
COMBINING WEAK LEARNING HEURISTICS IN GENERAL PROBLEM SOLVERS

T.L. McCluskey

The City University, Northampton Square,
London, England.

ABSTRACT

This paper is concerned with state space problem
solvers that achieve generality by learning strong
heuristics through experience in a particular domain.
We specif ically consider two ways of learning by
analysing past solutions that can improve future
problem solving: creating macros and the chunks. A
method of learning search heuristics is specified which
is related to 'chunking' but which complements the use
of macros within a goal directed system. An example of
the creation and combined use of macros and chunks,
taken from an implemented system, is described.

I INTRODUCTION

Integrating ideas and techniques devoloped in
Machine Learning, with those of Problem Solving, has
attracted substantial recent research effort (e.g. Laird et
al 86, Korf 85, Langley 85, Mitchell et al 83). An
important aspect is the revival of the 'general' problem
solver. Its demise was due in part to the failure of its
weak heuristics to tackle problems of complexity in
some given application domain; now it returns equipped
with not just weak problem solving heuristics but with
weak heur is t ics for learning strong, i.e.domain
dependent, heuristics. The latter may take the form of
useful shifts in the problem space representation (a
simple example is the learning of macro operators) or
improving search through a particular space by the
acquisition of search control heuristics. Thus, while its
generality is maintained, learning may improve the
problem solver's efficiency during the application to a
particular domain. This is the approach we have taken
in the construstion of a 'heuristic learning problem
solver shell' called FM; it can acquire strong heuristics
from problem solving experience when it is applied to
specific domains. A complementary approach is to
acquire or discover them during a preprocessing stage
as in [Iba 85], [Korf 85]) and [Dawson & Siklossy 77].

FM's application domains can have variable initial
and goal states. Applications are interchangeable by
specifying domain environments, states and goals as
expressions in first order logic, and operators in terms
of structured add, delete and precondition predicates.
Control stategies may be Interchanged (e.g. forward
best-first or goal reduction) as can weak learning
methods such as macro and chunk creation.

This constitutes a more general approach to recent
work on heuristic learning in problem solvers (e.g.
[Mitchell et al 83], [Korf 85]), where systems typically
improve in domains with a fixed goal, employ a more
specialised representation scheme, and a forward state
space search strategy. This paper will outline FM's goal
directed search and describe how macros and chunks
are created and used as complementary heuristics
during that search.

II GOAL NODE SEARCH IN FM

The backward search of FM proceeds in a goal
reduction manner, starting with the initial goal, through
a space of goal nodes (similar to those in [Dawson &
Siklossy 77]). Each goal node can be modelled as a
6-tuple:
(identifier, goal, initial state, ancestors, purpose, trace)
The trace records attempts to solve the goal, whereas
the purpose records why the goal node was created
(typically to solve the unsatisfied preconditions of an
operator) . Goals, expressed as conjunct ions of
ptedicates, are initially assumed to be decomposable:
when a goal node is activated, operator instantiations
which add goal predicates have their unsatisf ied
preconditions form another goal node, unless they are
already satisfied in which case those operators are
applied to the initial state and the result recorded in the
trace.

When the trace of a goal node eventually contains a
state satisfying its goal (via an operator sequence Os),
we say that the goal node is solved, and all nodes which
are ancestors of it are removed from the search. If it
was activated to solve an operator O's preconditions,
then the sequence Os + 0 is applied to the goal node's
parent's initial state and the result recorded in the
parent's trace.

A goal node's initial state may be the state inherited
from a parent node, or may be an advanced state
partially satisfying the parent's goal. The latter is the
case when goals cannot be so lved by s imple
decompositon; FM examines the trace and forms new
goal nodes whose goal predicates are inherited but
whose initial states are selected from intermediate
states taken from the parent's trace.

McCluskey 331

The kind of representation of goal nodes outined
above aids both the formation and use of strong
heuristics. The trace is available for analysis and
criticism after the solution of each goal node, allowing
'within-trial transfer of learning' (see [Laird et al 84]) to
take place. In our implementation of FM we have
experimented with the formation of closed macros,
'b-chunks' and also subgoal ordering heuristics at this
stage, but we shall limit our discussion to the first two.

Ill CLOSED MACRO CREATION

We consider a closed macro operator to be an
operator sequence that has been compi led and
generalised into a form similar to that of a primitive
operator (in contrast to the 'open' macrops of [Fikes et
al 72]). This sequence forms part of a past solution, in
the case of learning by experience, which includes fully
instantiated operators and intermediate states. Here the
compilation involves finding the sequence's weakest
precondition through the intermediate states and using
it as the macro's precondition. Within this certain
constants can then be selectively generalised using a
technique similar to the Explanation-Based Learning of
[Mitchell et al 86].

Systems that learn closed macros ([Minton 85], [Iba
85]) seem to demonstrate significant improvement in
problem solving within robot and puzzle worlds but
there are pitfalls in using this technique as the sole
learning component:

-search trees do shorten but unfortunately grow
bushy since distinct instantiations of macros proliferate.
(This is reminisent of the effect of paramodulation, a
'macro inference rule' in Theorem Proving, which
combines resolution with the axioms of equality, but
when used in search changes long thin trees to short
bushy ones!).

-solutions which comprise of closed macros are
prone to produce non-optimal paths even after checks
for redundant primitive operator sequences have been
made.

We claim that such problems may be overcome by
the learning of strong heuristics such as chunks to
complement the use of macros.

Macros are created and stored in FM when goal
nodes are solved, and then are immediately available
for use in problem solving. Each are compiled from a
successful operator sequence into a primitive operator
format. The major part of this compilation process is in
building up the precondition M.p (a conjunction of
predicates) of a macro M. This is accomplished by a
procedure modelled on goal regression equations:

M.p = Pn where PO = G and
Pi m (Pi-1 - 0[n+1-i].a) U 0[n+1-i].p , i = 1 to n

where 'U' and '--' mean set union and difference, 0[i].p,
0[i].a stand for the precondition and add predicates of

operator i respectively, and G the goal predicates for
the solution sequence.

Constants that appeared as arbitrary members of
some part icular type in the so lut ion 's operator
sequence are carefully generalised to a variable with
that type res t r ic t ion (fo l lowing [Kodratof f 84]) .
Generalisation is justif ied since no operator in the
solution sequence referred to the constant specifically
but only to its type. Identical constants are generalised
to the same variable throughout the macro, but equality
binding restrictions are added where variables of the
same type are generalised from distinct constants, so
that they may not be instantiated to the same constant
when in use. Macros are then incorporated into future
problem solving as primitive operators, although some
may later be deleted if rarely used.

IV B-CHUNK CREATION

The chunks created by FM improve the system's
subsequent problem solving behaviour by providing
search control knowledge. They are formed during the
goal directed search and advise on the search through
partial solutions. The absence of such a learning
component in STRIPS with Macrops is pointed out in
[Porter and Kibler 84] and Minton's Morris system
[Minton 85] apparently combines only weak search
heuristics with the use of macros.

Consider 0 [i] (1<i<n) taken from an operator
sequence 0[1] ,0[2] 0[n] which achieves a goal
node (with goal predicate(s) G) from a initial state I
within a domain environment E (E is a set of facts and
rules const i tu t ing background knowledge for a
particular application). A b-chunk (0[i] ' ; G'; P') is built
for each 0[i] to the following specification: consider a
function 'sim':

sim : CP x CP x CP x NatO --> CP
where CP is the space of conjunctions (or sets) of
Predicates and
sim(X,Y,E,O) = {P in Y: P logically follows from X&E}
sim(X,Y,E,N) = sim(X,Y,E,N-1) union
{y el. of Y, e subset of E : y is related to an x in X
by an association chain e of length N}

Then
P= sim(M(i) ,M(1),E,K) where M(j)= the macro

precondition (see section III) of sequence 0[j],0[j+1],
. . . ,O[n];K>=0,

and finally
(0[i] ' ; G'; P') = the careful generalisation of (0[i]; G; P).

When K = 0 then 0[i]'s chunk's third component may
be roughly described as those predicates which were
present in the goal node's initial state and that were
also involved in the achievement of G after 0[i-1]. This
includes environment information (which is assumed to
be a part of every state) that has been used in the
satisfaction of the operator's preconditions. FM initially
forms P with K=0 and then checks to see if the
resulting chunk would be discriminatory if used to solve
the same goal node again. If it is not the case then K is
incremented and P is augmented with predicates using
an 'associat ion cha in ' technique similar to that
described in fVere 771.

332 KNOWLEDGE ACQUISITION

B-chunks are then used during subsequent search
when FM f inds mult ip le operators (or operator
instantiations) are available to achieve a goal predicate
Gp, but none of their preconditions are completely
satisfied. A b-chunk (01; G1; P) will favour an operator
instantiation O applied to a goal node if P logically
follows from l&E under the variable bindings obtained
by the successful matching of 01 to O, and G1 to either
Gp or one of Gp's ancestors. The instantiation(s)
favoured by the most chunks is then chosen to form a
new goal node.

V COMBINED USE OF LEARNT HEURISTICS

To clarify the combined use of closed macros and
b-chunks we use a simple example. We applied FM to
a robot world using a similar operator set to [Fikes et al
72]. After box moving tasks it forms macros such as:
(name: macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3),

preconditions: in_room(Box,Rm1)&nexMo(robot,Box)
&connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2)
add: in room(Box,Rm3),
side_effects: in_room(robot,Rm3), ...).

Macro21 is equivalent to the primitive sequence:
{pushto(Box,Dr1,Rm1), pushthru(Box,Dr1,Rm2),
pushto(Box,Dr2,Rm2), pushthru(Box,Dr2,Rm3)}.

In solving the goal 'in_room(boxA, room4)' from the
situation in figure 1, macro21 constitutes the part of the
solution shown by an arrow. One b-chunk (where K=1
in section IV) created to advise on its use is (note: we
leave out some details; capital letters denote variables):
(macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3) ;

in_room(Box,Rm3) ;
in_room(Box,Rm4)&connect(Rm4,Rm1,Dr3)&
connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2)& ...)

In a future problem, this chunk will support the
inclusion of instantiations of macro21 in partial solutions
which conform to its constraints. For instance, consider
task in_room(boxB,room6). It can be seen by the
description of chunk use in section IV that instance
macro21(room4,door47,room7,boxB,door67,room6) is
favoured by the chunk shown above to form the first
part of a solution, resulting in a filtering out of any other
undersirable instantiations. Note that this chunk
suggests the initial position of the robot is irrelevant.

VI CONCLUSIONS

We have described a goal directed search which
allows the use of weak methods for learning. Given a
particular domain, these weak methods create strong
heuristics, in the form of macros and b-chunks, through
the experience of successful problem solving. The
chunks record for each operator and generalised goal
pair, the adviseable instant iat ions for operator
variables. They do this by storing important similarities
among the environment, initial state and goal in a form
usable for future goal directed search. The number of
possible instantiations of macros in the backward
search tends to be much higher than primitives, and so
the need for this heuristic pruning is greater.

We have used FM in several applications in which it
builds up strong domain dependent heuristics by
experience. Of particular note is the b-chunks' high
degree of accross-task transfer of learning. This is
because they record quite general similarities between
the components of a problem space such that when
these similarities are encountered again the choice of
(macro) operator instantiation can be determined.

REFERENCES

1. Dawson, C. and S i k lossy , L. "The Role of
Preprocessing in Problem Solving Systems". In Proc.
IJCAI-77, (1977).
2. Fikes, R., Hart, P. and Nilsson, N. "Learning and
Executing General ised Robot Plans", Ar t i f ic ia l
Intelligence 3, 251-288, (1972).
4. Iba, G. "Learning by Discovering Macros in Puzzle
Solving". In Proc. IJCAI-85, (1985).
5. Kodratoff, I., "Careful Generalisation for Concept
Learning", In Proc. ECAI-84, (1984).
6. Korf, R. E., "Macro Operators: A Weak Method for
Learning", Artificial Intelligence 26, 35-77, (1985).
7. Laird, J., Rosenbloom, P. and Newell, A. "Chunking

in Soar: The Anatomy of a General Learn ing
Mechanism" Machine Learning 1, 11-46, (1986).
8. Laird, J., Rosenbloom, P. and Newell, A. "Toward
Chunking as a General Learning Mechanism", In Proc.
AAAI-84, (1984).
9. Langley, P. "Learning to Search: From Weak
Methods to Domain-Specific Heuristics", Cognitive
Science 9, 217-260, (1985).
10. Minton, S. "Selectively Generalising Plans for
Problem Solving", In Proc. IJCAI-85 (1985).
11. Mitchel l , T.M., Utgoff, P.E. and Banerj i , R.B.
"Learning by Experimentation: Acquiring and Refining
Problem Solving Heuristics", in "Machine Learning",
Michalski, R.S., Carbonell, J.G. and Mitchell, T.M.
(eds.), Tioga Publishing, (1983).
12. Mitchell, T.M. "Explanation-Based Genralisation: A
Unifying View" Machine Learning 1, 47-80, (1986).
13. Porter, B. and Kibler, D. "Learning Operator
Transformations", In Proc. AAAI, (1984).
14. Vere, S.A., "Induction of Relational Productions in
the Presence of Background Information", In Proc.
IJCAI-77 (1977).

McCluskey 333

