songs in a
playlist. Such information can then be used for automatic playlist generation
or continuation [10]. The former example relates to the use of multimedia con-
tent in context-aware recommender systems, the latter to its use in sequence
recommendation. We explore these different dimensions in the following.

3.1 Approaches that recommend multimedia items

The primary and foremost used application of multimedia content is constituted
by MMRS i.e., systems that recommend a particular media type to the user.
In CB-MMRS, the media types constituting both the input and the output of
the system are the same (e.g., music recommendation based on music acoustic
content plus target users’ preferences); However in some applications the two
media types can be also different, e.g., recommending music for a given image
with regards to the evoked emotions. We will explore these categories of recom-
mendation in the following:

– Audio recommendation: As for audio recommendation, the most common
application is music recommendation [10]. Examples of common audio fea-
tures exploited in the music domain include energy, timbre, tempo, tonality,
and more abstract ones based on deep learning [10].

– Image recommendation: In the image domain, some of the interesting ex-
amples include recommending clothes (in the fashion industry) and paintings
(e.g., in the tourism industry) among others. As for clothes recommendation,
there exists a huge potential in the fashion industry, mainly for the economic
value, to build personalized fashion RS. These systems can be built by tak-
ing into account metadata, reviews, previous purchasing patterns and visual
appearance of products. Such recommendation can be done in two manners:
(1) finding some pairs of objects that can be seen as alternative to a given
image provided by the user (such as two pairs of jeans) and, (2) finding
the ones which may be complementary (such recommending a pair of jeans
matching a shirt). For example [11] proposed a CB-MMRS to provide per-
sonalized recommendation for a given clothes image by considering the visual
appearances of clothes. The proposed system exploits visual features based
on convolutional neural networks (pre-trained on 1.2M ImageNet images)
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and uses a metric learning approach to find the visual similarity between a
query image and the complementary items (second scenario). Some research
works in the RS community [12] have criticized the above work in the sense
that it treats the recommendation problem as a visual retrieval problem dis-
regarding users’ historical feedbacks on items as well as other factors beyond
the visual dimension. The main novelty in [11], beside focusing on a novel
clothes recommendation scenario is to examine the visual appearance of the
items under investigation to overcome the ‘cold start’ problem.

– Video recommendation In the video domain, examples of target items in-
clude recommending movies, TV-series, movie clips, trailers, or user-generated
content. In [13,14,15,16], the authors propose a video RS that exploits visual
features complying with the mise-en-scene (stylistic aspect in a movie) and
incorporate it in different CBF and CBF+CF systems to show that their
proposed system can be replaced with similar systems using genre metadata
and user-generated tags (in some cases). The authors show the possibility
of utilizing such stylistic-based movie recommender systems in a real sys-
tem [17] also for children [18] or combined with user’s directly specified need
in the form of a query by visual example [19].

A newer version of the authors’ work [20] proposed advanced audio and vi-
sual descriptors originated from multimedia signal processing under a novel
rank-aware hybridization approach to significantly improve quality of tradi-
tional RS over metadata.

3.2 Approaches that use multimedia items as input

Multimedia content can not only be used for a particular media-item recom-
mendation (as illustrated above), but also there exists other applications where
a MM item is used only as the input of such systems, while in the output another
form of information is recommended. As listed in Table 1, we would like to call
such system MM-driven RS to highlight that the output can be a non-media
item. An example of such an application is provided below:

– POI recommendation by analyzing user-generated photos: [21] pro-
posed a personalized travel recommendation system by leveraging the rich
and freely available community-contributed photos and by considering de-
mographical information such as gender, age and race in user profiles in order
to provide effective personalized travel recommendation. The authors show
that consideration of such attributes is effective for travel recommendation
- especially providing a promising aspect for personalization. For this, the
authors discuss the correlation between travel patterns and people charac-
teristics by using information-theoretic measures.
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3.3 Other approaches

An interesting but less-investigated area of research in CB-MMRS is recom-
mending a piece of media (e.g., music) based on its association with other media
(e.g., image) with regards to the evoked emotions, user-generated tags or other
catalysts. For instance, [22] proposed a MMRS to automatically suggest music
based on a set of images (paintings). The motivation is that the affective content
of painting when harmonized with music can be effective for creating a fine art
sideshow referred to as emotion-based impressionism sideshow. Emotion is used
as the main enabler to find the association between the painting (input to the
system) and the music (the output) which is done using Mixed Media Graph
(MMG) model [23]. The proposed method uses a variety of visual features based
on color, light and textures from the painting images as well as acoustic features
such as melody, rhythm, tempo from the music where both categories of features
are known to be affecting emotions.

Visual contextual advertisement is another very related application field of
multimedia context in which the particular multimedia item currently being con-
sumed by the user (e.g., image or video) becomes the target for recommending
advertisements. The goal here is to build a semantic match between two het-
erogeneous multimedia sources (e.g., content of an image and the advertisement
in textual form). [24] proposed a visual contextual advertisement system that
suggests the most relevant advertisement for a given image without building a
textual relation between the two heterogeneous sources (i.e., it disregards the
tags associated with images). The authors mention that there exists two main
approaches for visual contextual advertisement: (1) based on image annotation,
(2) based on feature translation model. In the first case, a model is trained based
on a selection of labeled images which is leveraged to predict text on the test time
given a new image. Manual labeling of the items is required which makes the
approach prone to error or labor-intensive. The second approach builds a bridge
between the two visual and textual feature spaces through a translation model
and leveraging a language model to estimate the relevance of each advertise-
ment w.r.t a given target image. In [24] the authors propose a knowledge-driven
cross-media semantic matching framework that leverages two large high-quality
knowledge sources ImageNet (for image) and Wikipedia (for text). The image-
advertisement match is established in the respective knowledge sources.

3.4 Context-aware Recommendation

In context-aware or situation-aware recommender systems, which often enhance
information about user–item interactions by considering time [25], user activ-
ity [26], or weather [27], among others, multimedia data can be user to create
intermediate representations of items and match them with similar represen-
tations of context or users to effect recommendations. We exemplify this idea
with the recent research topic of emotion-based matching, more precisely, using
emotion information to match items to users and items to context entities.
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Emotion-based matching of items and users: Here, the goal is to select
items that match the target user’s affective state. Eliciting the user’s emotional
state can be effected by requesting explicit feedback or by analyzing multimedia
material, for instance, user-generated text [28], speech [29], or facial expressions
in video [6], or a combination of audio and visual cues in video [30,31]. Likewise,
describing items by affective terms can also be approached via content analysis.
For instance, in the music domain, this task is commonly known as music emotion
recognition (MER) [32]. Both tasks, i.e., inferring emotions from users and from
items, come with their particular challenges, for instance, high variations in the
intensity of users’ facial expressions or subjectivity of perceived emotions when
creating ground truth annotations of items. An even harder task, however, is
to connect users with items in the affectively intended way. To do so, knowing
about the target user’s intent is crucial.

In the music domain, three fundamental intents or purposes of music listening
have been identified [33]: self-awareness (e.g., stimulating a reflection of people
on their identity), social relatedness (e.g., feeling closeness to friends and ex-
pressing identity), and arousal and mood regulation (e.g., managing emotions).
Several studies found that affect regulation is the most important purpose why
people listen to music [33,34]. However, in which ways music preferences vary
as a function of a listener’s emotion, listening intent, and affective impact of
listening to a certain emotionally laden music piece is still not well understood,
and is further influenced by other psychological aspects such as the listener’s
personality [35].

Emotion-based matching of items and context entities: This task en-
tails the establishment of relationships between items and contextual aspects.
Affective information for items can again be elicited by multimedia analysis,
those of contextual entities — in this scenario most commonly location [36] or
weather [37] — by explicit user annotations. The recommender system then
regards the emotion assigned to the contextual entity as proxy for the user’s
emotion, and matches items and users correspondingly.

To give an example, the system proposed in [36] recommends music pieces for
locations (places of interest such as monuments). It uses emotions as intermediate
representations of both. Based on online questionnaires, a limited set of places
of interest are assigned affective labels. So are music pieces. Since the amount
of potentially suited music pieces is, however, much larger than the number of
interesting locations, an audio content-based auto-tagger for music [38] is trained
on a small set of annotated pieces, and is subsequently used to predict the
emotion tags for the remaining, unlabeled pieces. Recommendations for a target
user at a given location are then made by ranking all music pieces according
to the overlap (Jaccard coefficient) between their location and the location’s
affective labels.
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3.5 Sequence Recommendation

In certain domains, recommendation of coherent or meaningful item sequences
is preferred over recommendation of unordered item sets [39]. Examples include
recommending online courses or exercises for e-learning, video clips in media
streaming services, and automatic music playlist generation or continuation.

Recommending sequences of music pieces, i.e., playlists, is special for several
reasons, most importantly the typically short duration and consumption time,
the likely preference for repeated item consumption, and the strong emotional
impact of music (cf. Section 3.4).

Approaches to automatic playlist generation or continuation can either learn
directly from the sequences of items used for training, for instance, via sequential
pattern mining [40], Markov models [41], or recurrent neural networks [42,43].
Alternatively or additionally, such approaches can also take content features
into account. In the music domain, these descriptors may include tempo (beats
per minute), timbre, or rhythm patterns and can be extracted through audio
processing techniques. Other features relevant to describe music can be extracted
from images like album covers [44] or video clips [45], which renders the task a
multimedia content analysis problem. Using these content descriptors, playlists
can either be created by computing similarities between songs, albums, or artists,
or by defining constraints and creating the playlist in a way that fulfills these
(as much as possible). The former approach aims at building coherent playlists
in which consecutive tracks sound are as similar as possible, e.g., [46,47]. The
latter approach allows to define target characteristics, such as increasing tempo,
high diversity of artists, or fixed start and end song [48,49].

Additionally, combining sequence recommendation with context-aware rec-
ommendation (cf. Section 3.4), playlists can be created based on hybrid methods
that integrate the context of the listener and content-based similarity [50,51].

4 Conclusion and Future Work

In this work, we proposed a general definition of content-based multimedia rec-
ommender system (CB-MMRS). Moreover, we proposed a general recommen-
dation model of composite media objects, where the recommendation relies on
the computation of distinct utility values (for each media object) and a final
utility is computed by aggregating such values. Finally, we presented variety of
different applications where MM content is used not only as the target prod-
uct, rather analyzed in the input of the system or to model the user to provide
recommendation of various kinds of information.
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