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Abstract. This paper describes “cranking”, a new committee formation al-
gorithm. Cranking results in accurate and reliable committee predictions, even
when applied to complex industrial tasks. Prediction error estimates are used to
rank a pool of models trained on bootstrap data samples. The best are then used to
form a committee. This paper presents a comparison of prediction error estimates
that may be used for the ranking process. In addition, it showshow the influenceof
poor models, due to training being unreliable, may be minimised. Experiments are
carried out on an artificial task, and a real-world, decision-support task taken from
the papermaking industry. In summary, this paper studies committee formation
for accurate and reliable neural prediction in industrial tasks.

1. Introduction

Model selection techniques may be used for the formation of neural network com-
mittees to achieve accuracy and reliability. For multi-layered perceptrons, and other
neural network architectures, training is frequently unreliable, finding poor solutions
or failing. Prediction error estimation techniques are similarly affected, leading to
high predictive loss [2]. These concerns are particularly relevant when neural network
algorithms are applied to complex industrial tasks, typically characterised by noisy
and sparse data. Such problems may be non-stationary with frequent retraining being
necessary. A fully-automated training process is essential for real-time, in-house in-
dustrial use of neural technology, as most traditional industries cannot, and will not,
employ an engineer with neural expertise. It is therefore vital that the influence of
poor quality models be minimised. In this paper we describecranking (committee
ranking), a committee formation algorithm that addresses the issue of model reliability
for application to complex industrial tasks.

The motivation for this work comes from a specific need for accurate and reliable
quality prediction in the papermaking industry. In particular we considerpaper-curl.
Paper-curl is an important quality measure, where bad (high) curl is a major cause
of customer dissatisfaction. High curl may result in expensive reprocessing, wasting
time, energy and materials. High paper-curl is the major cause of sheet feeding
problems in laser printers and photocopiers [11]. In [5, 6] we describe work carried
out to develop a neural network predictor of curl. The model may be used to predict
curl prior to manufacture, allowing process adjustments to be made. The quantity of
paper exhibiting bad curl may thus be reduced, as may wasted plant time, engineering
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time and energy. This task is non-stationary hence frequent retraining is necessary. In
addition, data collection is difficult and expensive leading to data that are sparse and
noisy.

The use of a committee of artificial neural network models improves prediction
accuracy and reliability [1, 5, 4]. Performance is most improved over that of an
individual model if the model outputs are uncorrelated (or “ambiguous”) [10]. Output
ambiguity, or model diversity can be achieved in a number of ways. The majority
of earlier work suggests that varying the constitution of training data sets is most
effective [14]. In general, committees provide more accurate and reliable predictive
performance than single network predictors. There are intuitive justifications for
this. Firstly, neural network training has an inherently stochastic component, as a
small change in the data can create a dramatically-different single-network solution.
Within a committee the influence of poor models may be minimised. Also, combining
networks that exhibit uncorrelated outputs reduces statistical variance in prediction,
while leaving bias unchanged [10]. For practical tasks, the use of committees often
leads to significant performance improvement. For example, Breiman achieves an
average of 20% improvement in performance, applying decision trees to benchmark
classification problems [1].

This paper presents a new method for achieving neural network predictions for
complex industrial tasks. Predictions are optimised for accuracy and reliability using a
method of neural network committee formation called “cranking” (committee ranking).
Implicit to this algorithm is the need for model selection and we compare different
techniques for prediction error estimation on two tasks, one artificial the other real.
Results from experiments using the cranking algorithm are presented and discussed.

2. Cranking

In cranking, models are trained using bootstrap subsamples of the training dataset to
introduce diversity into an initial population. Each of these models are ranked in terms
of their quality based on prediction error estimates. Cranking, or committee ranking,
relies upon selecting the best models in terms of estimates of prediction error, from the
initial population. By selecting the best models the influence of others, where training
has performed poorly or failed, will be minimised. The outputs of the best models are
aggregated to form a committee prediction or output.

To rank the models a model selection method is required. In this paper we present
a comparison of possible techniques. As each model in the initial population is trained
on a bootstrap subsample, out-of-sample patterns are available and these may be
used for prediction error estimation, as suggested by Heskes [9]. In comparison, the
simplest measure that may be used is the training error, referred to as the Apparent
Prediction Error (APE). This generally performs poorly and is included as a control
case. We compare this with the Bayesian Information Criterion (BIC) [13], that
adjusts the APE to compensate for over-training. These two methods may be used on
individual networks. Other more robust techniques that use multiple models are also
considered: 10-fold cross-validation (CV(10)) [15]; and the naive and .632 bootstrap
[7]. We note here that many other techniques exist. These have been selected as
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being a representative cross-section of the field, while also being among the more
popular techniques. For reviews and more details of these, and other, techniques see
the referenced papers and [7, 3].

3. Experiments

The first task used in the experiments is an artificial benchmark problem proposed
by Friedman [8] and used widely in the machine learning literature. There are five
observable variables,x1; x2; : : : ; x5 and the task is to model the function :-

y = 10 sin(�x1x2) + 20(x3� 0:5)2 + 10x4 + 5x5 + �;

wherex1; x2; : : : ; x5 are generated randomly from uniform distributions [0,1] and�

is distributed normallyN (0,1). In common with Breiman [1] we use 200 samples
for training and use a further 1000 for testing. For this regression task multi-layer
perceptrons with four sigmoidal hidden units were used. Training was carried out
using approximate Bayesian inference via the evidence framework [12].

The second task ispaper-curl prediction, as described above. Typical of industrial
tasks, this prediction problem is characterised by data that are noisy and sparse.
Training is therefore difficult and typically unstable, where a small change in the data
leads to a large change in the solution. The use of committees is essential in such
applications. In our experiments, eleven parameters related to the manufacture of a
roll of paper were used to predict the resulting level of curl, which is measured and
predicted on an arbitrary scale of 0<= curl<=90. 448 data are used for training and
224 as a test set. The regression task was solved via multi-layer perceptron networks
with twelve sigmoidal hidden units. Training was again carried out using the evidence
framework.

For both tasks training data was sampled via the bootstrap algorithm and the out-
of-bag samples were used as a validation set for early stopping. When training via the
evidence framework, this is a pragmatic approach as theoretically no early stopping
is necessary. However in our experiments, especially for paper-curl prediction, early
stopping proved beneficial. We believe this to be attributable to numerical instability
in the evidence framework calculations.

4. Results

In this section results are presented comparing prediction error estimation techniques
for the two tasks, and showing how cranking may be used to reduce the influence of
poor models in a committee.

Comparison of prediction error estimates for committee formation

Experiments were performed to assess the accuracy of prediction error estimates
calculated using Heskes’ out-of-sample bootstrap technique [9]. Alternative methods
were calculated for comparison purposes. They included the APE, the BIC, the CV(10)
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Figure 1: A comparison of different prediction error estimation techniques for use in
committee formation. The error bars indicate plus/minus one standard deviation.

measure, the naive bootstrap and the .632 bootstrap. In Heskes’ method, a bootstrap
data sample is used to train a network, with the out-of-sample data used for early
stopping (via a validation set) and also to estimate prediction error. A further 39
networks were then used to adjust this estimate for bias due to the sampling split1.
Each of the other prediction error estimation methods were applied to the first model
(using the same sampled data where necessary). For the naive and .632 bootstrap
methods, 40 replicates were used. For the CV(10) measure 4 models were trained
on each partition of the data so that a total of 40 networks were used. For the two
statistical based methods, the average prediction error estimate over 40 networks was
obtained. The results of the experiments are shown in Figure 1, where the percentage
error is the difference between the measure in question and the error calculated from
a further test dataset.

The results show that while each of the methods perform relatively well for the
artificial Friedman task (apart from APE which was included as a worst case control
experiment), for real industrial data a more robust approach, such as the CV(10) meas-
ure or one of the bootstrap techniques, is necessary. Where out-of-sample data are not
available then the .632 bootstrap or 10-fold cross validation may prove effective. For
the purpose of committee formation here, however, out-of-sample data are implicitly
available and Heskes’ bootstrap method makes optimal use of them to provide the
most accurate and reliable measures.

Committee formation using cranking

Experiments were carried out to assess cranking as a method of committee forma-
tion. 800 models were trained using bootstrap samples of the dataset. Of theseM

1It should be noted that prediction error estimates were also available for each of the other 39 networks
making this method extremely efficient for committee formation.
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Figure 2: Graphs showing the effect on performance improvement of removing the
models with highest prediction error from the committee. The error bars indicate
plus/minus one standard deviation. Graph a) shows the results for the Friedman data
and graph b) shows the results for paper-curl prediction.

were selected at random and ranked using out-of-sample bootstrap prediction error
estimates. Unweighted averaged committees were then formed using the bestC of
theM networks, where C was increased from 5% to 100% (forM=100 and 200).
This was repeated 400 times for both the tasks and the results are shown in Figure 2.
The results show percentage improvement in performance over that of the average
individual model.

The results show that by using only the best 10-20% of the models improved
performance may be seen over the case of bagging (where no models are rejected). For
the Friedman data the improvement is dramatic (up to 10–11%). For curl prediction the
improvement is less marked (up to 1.5–2%), but still significant for this application.
For this industrial task training may take place off-line. Therefore with computers
becoming increasingly fast, there is little cost in training many (hundreds) of models.
The reduction in the number of models used in the final committee is much more
important. Delay when waiting for a prediction due to the forward calculation of many
networks, and perhaps more significantly the calculation of confidence measures, may
be prohibitive. In a longer paper we compare cranking with other committee formation
techniques and show that it compares favourably [4]. In summary cranking provides
accurate and reliable predictions, results in a small final committee and performs well
even when applied to complex industrial tasks.

5. Conclusions

In this paper we have presented cranking — a new committee formation method that
gives improved predictive performance when training and prediction error estimation
are unstable. When multiple models are trained on bootstrap samples of the train-
ing data, out-of-sample patterns provide a fast and competitively accurate means of
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estimating prediction error. These estimates facilitate the ranking of the models in
order of their predictive quality. Combining a subset of the better models in an un-
weighted committee (cranking) reduces the influence of training instability, while also
not giving undue significance to the accuracy of prediction error estimates. In sum-
mary, cranking is a committee formation algorithm that may be successfully applied to
complex industrial tasks, such as paper-curl prediction, where training and prediction
error estimation are typically unreliable.
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