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A b s t r a c t 

We show that an intelligent approach to color can be 
used to significantly improve the capabilities of a vision sys­
tem. In previous work, we adopted general physical models 
which describe how objects interact with light. These mod­
els are far more general than those typically used in com­
puter vision. In this report, we use our physical models to 
derive powerful algorithms for extracting invariant proper­
ties of objects from images. The first algorithm is used for 
the generic classification of objects according to material. 
The second algorithm provides a solution to the color con­
stancy problem. These algorithms have been implemented 
and produce correct results on real images. Some examples 
of experimental results are presented. 

1 . I n t r o d u c t i o n 

A general vision system must be capable of generating 
meaningful descriptions of a scene in any of the diverse 
environments for which human vision is useful. Nearly all 
existing artificial vision systems are special purpose. They 
rely heavily on domain-specific constraints and special-case 
engineering. Although significant progress has been made 
in machine vision, the best artif icial vision systems sti l l 
fall far short of achieving the capabilities associated with 
general vision. 

In this paper, we analyze the role and use of color in 
a general vision system. We have previously examined the 
physics of reflection to develop general models which de-
scribe the formation of color images [4]. Using these models, 
we isolate the invariant properties of objects with respect 

to color. Once these invariant properties are understood, 
we derive general procedures which reliably extract these 
invariant properties from images. 

2 . T h e Physics o f Ref lec t ion 

There are several ways an object can modify incident 
l ight. An object can change light spatially by reflecting it 
into a small or large angle. Incident light can be modified 
spectrally. Also, the energy of incident light can be reduced 

if a large fraction of the light is absorbed by an object. 
For this work, we use the specular reflectance model 

developed by Torrance and Sparrow [11] and the body re-
flection model developed by Kubelka and Munk [7]. Our 
use of these models is described in detail in [4]. Given these 
models of both specular and body reflection, we can quan­
tify reflectance R as 

(2.1) 

where Rs is the Fresnel reflection term and RB is the 
Kubelka-Munk body reflection term. The power of the light 
reflected from a surface towards a viewer is then given by 

where quantifies the power of the incident light. 
In [4], we describe methods for color recovery and rep-

resentation. In the next three sections, we derive algorithms 
to extract invariant properties of objects from images. In 
section 6, we present experimental results. 

3. Physica l Segmenta t ion 

While locating irradiance discontinuities has attracted 
much attention in computer vision, less work has been done 
on the important problem of identifying the underlying 
causes of these discontinuities. The most common physical 
causes of image irradiance discontinuities are il lumination 
discontinuities, surface orientation discontinuities, specular 
discontinuities, pigment density discontinuities, and mate-
rial discontinuities. We wi l l refer to the problem of clas­
sifying image irradiance discontinuities according to their 
physical cause as the physical segmentation problem. Some 
approaches to this problem are described in [4]. 

Some progress has been made in using color to classify 
edges. Rubin and Richards [9] have proposed a method 
for rinding material discontinuities, but their assumptions 
and physical models appear l imit ing. Gershon, Jepson, and 
Tsotsos [2] discuss a more general method for distinguish­
ing material changes from shadow boundaries. Shafer [10] 
has developed a method to separate diffuse scattering from 
specular reflection using color. 

We restrict ourselves to discussing distinctive prop-
erties of the image irradiance discontinuities which occur 
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where the specular component of the reflected light be­
comes significant. The most conspicuous feature of spec­
ular reflection is that it is invariably associated with image 
irradiance values which are much larger than those in neigh­
boring image regions. Moreover, the expected magnitude 
of the difference in irradiance is directly related to proper­
ties of the imaging system which are often known. Another 
quasi-invariant property of specular features is that they 
are typically small, especially for curved surfaces. Thus 
unless a specularity occurs at the edge of a surface, it wi l l 
be surrounded on all sides by diffusely reflected light of ap­
proximately the same color and power. Finally, we observe 
that most specular discontinuities occur in places where the 
reflecting surface is continuous. It has been shown that im­
age irradiance for diffusely reflected light can be used to 
compute local descriptions of a surface to at least second 
order [6]. It has also been shown that image irradiance for 
specularly reflected light can be used to compute similar 
local surface descriptions [3]. At specular image irradiance 
discontinuities, we usually expect the first few derivatives 
of the surface to be continuous. Thus by comparing the 
local surface descriptions generated by [6] and [3] we have 
another way to verify the presence of a specular image ir­
radiance discontinuity. 

4 . Gener ic Classi f icat ion o f Ma te r i a l s 

In this section and the next, we describe procedures 
for using color to extract distinctive invariant properties of 
objects from images. In this section, we show how color can 
be used to recover a symbolic description of the material 
an object is made of. In section 5, we describe a method 
for recovering an object's surface spectral reflectance. 

Classifying objects according to material is important 
because material is an invariant property of an object. It 

is very valuable, for example, to be able to decide that an 
object is metal rather than plastic or painted wood rather 
than dyed cloth. 

An important property of a material is whether it is 
optically homogeneous or optically inhomogcneous. By ex­
amining the physics of reflection, we have derived a pro-
cedure for classifying a material as either homogeneous or 
inhomogeneous. 

Homogeneous materials reflect light only from the sur­
face. The color of this reflected light is determined by the 
Fresnel equations from the complex index of refraction of 
the material as a function of wavelength. For a single color 
of i l lumination 1(x) , the color of light reflected from a ho­
mogeneous material wi l l be nearly constant with only slight 
variations due to changing geometry. 

Inhomogeneous materials both reflect light from the 
surface and scatter light from the body of the material. The 
color of the light reflected from the surface is determined 
by the index of refraction of the vehicle. The color of the 
l ight scattered from the body is determined by the selective 
absorption properties of the colorant particles embedded in 
the vehicle. In genera], the color of the surface reflected 

light wi l l be different from the color of the body scattered 
light. Therefore, given a single color of i l lumination L(A), 
there wi l l be two distinct colors of light reflected from an 
inhomogeneous material. 

Using the technique discussed in section 3, we are able 
to find image irradiance discontinuities corresponding to 
the places where the power of the specularly reflected light 
becomes significant. Using our metric for color space [4], 
we can examine whether these image irradiance discontinu-
ities coincide with discontinuities in color space. If a color 
discontinuity is not detected, there is strong evidence for a 
homogeneous material. If we do detect a color discontinu­
ity, then the material is probably optically inhomogeneous. 

We see that in most situations, it is possible to distin­
guish homogeneous materials from inhomogeneous materi­
als using techniques in color space. Once the homogeneous-
inhomogeneous classification has been made, it is possible 
to use color to distinguish different homogeneous materials, 
e.g. aluminum and copper, and to distinguish different in-
homogeneous materials, e.g. white plastic and red plastic. 
Our method to achieve this additional level of classifica­
tion is based on recovering surface spectral reflectance. We 

describe our method in the next section. 

5. Recover ing Surface Spect ra l Ref lectance 

Another invariant property of an object which is valu­
able for recognition is the object's surface spectral re­
flectance. Unfortunately, surface spectral reflectance is not 
determined by the spectral distribution of the light reflected 
by a surface. It is this reflected light which is directly sensed 
by a vision system. The light which is reflected by a surface 
is the product of the spectral distribution of the incident 
light and the spectral reflectance of the surface. To recover 
the spectral reflectance of a surface, some mechanism must 
be available to factor out the effects of the incident light. 
Many experiments have shown that the human vision sys­
tem is capable of making this computation. This abil ity of 
humans to see objects as having a constant color despite 
varying i l lumination conditions is called color constancy. 

Many theories have been advanced to explain color 
constancy [ l ] . Our approach is based on the physics of 
reflection. Another class of approaches views the task as 
an underconstrained mathematical problem [8], [12]. These 
approaches identify the assumptions about incident i l lumi­
nation and surface spectral reflectance which are required to 
make color constancy possible from a purely computational 
point of view. In other work, psychologists have suggested 
that the eye selectively adapts to the color of the ambient 
light. Experiments have shown that this selective adapta­
tion might be partly responsible for human color constancy 
[5]. 

Our method for recovering surface spectral reflectance 
is applicable to instances of surfaces which are il luminated 
by the same spectral distr ibution of light as that which 
illuminates an inhomogeneous object in the scene. This 
condition is quite general, and is almost always satisfied in 
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real situations where a small number of different illuminants 
contribute to the image forming process. 

For inhomogeneous materials the complex index of 
refraction is nearly constant across the visible spectrum. 
From the Fresnel equations, the specular reflectance of an 
inhomogeneous material is a constant function of wave-
length for fixed geometry. Moreover, the Fresnel equations 
tell us that the specular reflectance for fixed wavelength is 
constant with respect to geometry for almost all incidence 
angles. Therefore, for inhomogeneous objects the Fresnel 

component of the reflectance can be regarded as constant 
with respect to both geometry and wavelength. 

Given the physical segmentation technique (section 3) 
and our technique for classifying inhomogeneous materials 
(section 4), we can recover surface spectral reflectance up to 
a multiplicative constant. We use the previously described 
procedures to locate a specular-body reflection boundary 
on an inhomogeneous object. From (2.1) and (2.2), the 
measured function /(A) is given by 

/(A) = [RS(X) + RB(l)) L(\) (5.1). 

On the body reflection side of the boundary, Rs(X) = 0 
giving 

/ ' (A) = RB(X)L(X) (5.2) 

where RB(X) CAn be considered to be the same as in (5.1) 
since RB(X) changes slowly with respect to geometry. We 
can solve for Rs(X)L(X) using 

Rs(A) I (A) = / ( A ) - / ' ( A ) (5.3) 

But Rs(X) is constant with respect to A and geometry. Let 
Rs(X) = k. Therefore, using (5.3) we can compute L(X) up 
to the constant k by 

kL(\) = / (A) - / ' (A) (5.4) 

From (5.2), RB(X) can now be computed up to the constant 
l / k by 

For a homogeneous material in the scope of 1(A), we have 

/ (A) = Rs(\)L(X) (5.6) 

because Rb(A) = 0. Thus we can compute Rs(A) to within 
1 /kby 

Therefore, using (5.5) and (5.7) we can compute the surface 
spectral reflectance for any surface illuminated by L(X) up 
to a multiplicative constant. Examples of the performance 
of this method on real images wi l l be given in section 6. 

It should not be surprising that there is a fundamental 
ambiguity in the computed spectral reflectance correspond­
ing to the constant k. From (2.2) 

/ (A) = L(X)R(X) (5.8). 

We see that an arbitrary constant t can be introduced into 
both L(A) and R(X) such that the resultant /(A) wi l l be 
indistinguishable from 7(A) in (5.8): 

/(A) = ( M ) (iR(\)) (5.9) 

Thus without using additional assumptions, we cannot ex­
pect to determine R(X) better than to within a multiplica­
tive constant. We note that our notion of normalized phys­
ical color [4] is independent of these scaling constants. 

6 . Expe r imen ta l Resul ts 

A simple laboratory setup has been used to test our 
color methods. We digitize color images using a solid-state 
camera and four gelatin filters. The camera is equipped 
with an infrared cutoff filter. 

Two different light sources have been used for exper­
iments. One is a tungsten halogen lamp of color temper­
ature 3400°K which is typical of indoor i l lumination. The 
other lamp has color temperature 4800° and is intended to 
simulate daylight. 

Several simple objects have been used to test our color 
methods. Our objects include plastic cups, metal cylinders, 
and painted wooden blocks. 

In Figure 1, we show the performance of our algorithms 
on color images of plastic cups illuminated by the 4800° A' 
color temperature lamp. Since the image irradiance corre-
sponding to the specular reflection is markedly larger than 

the image irradiance corresponding to the diffuse reflection, 
the physical segmentation process of section 3 easily locates 
the specular-diffuse boundaries. The method of [4] is then 
used to recover the function /(A) for both the specularly 
reflected light and the diffusely reflected light. Figure 1(a) 
is I(X) for the Fresnel reflection from a blue cup. It agrees 
well with the actual color of the light source. Figure 1(b) is 
/(A) for the diffuse reflection from the blue cup. From the 
large color difference between Figure 1(a) and Figure 1(b), 
the algorithm of section 10 easily is able to identify the plas­
tic cup as being made of an inhomogeneous material. We 
remark that it would be very difficult to infer that the cup 
is blue by simply inspecting the color of the reflected light 
/(A) in Figure 1(b). In fact, the largest amount of power is 
in the red part of the visible spectrum (near 700 nm). To 
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determine the color of the cup (as distinct from the color of 
the light reflected from the cup), we must compute the sur­
face spectral reflectance. This is done using the method of 
section 5. Figure 1(c) shows the spectral reflectance com­
puted for the blue cup. From Figure 1(c), we can tell that 
the cup is blue. 
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