
CONSTRAINTS IN A HYBRID KNOWLEDGE 
REPRESENTATION SYSTEM 

ff. W. Quesgen, U. Junker, A. Voss 
Expert Systems Research Group 

Gesellschaft fuer Mathematik 
und Datenverarbeitung (GMD) 

Postfach 1240 
D-5205 Sankt Augustin 1, F.R.G. 

Abstract 
In our research group, the hybrid knowledge 

representation system Babylon has been developed 
providing formalisms for rules, prolog and frames. 
Beyond it, we implemented Consat, a system for con­
straint satisfaction. Since applications of Babylon for 
process diagnosis, planning etc. required constraints. 
we integrated Consat into the Babylon environment. 

The paper describes the integration of Consat 
into Babylon, regarding two aspects. First, constraints 
should be available as another Babylon formalism by 
using the functional interface of Consat. On the other 
hand, it is important to have constraints implicitly 
controlling other Babylon formalisms, for instance, in 
order to keep the system's database consistent. While 
with respect to the first point, the paper describes 
work already finished, the second form of integration 
is work in progress. 

Keywords 
Constraints, hybrid knowledge representation, 

integration. 

1. Introduction 
Constraint networks are evolving as another style 

of knowledge representation beside rules, logic, 
frames, etc. in many domains such as qualitative rea­
soning and planning. A hybrid knowledge representa­
tion system called Babylon has been developed in our 
group at GMD Sankt Augustin [Forschungsgruppe 
Expertensysteme 1985], [diPrimio, Brewka 1985], that 
- so far - provides rules, prolog, and frames. However, 
Babylon is open to integrate any other formalisms 
which can be achieved by simple extensions of the sys­
tem. Currently, in our group a planning system, a 
knowledge acquisition system [Diederich et al. 1986], 
and a system for process diagnosis are being 
developed, all of which depend on the availability of 
some constraint mechanism (cf. Molgen [Stefik 1981] 
as a planning system using constraints, and [Davis 
1984] and [deKleer, Williams 1986] as diagnosis sys­
tems using constraints). Thus, there is an urgent need 
to extend Babylon to a constraint formalism. 

Independently from Babylon but with the pur­
pose of later integration, a constraint system called 
Consat [Guesgen 1986] has been developed. Consat 
allows to define hierarchical networks of domain 
independent constraints. The variables in a network 
can be assigned sets of values that are propagated to 
compute the maximal locally consistent assignment, 
the globally consistent assignments, or to detect an 
inconsistency in the original assignment. 

Due to the open-endedness of Babylon, integra­
tion of Consat as another formalism was straightfor­
ward. As a result, rules, prolog goals, frame instances 
with their slots and behaviors can be used in the 
definition of constraints. Vice versa, rules, prolog 
clauses, frames and behaviors can use constraint net­
works for the computation of relations or the detec­
tion of inconsistencies with resprect to some given 
values. 

Apart from having constraints symmetrically to 
the other formalisms, we would like to use them asym­
metrically as watching over the other formalisms: 

Babylon has a dynamic database containing 
frame instances, items produced by rules, and facts 
asserted by prolog. Insofar as these data may be inter­
preted as values of certain variables, the variables 
could be identified with the variables in some con­
straint network. Now if all data changes are implicitly 
passed to the constraint network, propagated therein, 
and the results are implicitly returned to the data­
base, we use the constraint network to watch the data 
of the other formalisms. 

This asymmetric use of constraints saves much 
explicit programming needed to maintain the con­
sistency of the database. It is particularly attractive in 
a hybrid system where very different types of data as 
produced from the different formalisms have to be 
maintained consistent. 

So far we know only one other hybrid system that 
provides constraints as a real knowledge representa­
tion formalism. It is the Socle system that combines 
constraints with a frame formalism [Harris 1986]. 
Other systems like ART, KEE, or Knowledge Craft use 
constraints only limited to the scope of single frame 
instances in order to express context sensitive res­
trictions on their slot values (cf. [Richer 1986]). 

The integration of Consat in Babylon has been 
completed with respect to the symmetric case and has 
been delivered as an experimental feature of Babylon 
release 2.0 in January '87. Immediately afterwards, we 
will implement the asymmetric integration for which 
currently only a restricted prototype with an interface 
to the frame formalism has been implemented [Junker 
1986]. 

2. Two systems as a starting point 
Before discussing the integration of Consat into 

Babylon we will consider the two systems separately in 
some more detail. 

30 ARCHITECTURES AND LANGUAGES 



2.1. The constraint system Consat 
Consat is a domain-independent constraint satis­

faction system [Guesgen 1986] allowing to propagate 
arbitrary symbolic values. 

A constraint establishes a relation between cer­
tain variables. In Consat, the relation may be defined 
extensionally by enumerating all tuples. The following 
example is extracted from the description of traffic 
lights with two fires: 

(defconstraint 
(:name inverse-state) 
(:type primitive) 
(interface firel fire2) 
(:relation (:tuple (on off)) (:tuple (off on)))), 

In Consat, constraints can also be defined inten-
sionaUy by functional expressions for all variables in 
terms of the other variables as in the following exam­
ple: 
(defconstraint 

(:name sum) 
(.type primitive) 
(.interface addentl addent2 sum) 
(xelation 

(.pattern (addentl addent2 (+ addentl addent2)) 
:if (constrained-p addentl addent2)) 

(:pattern (addentl (- sum addentl) sum) 
:if (constrained-p addentl sum)) 

(:pattern ((- sum addent2) addent2 sum) 
:if (constrained-p addent2 sum)))). 

The condition following :if ensures that, e.g., (+ 
addentl addent2) is computed only if the arguments 
are assigned a set of definite values. Thus, the func­
tional patterns may be conditioned. In extreme cases, 
the condition may play the role of a characteristic 
predicate for the relation: 

(defconstraint 
(:name greater) 
(:type primitive) 
(interface x y) 
(:relation (.pattern (x y) .if (< x y)))). 

Constraints can be composed to hierarchical net­
works of constraints. Figure 1 sketches the traffic 
lights of the crossing between 5th avenue and 32nd 
street. 

Fig. 1: Crossing between 5th avenue and 32nd street. 

The corresponding constraint network can be 
defined using eight variables, one for each fire: 

(defconstraint 
(:name traffic-lights) 
(:type compound) 
(interface 

tl-ave-n-red tl-ave-n-green 
tl-ave-s-red tl-ave-s-green 
tl-st-e-red tl-st-e-green 
tl-st-w-red tl-st-w-green) 

(xonstraint-expressions 
(inverse-state tl-ave-n-red tl-ave-n-green) 
(inverse-state tl-ave-s-red tl-ave-s-green) 
(inverse-state tl-st-e-red tl-st-e-green) 
(inverse-state tl-st-w-red tl-st-w-green) 
(same-state tl-ave-n-red tl-ave-s-red) 
(same-state tl-st-e-red tl-st-w-red) 
(inverse-state tl-ave-n-red tl-st-e-red))). 

Constraints have been used to filter sets of values 
assigned to the variables (cf. Waltz's filtering in scene 
analysis [Waltz 1972]), and to compute new values 
from given ones as, e.g., in electrical circuit analysis 
[Stallman, Sussman 1977]. Consat supports both 
aspects by allowing sets of values to propagate in two 
modes (terminology is taken from [Voss 1987]): 

1. Given the definition of a constraint network 
and an initial assignment of value sets to the variables 
of the network, the system can compute the maximal 
locally consistent assignment by local propagation. 
For example, the expression 

(satisfy traffic-lights :locally 
:with tl-ave-n-green = 'on) 

evaluates to 
((tl-ave-n-red off) (tl-ave-n-green on) 
(tl-ave-s-red off) (tl-ave-s-green on) 
(tl-st-n-red on) (tl-st-n-green off) 
(tl-st-s-red on) (tl-st-s-green off)). 

This is a unique assignment which describes the situa­
tion already shown in figure 1. 

If one of the variables is assigned the empty set 
as a result of local propagation, the network is incon­
sistent with respect to the initial assignment. 

2. Given a network and an initial assignment to 
the variables of the network, the system can compute 
one, a specific number or all globally consistent 
assignments by local propagation, tentative assump­
tions and backtracking. If such an assignment does 
not exist, the initial assignment following the keyword 
:with has been inconsistent and nil is returned. In the 
preceding example, the globally consistent solution is 
identical with the locally consistent solution, because 
all variables are uniquely determined. In general, a 
locally consistent assignment is only an approximation 
containing the globally consistent solution (cf. 
[Freuder 1978]). 

Summarizing, we observe that Consat supports a 
purely functional view: After computing the final 
assignments for the variables, all values are forgotten. 
In contrast to [Steele 1980], there is no way to restrict 
and propagate values in the network incrementally. As 
a consequence, no reason maintenance system is 
needed in Consat. With regard to the integration of 
Consat in Babylon, we wanted to avoid double work: In 
Babylon, we can use frame instances to record the 
state of the network. 

2.2. The Babylon philosophy of integration 
Babylon is a knowledge representation system 

that is open to integrate arbitrary knowledge 
representation formalisms [diPrimio et al. 1986],[Chri-
staller et al. 1986]. This open-endedness is achieved 
by having separate interpreters for each formalism 
which do not know from one another. Instead they 
know a meta interpreter that is responsible for all 
communications. 

So far, Babylon provides a frame formalism with 
multiple inheritance and active values, prolog, and a 

Guesgen, Junker, and Voss 31 



rule formalism without variables but with optional for­
ward and backward chaining strategies. 

In order to integrate a new formalism like con­
straints or a database language, we just have to pro­
vide an interpreter for the new formalism and inform 
the meta interpreter in a so-called processor mixin 
about the new types of Babylon expressions to be 
encountered in the other formalisms. 

3. Integration of Consat in Babylon 
Planning to integrate constraints in Babylon, 

there was an obvious solution offered by Babylon's 
open-endedness to new formalisms. We will first dis­
cuss this solution of adding constraints as another 
formalism before we turn to an alternative where we 
have constraints silently controlling the other formal­
isms. 

3.1. Constraint* as another Babylon formalism 
According to section 2.2, we can integrate the 

constraint formalism into Babylon by 
establishing the Consat interpreter as a new 
language processor, 
introducing satisfy expressions calling Consat's 
two propagation functions as new types of 
Babylon expressions. 
Now, we can use constraints in rules, prolog 

clauses, and behaviors of frames. For example, we 
could write a rule reacting to the inconsistent assign­
ment detected by the traffic-lights network from sec­
tion 2.1: 

((Sand (not (satisfy traffic-lights :globally 
.with tl-ave-n-green = 'on 

tl-st-e-green = 'on)) 
...further conditions...) 

(Sexecute (handle-inconsistency))). 
The consistency check is a meaningful application 

of constraints in rules. Besides, in the prolog formal­
ism we can bind the result of constraint propagation 
to prolog variables for further processing in that for­
malism: 

(is _va (satisfy traffic-lights :locally 
:with tl-ave-n-green = 'on) 

(candidate _va tl 1 = tl-st-e-red 
_tl2 = tl-st-e-green) 

In the first clause, the variable _va is bound to 
the maximal locally consistent assignment, which is 
used in the candidate clause to assign the elements of 
the value sets successively to the specified prolog vari­
ables. In our example, the candidate clause results in 
binding 111 to on and _J.12 to off. If backtracking 
occurs, the candidate clause would result in fail, since 
the maximal locally consistent assignment is unique. 

Beside using constraints in other formalisms, we 
can use the other formalisms in order to define con­
straints. In particular, we can use slots and behaviors 
of frames in the functional expressions of the :pattern 
construct, and prolog goals as conditions following 
the keyword :if. 

3.2. Constraints watching other Babylon formalisms 
The integration of constraints as a new Babylon 

formalism is not satisfactory due to the functional 
interface of Consat. Thus, it is difficult to impose any 
constraints on the slot values of a frame instance (as 

e.g. in ART, KEE, or Knowledge Craft), because these 
constraints should be attached permanently to the 
slots and they should be invoked implicitly whenever a 
slot value is about to change. For example, we would 
like to define a frame traffic-light with two slots for 
the fires and the inverse-state constraint keeping 
them consistent. 

We could extend this example to a crossing frame 
with four slots for the four traffic lights (and another 
slot to remember the time of the last switch). To keep 
the traffic lights consistent, we would like to attach 
traffic-lights-constraints similar to the traffic-lights 
constraint in section 2.1 to all instances of the frame, 
(defframe traffic-light 

(slots (red-fire - :possible-values (:one-of on off)) 
...further slots...)) 

(defframe crossing 
(slots (tl-ave-n -

.possible-values (instance-of traffic-light)) 
...further slots...)) 

(attach-constraints 
(:name traffic-lights-constraints) 
(.attachments 
(:for-all tl = (instances-of traffic-light) 

(inverse-state (tl red-fire) (tl green-fire))) 
(:for-all xing = (instances-of crossing) 

(same-state ((xing tl-ave-n) red-fire) 
((xing tl-ave-s) red-fire)) 

(same-state ((xing tl-st-e) red-fire) 
((xing tl-st-w) red-fire)) 

(inverse-state ((xing tl-ave-n) red-fire) 
((xing tl-st-e) red-fire))))) 

Now, given the crossing 5th-ave-32nd-st from 
figure 2.1 as an instance of the crossing frame, what 
do we expect from attaching the traffic-lights-
constraints? We could write some rules to regulate the 
traffic lights of the crossing depending on the cars in 
the street and in the avenue, and depending on the 
time elapsed since the last switch, for example: 

(rule4 (Sand (car-in-ave 5th-ave-32nd-st) 
(car-in-st 5th-ave-32nd-st) 
(green-phase 5th-ave-32nd-st avenue 1)) 

(Sexecute 
(<- 5th-ave-32nd-st :let-thru 'street))) 

The rule uses the prolog goals car-in-ave, car-in-
st and green-phase, which reflect the situation in the 
avenue and in the street, respectively. When the rule 
fires, the expression (<- 5th-ave-32nd-st :let-thru 
street) is evaluated, executing the behavior :let-thru, 

which translates its parameter street into the traffic 
light tl-st-e. If the green fire is not yet on, it is 
switched, and all other fires are reset to undeter­
mined, thereby triggering the traffic lights con­
straints. The new values - on for green-fire of tl-st-e 
and undetermined for all other fires - are propagated. 
The result, a definite state on or off for each fire, is 
assigned implicitly to all fires of all traffic lights in our 
crossing, so that a new consistent state is obtained. 

In the context of Babylon, the idea of using con­
straints to watch the data of another formalism 
should be generalized in a way that is open to arbi­
trary other future formalisms of Babylon. The key of 
such a generalization is to introduce the new concept 
of a Babylon variable. A Babylon variable is a con­
struct in some Babylon formalism that can be mean­
ingfully associated with a value. For example, a 
Babylon variable in the rule formalism could be any 
text like "Peter is sick" that can be asserted or 

32 ARCHITECTURES AND LANGUAGES 



negated in the database and thus can be interpreted 
as a Boolean variable. A Babylon variable in prolog 
could be any fact that can or cannot be derived from 
the current database and thus can also be interpreted 
as a Boolean variable. 

Allowing arbitrary Babylon variables in the 
attach-constraints construct, we can impose con­
straints between very different data emerging from 
the different formalisms. 

Having attached a constraint network to certain 
Babylon variables, demons must be installed for each 
of them. This task should be left to the interpreters of 
the variables' formalisms according to the idea that 
the individual interpreters should not know each 
other. Whenever a Babylon variable shall be changed, 
its demon must inform the constraint interpreter - of 
course via the meta interpreter. The constraint inter­
preter then must collect the current values of all 
Babylon variables that are in the same network as the 
one to be changed. This is again achieved via the 
meta interpreter. The collected values are propagated 
to compute the maximal locally consistent assign­
ment. This assignment determines a set of values for 
each Babylon variable in the network which is 
returned - via the meta interpreter - to the inter­
preters of the variables' formalism. Processing these 
values is again left to the individual interpreters since 
different reactions may be meaningful in different for­
malisms. For example, reactions to an empty assign­
ment may be to suppress the intended change of 
values or to ask the Babylon user. Or, if local propaga­
tion returns not a simple value but a set of definite 
values, this set may simply be forgotten or stored in 
some appropriate place: In the case of frames, the set 
of values may be stored in the :possible-values pro­
perty, which is available for each slot. 

4. Conclusion 
We have presented two systems, the constraint 

satisfaction system Consat and the hybrid knowledge 
representation system Babylon. There are two compa­
tible ways of integrating Consat into Babylon: Firstly, 
as another knowledge representation formalism beside 
rules, prolog, and frames, and secondly, as a mechan­
ism watching over the other formalisms. The integra­
tion is realized according to the philosophy of 
Babylon, so that the next formalism to be added to 
Babylon - say a database language - can at once use 
constraint expressions as a special type of Babylon 
expressions or can be watched by attached constraint 
networks. 

We already mentioned that, so far, we only know 
of one other hybrid system that provides constraints 
as another knowledge representation formalism. But 
in the Socle system [Harris 1986], constraints are 
combined only with a frame formalism, not with rules 
or prolog as in Babylon. The constraint component of 
Socle differs from Consat in having networks with a 
state so that constraints can be stepwise restricted 
and retracted. This rises much more problems since 
both, the state of the network and that of the frame 
objects, have to be kept consistent. Integrating Consat 
into Babylon was easier due to the purely functional 
interface of Consat. On the other hand, being 
integrated into Babylon, Consat profits from all 
features offered in Babylon. For example, constraint 
networks can be made permanent by attaching them 
to permanent data from other formalisms, in particu­
lar to frame instances. As another example, a reason 

maintenance component, which is being planned for 
Babylon, will also be available for Consat in Babylon. 

The integration of Consat in Babylon has already 
been accomplished for the symmetric case and is 
available since January 1987 in release 2.0 of Babylon. 
The asymmetric case has been implemented prototypi-
cally with an interface to the frame formalism only 
[Junker 1986]. Implementation of the full feature will 
start in January'87, parallel to the implementation of 
the process diagnosis system which we consider as a 
major application test of our integration of con­
straints in Babylon. 

5. Acknowledgements 
We thank all members of our group for their con­

tributions to this paper. Special thanks to Ursula 
Bernhard who read former versions of the paper. 

6. References 

T. Christaller, E. Gross. B.S. Mueller, E. Rome, J. Walther. 
Softwareentwurf und Realisierung des Expertensystem-
Werkzeugs BABYLON mit Hilfe obiektorientierter Program-
mierung. Proceedings of the GI-88, 1986. 
R. Davis. Diagnostic Reasoning Based on Structure and 
Behavior. Artificial Intelligence 24 (347-410), 1984. 
J. Diederich, I. Ruhmann, M. May. KRITON: A Knowledge 
Acquisition Tool for Expert Systems. Proceedings of the 
AAAI-Workshop: Knowledge Acquisition for Knowledge Based 
Systems, 1986. 
Forschungsgruppe Expertensysteme. BABYLON-
Referenzhandbuch. GMD, 1985. 
E. C. Freuder. Synthesizing Constraint Expressions. Com­
munications of the ACM. VoL21, No.l 1 (958-988). 1978. 
H.W. Guesgen. CONSAT - Foundations of a System for Con­
straint Satisfaction. GMD. 1986. 
DR. Harris. A Hybrid Structured Object and Constraint 
Representation Language. Proceedings of the AAAI-86 
(986-990), 1986. 
U. Junker. Integration des Constraint-Systems CONSAT in 
das Werkzeugsystem BABYLON. GMD. 1986. 
J. deKleer. B.C. Williams. Diagnosing Multiple Faults. 
Proceedings of the AAAI-86. 
F. diPrimio, G. Brewka. Babylon: Kernel System of an 
Integrated Environment for Expert Systems Development 
and Operation. Proceedings of the Fifth International 
Workshop on Expert Systems and their Applications, Avig­
non, 1985. 
F. diPrimio, G. Brewka, K. Wittur. Integration of Formalisms 
in Babylon. GMD. 1986. 
M.H. Richer. An Evaluation of Expert System Development 
Tools. Expert Systems. Vol.3. No.3. 1986. 
R. M. Stallman, G. J. Sussman. Forward Reasoning and 
Dependency-Directed Backtracking in a System for 
Computer-Aided Circuit Analysis. Artificial Intelligence 9 
(135-196). 1977. 
G. L. Steele. The Definition and Implementation of a Com­
puter Programming Language Based on Constraints. MIT. 
1980. 
M. Stefik. Planning with Constraints (MOLGEN: Part 1). 
Artificial Intelligence 16(111-140), 1981. 
A. Voss, H. Voss. A Uniform View on Local Constraint Propa­
gation Methods. Proceedings of the K1FS-87, 1987. 
D. L. Waltz. Generating Semantic Descriptions from Draw­
ings of Scenes with Shadows. MIT, 1972. 

Guesgen, Junker, and Voss 33 


