Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal
Abstract
:1. Introduction
2. Spectral Modulation for CS with LC
3. Reconstruction Process
Dictionary for Sparse Representation
4. Compressive Hyperspectral and Ultra-Spectral Imaging
4.1. Camera Calibration
4.2. Staring Mode
4.3. Scanning Mode
5. 4D Imaging
6. Target Detection
7. Discussion
8. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schott, J.R. Remote Sensing: The Image Chain Approach; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Eismann, M.T. Hyperspectral Remote Sensing; SPIE PRESS: Bellingham, WA, USA, 2012. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Akbari, H.; Halig, L.; Schuster, D.M.; Fei, B.; Osunkoya, A.; Master, V.; Nieh, P.; Chen, G. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 2012, 17, 076005. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Calin, M.A.; Parasca, S.V.; Savastru, D.; Manea, D. Hyperspectral imaging in the medical field: Present and future. Appl. Spectrosc. Rev. 2014, 49, 435–447. [Google Scholar] [CrossRef]
- Sun, D.W. Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press/Elsevier: San Diego, CA, USA, 2010. [Google Scholar]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- ElMasry, G.; Kamruzzaman, M.; Sun, D.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Beveridge, P.; O’Hare, W.T.; Islam, M. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains. Sci. Justice 2014, 54, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Messinger, D.W.; Dube, R.R. Bloodstain detection and discrimination impacted by spectral shift when using an interference filter-based visible and near-infrared multispectral crime scene imaging system. Opt. Eng. 2018, 57, 033101. [Google Scholar] [CrossRef]
- Brook, A.; Ben-Dor, E. A spatial/spectral protocol for quality assurance of decompressed hyperspectral data for practical applications. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Li, C.; Sun, T.; Kelly, K.F.; Zhang, Y. A compressive sensing and unmixing scheme for hyperspectral data processing. IEEE Trans. Image Process. 2012, 21, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- August, Y.; Vachman, C.; Stern, A. Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging. In Compressive Sensing II, Proceedings of the SPIE Defense, Security, and Sensing 2013, Baltimore, MD, USA, 29 April–3 May 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8717. [Google Scholar]
- Willett, R.M.; Duarte, M.F.; Davenport, M.; Baraniuk, R.G. Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection. IEEE Signal Process Mag. 2014, 31, 116–126. [Google Scholar] [CrossRef]
- Parkinnen, J.; Hallikainen, J.; Jaaskelainen, T. Characteristic spectra of surface Munsell colors. J. Opt. Soc. Am. A 1989, 6, 318–322. [Google Scholar] [CrossRef]
- August, Y.; Vachman, C.; Rivenson, Y.; Stern, A. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. Appl. Opt. 2013, 52, D46–D54. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Yitzhak, A.; Farber, V.; Oiknine, Y.; Rivenson, Y. Hyperspectral Compressive Imaging. In Proceedings of the 2013 12th Workshop on Information Optics (WIO), Puerto de la Cruz, Spain, 15–19 July 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Lin, X.; Wetzstein, G.; Liu, Y.; Dai, Q. Dual-coded compressive hyperspectral imaging. Opt. Lett. 2014, 39, 2044–2047. [Google Scholar] [CrossRef] [PubMed]
- Arce, G.R.; Brady, D.J.; Carin, L.; Arguello, H.; Kittle, D.S. Compressive coded aperture spectral imaging: An introduction. IEEE Signal Process Mag. 2014, 31, 105–115. [Google Scholar] [CrossRef]
- Stern, A. Optical Compressive Imaging; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Golub, M.A.; Averbuch, A.; Nathan, M.; Zheludev, V.A.; Hauser, J.; Gurevitch, S.; Malinsky, R.; Kagan, A. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser. Appl. Opt. 2016, 55, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Arce, G.R.; Rueda, H.; Correa, C.V.; Ramirez, A.; Arguello, H. Snapshot compressive multispectral cameras. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–22. [Google Scholar] [CrossRef]
- Saragadam, V.; Wang, J.; Li, X.; Sankaranarayanan, A.C. Compressive spectral anomaly detection. In Proceedings of the 2017 IEEE International Conference on Computational Photography (ICCP), Stanford, CA, USA, 12–14 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ma, X.; Xu, T.; Arce, G.R. Compressive spectral imaging system based on liquid crystal tunable filter. Opt. Express 2018, 26, 25226–25243. [Google Scholar] [CrossRef]
- August, Y.; Stern, A. Compressive sensing spectrometry based on liquid crystal devices. Opt. Lett. 2013, 38, 4996–4999. [Google Scholar] [CrossRef]
- August, I.; Oiknine, Y.; AbuLeil, M.; Abdulhalim, I.; Stern, A. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder. Sci. Rep. 2016, 6, 23524. [Google Scholar] [CrossRef] [Green Version]
- Yariv, A.; Yeh, P. Optical Waves in Crystals; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781107005587. [Google Scholar]
- Bioucas-Dias, J.M.; Figueiredo, M.A. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 2007, 16, 2992–3004. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef]
- Wright, S.J.; Nowak, R.D.; Figueiredo, M.A. Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 2009, 57, 2479–2493. [Google Scholar] [CrossRef]
- Li, C.; Yin, W.; Zhang, Y. User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms. CAAM Rep. 2009, 20, 46–47. [Google Scholar]
- Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Zickler, T. Statistics of real-world hyperspectral images. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 193–200. [Google Scholar] [CrossRef]
- Oiknine, Y.; Arad, B.; August, I.; Ben-Shahar, O.; Stern, A. Dictionary based hyperspectral image reconstruction captured with CS-MUSI. In Proceedings of the 2018 9nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018. [Google Scholar]
- Pudil, P.; Novovičová, J.; Kittler, J. Floating search methods in feature selection. Pattern Recognit. Lett. 1994, 15, 1119–1125. [Google Scholar] [CrossRef]
- Arad, B.; Ben-Shahar, O. Sparse Recovery of Hyperspectral Signal from Natural RGB Images. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 19–34. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L. USGS Spectral Library Version 7. USGS 2017, 1035, 61. [Google Scholar] [CrossRef]
- Oiknine, Y.; August, I.; Stern, A. Along-track scanning using a liquid crystal compressive hyperspectral imager. Opt. Express 2016, 24, 8446–8457. [Google Scholar] [CrossRef]
- Reddy, B.S.; Chatterji, B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 1996, 5, 1266–1271. [Google Scholar] [CrossRef]
- Stern, A.; Kopeika, N.S. Motion-distorted composite-frame restoration. Appl. Opt. 1999, 38, 757–765. [Google Scholar] [CrossRef]
- Usama, S.; Montaser, M.; Ahmed, O. A complexity and quality evaluation of block based motion estimation algorithms. Acta Polytech. 2005, 45, 29–41. [Google Scholar]
- Oiknine, Y.; August, Y.I.; Revah, L.; Stern, A. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system. In Compressive Sensing V: From Diverse Modalities to Big Data Analytics, Proceedings of the SPIE Commercial + Scientific Sensing and Imaging 2016, Baltimore, MD, USA, 17–21 April 2016; SPIE: Bellingham, WA, USA, 2016; Volume 985705. [Google Scholar] [CrossRef]
- Farber, V.; Oiknine, Y.; August, I.; Stern, A. Compressive 4D spectro-volumetric imaging. Opt. Lett. 2016, 41, 5174–5177. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Farber, V.; Oiknine, Y.; August, I. Compressive hyperspectral synthetic aperture integral imaging. In 3D Image Acquisition and Display: Technology, Perception and Applications; Paper DW1F. 1; Optical Society of America (OSA): Washington, DC, USA, 2017. [Google Scholar]
- Farber, V.; Oiknine, Y.; August, I.; Stern, A. 3D reconstructions from spectral light fields. In Three-Dimensional Imaging, Visualization, and Display 2018, Proceedings of the SPIE Commercial + Scientific Sensing and Imaging 2018, Orlando, Florida, USA, 15–19 April 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10666. [Google Scholar] [CrossRef]
- Farber, V.; Oiknine, Y.; August, I.; Stern, A. Spectral light fields for improved three-dimensional profilometry. Opt. Eng. 2018, 57, 061609. [Google Scholar] [CrossRef]
- Lippmann, G. Epreuves reversibles Photographies integrals. C. R. Acad. Sci 1908, 146, 446–451. [Google Scholar]
- Arimoto, H.; Javidi, B. Integral three-dimensional imaging with digital reconstruction. Opt. Lett. 2001, 26, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Javidi, B. Three-dimensional image sensing, visualization, and processing using integral imaging. Proc. IEEE 2006, 94, 591–607. [Google Scholar] [CrossRef]
- Hong, S.; Jang, J.; Javidi, B. Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Express 2004, 12, 483–491. [Google Scholar] [CrossRef]
- Aloni, D.; Stern, A.; Javidi, B. Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization. Opt. Express 2011, 19, 19681–19687. [Google Scholar] [CrossRef]
- Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.; Martínez-Corral, M. Free-depths reconstruction with synthetic impulse response in integral imaging. Opt. Express 2015, 23, 30127–30135. [Google Scholar] [CrossRef]
- Busuioceanu, M.; Messinger, D.W.; Greer, J.B.; Flake, J.C. Evaluation of the CASSI-DD hyperspectral compressive sensing imaging system. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, Proceedings of the SPIE Defense, Security, and Sensing 2013, Baltimore, MD, USA, 29 April–3 May 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8743. [Google Scholar] [CrossRef]
- Gedalin, D.; Oiknine, Y.; August, I.; Blumberg, D.G.; Rotman, S.R.; Stern, A. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system. Opt. Eng. 2017, 56, 041312. [Google Scholar] [CrossRef]
- Oiknine, Y.; Gedalin, D.; August, I.; Blumberg, D.G.; Rotman, S.R.; Stern, A. Target detection with compressive sensing hyperspectral images. In Image and Signal Processing for Remote Sensing XXIII, Proceedings of the SPIE Remote Sensing, 2017, Warsaw, Poland, 11–14 September 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10427. [Google Scholar]
- Caefer, C.E.; Stefanou, M.S.; Nielsen, E.D.; Rizzuto, A.P.; Raviv, O.; Rotman, S.R. Analysis of false alarm distributions in the development and evaluation of hyperspectral point target detection algorithms. Opt. Eng. 2007, 46, 076402. [Google Scholar] [CrossRef]
- Bar-Tal, M.; Rotman, S.R. Performance measurement in point source target detection. In Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 7–8 March 1995; pp. 3.4.6/1–3.4.6/5. [Google Scholar] [CrossRef]
- Skauli, T.; Farrell, J. A collection of hyperspectral images for imaging systems research. In Digital Photography IX, Proceedings of the IS&T/SPIE Electronic Imaging, Burlingame, CA, USA, 3–7 February 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8660. [Google Scholar] [CrossRef]
- Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on 26 October 2018).
- Fellgett, P. The Multiplex Advantage. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1951. [Google Scholar]
- Oiknine, Y.; August, I.; Stern, A. Compressive spectroscopy by spectral modulation. In Optical Sensors 2017, Proceedings of the SPIE Optics + Optoelectronics, 2017, Prague, Czech Republic, 24–27 April 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10231. [Google Scholar] [CrossRef]
- Oiknine, Y.; August, I.; Blumberg, D.G.; Stern, A. Compressive sensing resonator spectroscopy. Opt. Lett. 2017, 42, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Oiknine, Y.; August, I.; Blumberg, D.G.; Stern, A. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator. J. Opt. 2018, 20, 044011. [Google Scholar] [CrossRef] [Green Version]
- Oiknine, Y.; August, I.; Stern, A. Multi-aperture snapshot compressive hyperspectral camera. Opt. Lett. 2018, 43, 5042–5045. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oiknine, Y.; August, I.; Farber, V.; Gedalin, D.; Stern, A. Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal. J. Imaging 2019, 5, 3. https://doi.org/10.3390/jimaging5010003
Oiknine Y, August I, Farber V, Gedalin D, Stern A. Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal. Journal of Imaging. 2019; 5(1):3. https://doi.org/10.3390/jimaging5010003
Chicago/Turabian StyleOiknine, Yaniv, Isaac August, Vladimir Farber, Daniel Gedalin, and Adrian Stern. 2019. "Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal" Journal of Imaging 5, no. 1: 3. https://doi.org/10.3390/jimaging5010003
APA StyleOiknine, Y., August, I., Farber, V., Gedalin, D., & Stern, A. (2019). Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal. Journal of Imaging, 5(1), 3. https://doi.org/10.3390/jimaging5010003