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1 Introduction
Coalition formation is a key capability in automated nego-
tiation among self-interested agents. A coalition of agents
can sometimes accomplish things that the individual agents
cannot, or can do things more efficiently. To make coalition
formation successful, a key question that must be answered is
how the gains from cooperation are to be distributed. Coali-
tional game theory provides a number of solution concepts
for this. Some of these solution concepts have already been
adopted in the multi-agent systems literature [Zlotkin and
Rosenschein, 1994; Shehory and Kraus, 1998].

However, existing solution concepts have limitations when
applied to open anonymous environments such as the Inter-
net. In such environments, a single agent can use multiple
identifiers (or false names), pretending to be multiple agents,
and distribute its ability (skills) among these identifiers. Al-
ternatively, multiple agents can collude and pretend to be a
single agent that combines all of their skills. Furthermore, an
agent might try to hide some of its skills.

These manipulations are virtually impossible to detect in
open anonymous environments, and have thus become an is-
sue in such environments specifically. That is also the reason
why the gamut of these manipulations has not received much
research attention previously. In this paper, we develop a new
solution concept for coalitional games called the anonymity-
proof core, which is robust to the manipulations described
above. We show that the anonymity-proof core is character-
ized by certain axiomatic conditions (including that an agent
does not have an incentive to use the basic manipulations
mentioned above).

2 Model
Traditionally, value division in coalition formation is studied
in characteristic function games, where each potential coali-
tion (i.e., each subset X of the agents) has a value w(X) that
it can obtain. This assumes that utility is transferable (e.g.,
utility can be transferred using side payments), and that a
coalition’s value is independent of what non-members of the
coalition do. The characteristic function by itself does not
give us sufficient information to assess what manipulations
may be performed by agents in an open anonymous environ-
ment. Thus, instead of defining the characteristic function
over agents, we define it over skills that the agents possess.

Definition 1 (skills and agents) Assume the set of all pos-
sible skills is T . Each agent i has one or multiple skills
Si ⊂ T . For simplicity, we assume each skill is unique, that
is, ∀i �= j, Si ∩ Sj = ∅ holds.

Definition 2 (characteristic function defined over skills)
A characteristic function v : 2T → � assigns a value to each
set of skills.

We will denote by w the characteristic function defined
over agents, and by v the characteristic function defined over
skills. For a given set of agents X , let SX =

⋃
i∈X Si. Then,

we have w(X) = v(SX). The characteristic function over
skills is a more fine-grained representation than the charac-
teristic function over agents.

We assume the following three types of manipulation (or
any combination of them) are possible for agents.

hiding skills: If agent i has a set of skills Si, for any S ′
i ⊆ Si,

it can declare that it has only S ′
i.

false-name: Agent i can use multiple identifiers and declare
that each identifier has a subset of Si.

collusion Multiple agents can collude and pretend to be a
single agent, who has the union of their skills.

3 Manipulability of Traditional Solution
Concepts

In this section, we show that a well-known (perhaps the best
known) solution concept called the core [Gillies, 1953; von
Neumann and Morgenstein, 1947] is vulnerable against these
manipulations. This is true for other solution concepts such
as Shapley value [Shapley, 1953], least-core, or nucleolus.

Definition 3 (core) Given a set of agents W , an outcome,
that is, a value division cW = (cW

1 , cW
2 , . . .) among agents

is in the core if the following two conditions hold:

1. ∀X ⊂ W ,
∑

i∈X cW
i ≥ w(X),

2.
∑

i∈W cW
i = w(W ).

The first condition is called the non-blocking condition: if
this condition does not hold for some set of agents X , then
the agents in X have an incentive to collectively deviate
from the mechanism and to divide w(X) among themselves.
The second condition is called the feasibility condition: if∑

i∈W cW
i > w(W ), this outcome is infeasible.



Due to the space limitation, we only show an example
where the core is manipulable by a collusion.

Example 1 Let there be three skills a, b, and c. Let the char-
acteristic function over skills be as follows.

• v({a, b}) = v({a, c}) = v({a, b, c}) = 1,

• v({a}) = v({b}) = v({c}) = v({b, c}) = 0.

Let there be three agents 1, 2, and 3 with skills a, b, and c,
respectively. Then, the characteristic function over agents is
as follows.

• w({1, 2}) = w({1, 3}) = w({1, 2, 3}) = 1,

• w({1}) = w({2}) = w({3}) = w({2, 3}) = 0.

In this example, there is only one outcome in the core,
namely outcome (1, 0, 0). This is because if agent 2 (or 3)
obtains any value, then the non-blocking condition is violated
because agent 1 and agent 3 (or 2) have an incentive to devi-
ate from the mechanism and form their own coalition. We can
see that since the skill b and c are completely substitutable, the
agents who have these skills have no bargaining power. The
least core and the nucleolus also give this outcome.

Now, let us assume that agent 2 and 3 collude and pretend
to be a single agent 2′, who has b and c.

Then, the characteristic function over agents is as follows.

• w({1}) = w({2′}) = 0,

• w({1, 2′}) = 1.

Now, agent 1 and 2′ are symmetric and have the same bar-
gaining power. Then, if we use the least core or the nucleo-
lus, each agent receives 1/2. Thus, agent 2 and 3 can increase
their value division using a collusion.

4 Anonymity-Proof Core
We develop a new solution concept for our setting which we
call anonymity-proof core. As we will show, the anonymity-
proof core can be characterized by certain axiomatic condi-
tions.

We require that the outcome function π is anonymous, that
is, the payoff to an agent does not depend on the identifiers of
the agents; it depends only on the skills of the agent and the
distribution of skills over other agents.

More specifically, given an agent i and a set of other agents
Y , let Si be the set of skills that agent i has, and let SSY =
{Sj | j ∈ Y }, where Sj is the set of skills that agent j has.
Then, the outcome function π(Si, SSY ) takes Si and SSY

as arguments, and returns the payoff to agent i, when agent
i declares its skills as Si and the other agents declare their
skills as SSY .

Let the set of agents who joined the mechanism be W , and
let the profile of the skills that the agents declared be k =
(k1, k2, . . .), where ki is the set of skills that agent i declared.
Let SX =

⋃
i∈X ki, that is, SX is the union of the skills de-

clared by a set of agents X ; let S = SW ; and let SSX = {ki |
i ∈ X}. Also, let SS∼i = {k1, . . . , ki−1, ki+1, . . .}, that is, a
set, each of whose elements is the set of skills corresponding
to agent j (j �= i).

We now give six axiomatic conditions that the outcome
function π should satisfy.

1. The outcome function π is anonymous.

2. π is never blocked by any coalition, that is, ∀k, ∀X ⊆
W ,

∑
i∈X π(ki, SS∼i) ≥ v(SX) holds.

3. π is always feasible and always distributes all of the
value, that is, ∀k,

∑
i∈W π(ki, SS∼i) = v(S) holds.

4. π is robust against hiding skills, that is, ∀S ′, S′′, where
S′′ ⊆ S′, ∀SS, π(S′′, SS) ≤ π(S′, SS) holds.

5. π is robust against false-name manipulations, that is,
∀k, ∀X ⊆ W , Y = W \ X ,

∑
i∈X π(ki, SS∼i) ≤

π(SX , SSY ) holds.

6. π is robust against collusions, that is, ∀k, ∀X ⊆ W ,
Y = W \X ,

∑
i∈X π(ki, SS∼i) ≥ π(SX , SSY ) holds.

In order to define the anonymity-proof core, we first for-
mally define the core for skills. For a set of skills S =
{s1, s2, . . .}, we define a set of core outcomes for skills
Core(S) as follows.
Definition 4 (core for skills) cS = (cS

s1
, cS

s2
, . . .) is in

Core(S) if it satisfies the following two conditions.
• ∀S′ ⊂ S,

∑
sj∈S′ cS

sj
≥ v(S′),

• ∑
sj∈S cS

sj
= v(S).

Now we are ready to define the anonymity-proof core.

Definition 5 (anonymity-proof core) We say the outcome
function πap is in the anonymity-proof core if πap satisfies
the following two conditions.

1. For any set of skills S ⊆ T , there exists a core outcome
for S, that is, some cS = (cS

s1
, cS

s2
, . . .) ∈ Core(S),

such that for any skill profile k = (k1, k2, . . . , ) with⋃
i ki = S, πap(ki, SS∼i) =

∑
sj∈ki

cS
sj

holds.

2. ∀S ′, S′′, where S′′ ⊆ S′, ∀SS, πap(S′′, SS) ≤
πap(S′, SS) holds.

The first condition says that for any set of skills reported
by the agents, some outcome in the core for that set of skills
should be used to distribute the value. The second condition
says that an agent has no incentive to hide (some of) its skills.

The following theorems show that the anonymity-proof
core is characterized by the six axiomatic conditions. We
omit the proof due to space constraint.
Theorem 1 Any outcome function πap in the anonymity-
proof core satisfies the six axioms.

Theorem 2 Any outcome function π that satisfies the six ax-
ioms is in the anonymity-proof core.

References
[Gillies, 1953] Donald Gillies. Some theorems on n-person games. PhD thesis, Prince-

ton University, Dept of Mathematics, 1953.

[Shapley, 1953] Lloyd S. Shapley. A value for n-person games. In H Kuhn and A
Tucker, eds, Contributions to the Theory of Games, vol 2 of Annals of Mathemat-
ics Studies, 28, 307–317. Princeton U Press.

[Shehory and Kraus, 1998] Onn Shehory and Sarit Kraus. Methods for task allocation
via agent coalition formation. Artificial Intelligence, 101(1–2):165–200, 1998.

[von Neumann and Morgenstein, 1947] John von Neumann and Oskar Morgenstein.
Theory of games and economic behavior. Princeton University Press, 1947.

[Zlotkin and Rosenschein, 1994] Gilad Zlotkin and Jeffrey S Rosenschein. Coalition,
cryptography and stability: Mechanisms for coalition formation in task oriented
domains. In AAAI, pages 432–437, 1994.


