Computer Science > Computation and Language
[Submitted on 9 Jul 2024]
Title:Combining Knowledge Graphs and Large Language Models
View PDF HTML (experimental)Abstract:In recent years, Natural Language Processing (NLP) has played a significant role in various Artificial Intelligence (AI) applications such as chatbots, text generation, and language translation. The emergence of large language models (LLMs) has greatly improved the performance of these applications, showing astonishing results in language understanding and generation. However, they still show some disadvantages, such as hallucinations and lack of domain-specific knowledge, that affect their performance in real-world tasks. These issues can be effectively mitigated by incorporating knowledge graphs (KGs), which organise information in structured formats that capture relationships between entities in a versatile and interpretable fashion. Likewise, the construction and validation of KGs present challenges that LLMs can help resolve. The complementary relationship between LLMs and KGs has led to a trend that combines these technologies to achieve trustworthy results. This work collected 28 papers outlining methods for KG-powered LLMs, LLM-based KGs, and LLM-KG hybrid approaches. We systematically analysed and compared these approaches to provide a comprehensive overview highlighting key trends, innovative techniques, and common challenges. This synthesis will benefit researchers new to the field and those seeking to deepen their understanding of how KGs and LLMs can be effectively combined to enhance AI applications capabilities.
Submission history
From: Aishwarya Nambissan [view email][v1] Tue, 9 Jul 2024 05:42:53 UTC (491 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.