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Protein threading with profiles in which constraints onatises between residues are given is known
to be NP-hard. Moreover, a simple algorithm known as CLIQHREAD based on efficient reduc-
tion to maximum edge-weight clique finding problem has besowi to be a practical algorithm for
solving the protein threading problem with profiles and ¢x@ists. This algorithm is not efficient
enough to be applicable to large scale threading predicBesides, the algorithm was only presented
for profile threading with strict constraints. This papeeg®ents a more efficient algorithm FTHREAD
for profile threading with strict constraints which is mone18 times faster than CLIQUETHREAD
for larger proteins. Moreover, we also present a novel macalgorithm NTHREAD for profile
threading with non-strict constraints. The comparison ®HREAD with existing state-of-the-art
methods shows that although our algorithm uses a simpladhrg function, our algorithm performs
equally well as these existing methods for protein threqdBesides, our computational experiments
for sequence-structure alignments for a number of proteave shown better results for non-strict
constraints threading than protein threading with strigtstraints. We have also analyzed the effects
of using a number of distance constraints.



September 16,2004 9:1 Proceedings Trim Size: 9.75in x 6.5in 146

1. Introduction

The computational prediction of protein structure from skeguence of amino acids is one
of the most important task in the field of computational bigloIn a situation like this,
there are three possible approaches for the computatioediction depending upon the
amino acid sequence of the newly generated protein. If thepretein is found to have
high homology with a protein whose 3D structure is alreadgviim, methods based on
homology modeling are very useful. In the second case, wheméew protein is found
to have weak sequence homology with proteins of known straciprotein threading is
utilized and thirdly, when the new protein does not show atyugnce similarity to the
proteins previously known, ab-initio prediction is appliét has been shown that it is pos-
sible to detect a weak homologous protein with known stmecfar a large percentage of
proteins in a newly sequenced genome. In this regard prittegading is one of the impor-
tant approaches for computational prediction of structdi@newly sequenced proteif.

According to Mirny and ShakhnovicH, there are two major factors affecting the ac-
curacy of the threading alignment in the structure prediichy threading (i) the degree
of similarity between the template structure and the natiugcture (ii) the accuracy of the
potential. One of the possible ways to overcome this fundaaah@roblem in threading is
to use some extra information about the query sequence qlatrstructure. Hence, it
is required to exploit more biological knowledge of the tdatg or query sequence. This
extra information gives rise to constraints on the aligntsem this regard, Youngt al 2
have developed a novel method which uses the Lys-Lys crissdietermined using chem-
ical cross-linking and time-of-flight and have shown howstheross-links can be used to
identify the fold of a protein and to aid in the constructidrhomology modeling.

Moreover, Xuet al?* reported a method for the improvements of threading methods
by incorporating partial NMR data. Also, Albrecét al* reported that using experimen-
tal distance constraints, an improvement in the fold regagnof protein threading can
be achieved. Threading methods using additional infolmnatbtained from experimental
data like distance between atoms of protein residues asumeghby mass spectrometry
or by NOE (Nuclear Overhauser effect) restraints of NMR spscopy have shown im-
provements in the efficiency of the folding algorithm. On tiker hand, development of
PSI-BLAST has significantly enhanced our ability to detechote homologues and this in
turn has helped to improve the efficiency of the protein stnecprediction methods.

In this regard, we had also reported a mathematical analygisotein threading with
profiles and constraints and presented practical algosittemprotein threading with pro-
files and constraints We had shown that the protein threading problem with profited
constraints is NP-hard and we had defined three types ofipritteeading problems on
the basis of constraints viRrofile threading without constraint®rofile Threading with
Strict Constraintsand Profile Threading with Non-strict ConstraintsUsing the notion
of maximum edge-weight cligue and dynamic programming, ae presented two algo-
rithms called CLIQUETHREAD and BBDPTHREAD respectively forotein threading
with strict constraints. However, the clique based alhonitCLIQUETHREAD reported
was not very efficient especially in the case of larger pnstelor a protein pair of around
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200 amino acids, the method took about an hour.

Besides, in our previous work we only used the simulateddest constraints between
Lys-Lys atoms. So, it is a natural second step to try to explbe efficiency of the algo-
rithm when several other distance constraints are used. t ¥ii*¢ have shown that the
more the average number of NOEs used per residue, the ether accuracy of the pre-
diction. In this context also, one can anticipate that bygs larger number of distance
constraints, the efficiency of the methods could be enharidediever, by increasing the
number of distance constraints, it is natural that thergeacases where all the constraints
are not satisfied. In this scenario, the profile threadindp witict constraints fail to pro-
duce efficient results as this method tries to give the bdstiso provided that all the
constraints are satisfied. In the cases like this, profikeditiing with non-strict constraints
comes into play. Moreover, there can be cases where thigeadlin non-strict constraints
is a feasible solution for threading. However, no algoritivas reported in our previous
work for protein threading with non-strict constraints. this regard, we have developed
a more efficient algorithm FTHREAD based on maximum edgegtitetlique algorithm
incorporating some heuristics to achieve significant improent in the efficiency of the
protein threading algorithm with strict constraints sa tie algorithm is suitable for large
scale protein threading prediction. Moreover, we have diseeloped a practical algo-
rithm NTHREAD for protein threading with non-strict corimts, i.e. protein threading
which outputs the threading with the maximum score undectmlition that the number
of unsatisfied constraints is minimized.

We have also analyzed extensively the effect of distancégtrentype of amino acids
used. To validate the efficiency of our algorithm, we haves alempared our results
with some of the best threading methods like COBLATHNd the method of Kolinski
et al(KRIS).!> We have found that our algorithm FTHREAD performs equallylas
these methods in terms of accuracy of alignments. Theréseséseral related works like
that of Xu et al2* and Albrechtet al* However, our algorithms are much simpler and
general than existing algorithms and can be easily modiBegides, our approach has an-
other merit: with a much faster clique finding algorithm, ooethod as a whole becomes
a very efficient approach. The most important advantage ohwthod is that it is very
general and thus can be applied to almost all types of proéiked threading algorithms.
Moreover, in contrast to our previous paper which solelyfsd on protein threading with
strict-constraints, this current paper focuses on pratesgading with non-strict constraints
and also on the modified algorithm which performs 18 timetefathan our previous al-
gorithm. In this way, our new FTHREAD algorithm has helpedaschieve significant
improvement in the efficiency of the threading method in ®ohcomputational time and
the quality of the results.

The remainder of the paper is outlined as follows. In Sec. € pvesent the formu-
lation of protein threading with profiles and constraintdiem, in Sec. 3, we present an
efficient algorithm FTHREAD for threading with strict-cdngints and another practical
algorithm NTHREAD for threading with non-strict constrenin Sec. 4, we compare the
CPU times of CLIQUETHREAD , BBDPTHREAD and FTHREAD, expldine results
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of NTHREAD, study the effects of combination of various pagders and then compare
FTHREAD with existing methods such as COBLATH and KRIS. Hinan Sec. 5, we
analyze the main contribution of this paper and some impoftaure works.

2. Problem Formulation

This section presents a formulation of the threading pratéth profiles and constraints.
The profiles considered in the current study are the profitgaioed by running PSI-
BLAST and the constraints are the distance constraintsdeiwvo residues of the protein
obtained from the PDB.The basic idea of the threading with profiles and constrats
to find an alignment between a query sequence and a templattuse that satisfies the
constraints specified using the required profiles. For teadce constraints, it is required
that the two residues related by the constraints shouldigeeal to the template positions
with a certain tolerance.

Before we explain the algorithm, we briefly review the praobléormulation as pre-
sented in our previous worklnitially, the threading (without constraint) can be define
as follows. Lets = sy1s5...5s, be a query protein sequence, over an alphahethere
|Z| = 20 with s; representing th&” amino acid of the sequeneandt = #t,...t, be a
template protein structure amgthe j** amino acid int. Thist can be considered to be a
sequence of € (or C#) atoms of the protein. Ahreadingbetweers andt is an alignment
obtained by insertingap symbolg' —’) into or at either end of and¢ such that the result-
ing sequences andt' are of same length where it is not allowed that bot¥§ andt’; are
gap symbols.

The profileP F; for each template structutés defined as a function frofE U {—}) x
{t1,...,tn, —} to the set of real numbei®. Moreover, thescore of a threadings’, t') is
defined by>™!_, PF,(s},t}).

The constraints in this formulation are defined as follows; bndt; are aligned in the
same column in a threadir(g’, ¢'), it is denoted by)(s;) = t;. If s; is aligned with the
gap symbol, it is denoted a¥s;) ='—

With all these definitions in hand, we define three types ofgindhreading problems.

m m
W W

Gap O Amino Acid X Constraints unsatisfied

Figure 1. Threading with strict Constraints(left) and Tadig with non-strict constraints(right).
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Problem 1 (Profile Threading without Constraint). Givent and PFy, find a threading
(s',t") with the maximum score.

For a target sequengeanarc setA; is associated, which is a set of pairs of positions
of s and each paifs;, s;) € As must satisfyl < i < i’ < m. Similarly, A; denotes an arc
set for a template structute In this papers; appearing ind, must not be aligned with a
gap symbol at the same column. For each p@airss; ) and(¢;, ¢0), IC(si, s¢7,t5,t5) =0
if these pairs satisfy a constraint 3, s;) (where a concrete definition of a constraint is
to be given later andC meansinconsistency If (s;,s;) ¢ A, IC(si,84,¢5,t5) = 0.
Otherwise (i.e., the pairs do not satisfy a constrainis@rsy) € A, but (¢;,t5) ¢ As),
IC(Si,Si/,tj,tj/) =1.

Problem 2 (Profile Threading with Strict Constraints). Given, A;), (t,At),
PF;, andIC, find a threadinds’, ') with the maximum score under the condition that
IC(S,’, Sir, ’L/)(Sz'), ’(/J(S,f)) = Oforall (S,’, Sil) € A,

Problem 3 (Profile Threading with Non-strict Constraints). Givén A;), (¢, As),
PF;, andIC, find a threadings’, ') with the maximum score under the condition that
2 (si,.)ea, 1C (835 81, 4(si), ¥ (s¢)) is the minimum.

It is note-worthy that all the constraints must be satisfiedPioblem 2 whereas in
Problem 3 it is required to minimize the number of unsatisfied conatsai

In our previous work, we presented a practical algorithm CLIQUETHREAD based
on maximum clique finding algorithm fd?roblem 2. Although, the presented algorithm
could solve most of the instances of protein threading,dlgsrithm is still unsuitable for
the large scale threading calculation due to the fact thdafger proteins the time required
is quite enormous. Moreover, no algorithm for threadindwibn-strict constraint$§ ob-
lem 3) was presented in our previous paper. In this context, we laéso developed an
algorithm forProblem 3.

For our application, constraints should be defined as fallol (s;, s/, t;,t5) = 0
if |dist(s;,sy) — dist(t;,t;)| is less than a threshol@l (a distance tolerance parameter)
wheredist(s;, si7) (resp. dist(t;,t;)) denotes the distance between positions 8f(Qr
CP) atoms associated with ands; (resp.t; andt;).

3. Algorithms
3.1. FTHREAD: An efficient algorithm for threading with strict castraints

As already stated in Sec. 1, although our previous algorfifQUETHREAD is able
to solve the constrained threading problem, for largerginstthe computational time is
extremely high.

Inthis regard, we have developed some heuristics whictcesiiihe computational time
significantly. We call this newer version of the algorithmFEEHREAD. This algorithm
works by reducing the strict-constrained threading pnaobte the maximum edge weight
clique finding problem, in which the total weight for edge#hia clique is maximized under
the condition that the number of vertices of the clique is imanm.

We construct an instana@(V, E) of the clique problem in the following way. Let
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Siy, Sisy - - - » Sigg DE rESidues i appearing i, whereiy < iz < ... <ig.
Herevg andv, are the starting node and terminal node added to the graphoklggruct
an undirected grap&(V, E) defined by

V = {(si,,t;)[1 <h < H,1<j <n}U{vo,ve},
E = {{(sin:tj); (8,5 ti)} | 1< A< W < H,
1<j<j'<n} U
{Hvo, (8inst)} | 1<h<H,1<j<n} U
H(Ginstj)sveb | 1<h<H1<j<n}
For substrings”, " of s, t, let us consider thaicore(s",t") denotes the score of an opti-

mal threading without constraints (i.e., an optimal s@tior Problem 1) betweens” and
t". Then, the weight of each edge can be defined by

’UJ({’U(), (s’iutj)}) =
score(si182...8i—1,t1t2 ... tj—1) + a,
w({(sin>tj),ve}) = PE(siy,t;) +
Score(Sig+1 - - - Smytjt1 ---tn) + @,
w({(sih ) tj)a (Sih+1’tj')}) =
0 if Ic(sih7sih+17tj7tj’) =1,
0 if IC(Si,h,Sih+1,tj,tj/) =0 and
SCOT‘@(Sih+1 . S,’h+1,1,t]‘+1 . tjlfl) <7
score(Sg, 41+ -+ Sip 1 —1,tj41 .- jr_1)
+ PFy(s;,,t;) +a otherwise
w({(slh ) tj)7 (Sih/ 3 tj')}) =
0 if IC(Sih,Sih+1,tj,tj/)=1,
a otherwise

wherea and~ are constants. The edges with weight 0 are removed from the s=tF.
The introduction of the cut-off parametglis the core part of the heuristics.

3.2. NTHREAD: Algorithm for non-strict Constraints

In contrast taProblem 2 where it is required that all the constraints be satisfiedrivb-
lem 3 it is required to find an optimal threading which tries to miie the number of
unsatisfied constraints.

When using a number of distance constraints and changingathe of distance toler-
ance parameter and position tolerance parameter, theesarases when some constraints
remain unsatified. In such a case, it is required to calctifet®ptimal threading by mini-
mizing the number of unsatisfied constraints.

Profile threading with non-strict constraints can also beesbby reducing the problem
to the maximum edge weight clique finding problem, in whiahtibital weight of the clique
is maximized under the condition that the number of vertafabe clique is maximum.
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Let us call the algorithm for profile threading with non-stidonstraints as NTHREAD.

In NTHREAD, the instancé&(V, E) of the clique problem is constructed in the same way
as in profile threading with strict constraints.

In assigning the weights to the edges, in contrast to theridhgo for strict con-
straints, the edges have to be weighted even if the contstraie not satisfied i.e. even
it 1C(s4, 81,9 (s1), 90 (s0)) = 1.

Hence, the weight of each edge is defined as:

’LU({’U(), (si17tj)}) =
score(s1sy...55,—1,tita. .. tj—1) + «,
w({(sin tj)ve}) = PF(siy,t;) +
score(Siy 41 ---Smytjg1 ---tn) + @,
w({(sih > tj)a (Sih+1 ) tj’)}) =
score(si, 41+ --Sip 1 —1,tjp1---tj_1)
+PFt(Slh7t]) +/3
if IC(Sih,S,'h_'_l,tj,tjl) = 1,
score(Si, 41 ---Sip 1 —1,tj41---tj_1)
+ PFy(si,,t;) + o otherwise
w({(sih ) tj)a (Sih/ ) tj')}) =

ﬂ if IC(Sihasih+17tj7tj') = 17
a otherwise

wherea andj are constants.

In both of the algorithms, after the completion of assignimgjghts to the edges, a
newer and more efficient version of the clique algorithm, W@@e2? is utilized to the
obtained graph to search for the maximum edge-weight clique

3.3. Efficient maximum clique finding algorithm: WCQprime

One of the prominent advantages of the algorithm based oimmiax edge-weight clique
finding algorithm is that the better the clique finding algfom becomes, the better the
whole approach becomes. In this regard, in this present werkave utilized a newer
versiort?® of the maximum edge-weight clique finding algorithm develdgy our co-
authors(Suzuki & Tomita). This new algorithm is called WCG@pe and this algorithm has
been proved to be many times faster than the previous ver$itve WCQ algorithri?:2!
which is in turn much faster than the state-of-the-art difjnding algorithms that are based
on the Bron & Kerbosch algorithr.

The WCQprime algorithm is not described here and interestaders are requested to
refer to the paper by Suzuki & Tomitd.
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4. Computational Experiments

Each algorithm was executed using only one CPU of a PC clustiedntel Xeon2.8GHz
CPUs under a Linux operating system using C language.

To obtain profiles to be used in the threading, PSI-BLAS®s used. The blastpgp
command was run against the SWISSPROT datdbasiag the global profile alignment
algorithm with afine gap penalty ( opening gap penalty-£l, gap extension penalty =
-1).

In order to obtain constraints for target proteins, disésnbetween € atoms of re-
spective amino acids was calculated as in Yoahgl2® Then, amino acid pairs with the
distances less thant.0A were only taken into account as constraints based on thé prev
ous real experiments. While considering the distance cains$ not only Lys-Lys pairs as
in our previous paper but also aspartate, glutamate andiaegiesidues were taken into
consideration as described in the respective computadtompariments.

In addition, a position threshold cut-dff was defined. If two respective pairs of amino
acid are placed withitP residues in a target sequence, one of these two residuesovas n
taken into account for generating constraints becausesspal provides little information
on 3D structure. The more the value Bf, the less the number of constraints. Hence, lesser
the value ofP, the more the number of constraints taken into consideratio

Similarly, as described in Sec. 2 a distance tolerance petea® was defined as the
maximum tolerable difference in the distance from the gigdéstance value. Hence, the
value of© decreases as the number of unsatisfied constraints insrease

4.1. Comparison with CLIQUETHREAD

We performed computational experiments of the newly depedo-THREAD with CLI-
QUETHREAD and BBDPTHREAD algorithms and compared the CPU times of these
algorithms for the following nine pairs of proteins. Forgliomparison, the value of the
distance toleranc® was taken to bd, the position tolerance was taken to®and only
the Lys-Lys pairs with the distances less tiedd were taken into account as constraints
as in Akutsuet al? For FTHREAD the value off was chosen to be 50. The results are
summarized in Table 1. Itis to be noted here that the time eoisgn of the three methods
is for the computation which produced the same results iofdhe three cases.

NA in the table shows that the computation did not terminatmeafter 10 hours. Par-
ticularly, in the case of protein pair (1xyz/8tim), it can bleserved that the CPU time is
significantly reduced fror8279 seconds td 78 seconds. Moreover, for the pair (1atn/1atr)
the computational time is reduced4el8 hours. It can be observed from the experimental
results that we have achieved significant gain in the effaiesf the clique based algo-
rithm for profile threading with strict constraints. Althgl, the results of FTHREAD are
still not as good as BBDPTHREAD for larger proteins, FTHREABs many advantages
over BBDPTHREAD. Some of them are: 1) FTHREAD is based on & genple algo-
rithm whereas BBDP is a very complicated and is not easy toifiyici) BBDP cannot
solveProblem 3 where as slight modification of FTHREAD can solve it; iii) ttime re-
quired in the case of BBDPTHREAD is not consistent; iv) andlfin for smaller proteins,
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Table 1. Comparison of CPU times (sec.) of CLIQUETHREAD , BBIHREAD and

FTHREAD.
Target  #res| Template #res| CLIQUETHREAD | BBDP | FTHREAD
1bbn 133 | lcentl 150 15 8.3 0.41
1vitA 142 | 1nfn 132 0.27 0.11 0.05
3sdhA  145| 1diw 116 2.6 9.5 0.36
1ten 89 | lac6A 110 0.24 0.09 0.05
1bla 155| 1lhce 118 11 7.0 0.36
la3k 137 1f5f 172 15 2.2 0.79
1lbow 144 | 1d5yA2 173 0.57 0.24 0.05
1xyzA 320 | 8timA 247 3279 59.9 178
latnA 372 1latr 383 NA 1101 16132

FTHREAD performs better than BBDPTHREAD.

4.2. Experiments with non-strict Constraints

As already explained in Sec. 1, it is a natural second stapy to explore the efficiency of
the algorithm by using more distance constraints. To shew#efulness of the algorithm
with non-strict constraints, we did some computationalegipents. In order to increase
the number of unsatisfied constraints, the conditions wexéenstricter which resulted in
some unsatisfied constraints for each pair of proteins ptedelnitially, the threading was
computed with the FTHREAD algorithm which computes thregdinder strict constraints
and then for the same protein pairs, the non-strict versitimeoalgorithm NTHREAD was
utilized. The results of each algorithm for each pair of pieg are given with the number
of unsatisfied constraints, the number of aligned residudsize corresponding RMSDs
are shown in Table 2.

For these experiments not only Lys-Lys pairs but also Glu-f&irs were taken into
account as constraints.The value@fs taken to bd).5, the value of3 for NTHREAD is
taken to bel, the value ofP is taken to bet and the value of for FTHREAD is taken to
be —50.

Table 2. Comparison of results for strict constrained anu-stact constrained algo-

rithm
Query Template| #Unsatisfied| FTHREAD | #Unsatisfied| NTHREAD
1fxi lubq 5 69/11.17 1 62/10.47
lhip 2hip 11 69/4.05 3 65/3.88
2sar arnt 6 76/12.89 1 70/10.09
5fd1 2fxb 9 67/7.9 2 67/6.9
lisu 2hip 0 60/3.60 0 60/3.60

It can be seen that using the non-strict version of the alyoriimprovement in the
number of aligned residues and RMSDs can be obtained. Hagwiteworthy that the strict
version of the algorithm and non-strict version of the aildpon produce similar results if
there are no unsatisfied constraints.
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4.3. Threading accuracy VS number of constraints

In order to know the relationship of threading accuracy ® tiamber of constraints and
different distance parameters, we also performed some wt@tipnal experiments for
FTHREAD. The distances between either of the lysine residagginine residues, aspar-
tate residues, glutamate residues or the combination of ieeconsidered as shown in
Table 3. The distance tolerance parameter is varied so awiw the effects of changing
distance tolerance. The position tolerance parametertisargeed keeping in mind that
varying the position tolerance paramefedirectly results in the increasing of unsatisfied
constraints.

Table 3. Effects of number of constraints and distance doks on threading accuracy. KEDR
represents the respective amino acids Lysine, Glutamil; Asparatic acid and Arginine. Thus KEDR
represents that all the four amino acids are used and KE[2septs that the amino acids Lysine,
Glutamic acid and Asparatic acid are used and so on. The xaluepresents that x is the number of
aligned residues and y is the RMSD

Pair | Amino Acids | P=60=4 | P=60=35| P=60=30| P=60=25

1cauB 1cauA KEDR 167/5.61 167/5.61 166/5.53 165/5.55
KED 167/5.61 167/5.61 167/5.61 163/6.15

KDR 167/5.61 167/5.61 166/5.53 165/5.55

KE 167/5.61 167/5.61 166/3.94 165/5.55

KD 165/3.94 165/3.94 163/3.94 164/3.94

K 165/3.94 165/3.94 165/3.92 164/3.94

lisuA 2hipA KEDR 60/3.45 60/3.43 60/3.43 60/3.43
KED 60/3.46 60/3.43 60/3.43 60/3.34

KDR 60/3.46 60/3.43 60/3.39 60/3.39

KE 60/3.46 60/3.39 60/3.39 60/3.39

KD 60/3.46 60/3.43 60/3.43 60/3.43

K 60/3.46 60/3.39 60/3.39 60/3.39

1mup 1rbp KEDR 131/7.92 119/8.23 144/7.02 127/12.22
KED 148/5.62 143/6.23 140/8.34 136/6.36

KDR 143/7.32 144/7.08 143/7.04 139/7.23

KE 154/8.93 147/7.12 147/7.12 148/7.09

KD 140.6.83 136/7.01 122/7.19 118/8.55

K 150/7.64 147/7.73 144/7.59 133/9.30

From the observations of Table 3, the following general tusions can be derived.
Increasing the number of amino acids in generating comstrancreases the efficiency
of the method in general but at the same time results in theedse of the number of
unsatisfied constraints such that there is a trade-off estwee number of amino acids
that has to be considered. From our experiments, it can betkaeconsidering Lysine
and Glutamic Acid produces better results than other coatigins. Similarly, it can also
be observed that decreasing the distance tolerance pamraimeteases the efficiency of
the method in general, but if the distance tolerance pamnetecreased below a certain
value then again the number of unsatisfied constraintsasee resulting in the loss of
efficiency. Although, the results for the various paramseétings shown in Table 3 shows
similar results, the combination of Lysine and Glutamiadlagith P =6 and® = 3 produces
slightly better results. Hence, for the comparison of outhnd FTHREAD with other
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existing methods, we use this set of parameters.

4.4. Comparison with other methods

For the efficiency of our FTHREAD algorithm, we compared owthods with the meth-
ods of Kolinskiet al13(KRIS) and Shaet al2° (COBLATH). The method of Kolinski uses
a high-coordination lattice approximation of the querytpio fold and monte Carlo sim-
ulated annealing to improve the alignment accuracy of thirep Similarly,the method of
Shanet al(COBLATH) utilizes PSlI-blast and a sophisticated scoringdtion for thread-
ing. These methods are compared usin@ guery template pair first utilized by Kolinski
et al'® The RMSDs of the alignments by KRIS, COBLATH and our methagd@mpared
in Table 4.
The value 00 is chosen to b8, the value of the position tolerance parametéds set

to be6, and the Lysine residues and Glutamic acid residues wees tako consideration
while generating constraints as obtained from the anabdfsifferent sets of parameters.

Table 4. Comparison with KRIS and COBLATH

Query | Template | KRIS | COBLATH | FTHREAD
laba lego | 4.86 3.38 3.20
1bbhA 2ccyA 6.82 3.51 2.97
1cewl 1molA | 14.38 13.29 9.08
lhom 1ifb 3.70 4.80 5.73
1stfl 1molA 5.95 12.98 8.53
1tk 2rhe 4.17 5.04 7.52
256bA lbbh | 4.26 3.92 6.18
2azaA lpaz | 10.77 3.82 5.04
2pcy 2azaA | 441 5.65 5.58
2sarA arnt 7.83 3.80 7.52
3cd4 2rhe | 6.39 8.50 9.05
5fd1 2fxb | 12.40 9.61 8.37

It can be seen that although our method utilizes only a sirtipleading algorithm,
our method produced lower RMSDs for six proteins compared@BLATH and higher
RMSDs for six proteins than COBLATH. In comparison to KRI$y anethod produced
lower RMSDs for six proteins and higher RMSDs for six progeiithe algebraic mean of
the 12 RMSDs is7.24 for the method of KRISG.44 for COBLATH and6.56 4 for our
method. Hence, it can be observed that although our methesdardy a simple threading
function, our method produces results similar to some ostphisticated methods.

5. Conclusion and Discussion

The main contributions of this paper are the FTHREAD aldponifor threading with strict
constratins and a practical NTHREAD algorithm for threadivith non-strict constraints.
In the case of FTHREAD, we were able to achieve a significaint igathe computational
time for larger proteins than its predecessor, CLIQUETHREA



September 16,2004 9:1 Proceedings Trim Size: 9.75in x 6.5in 146

12

We also presented a novel algorithm NTHREAD for threadinthwion-strict con-
straints presented some results to show that this threaeipg to attain a better prediction
especially when there are a number of unsatisfied consradtrttan also be observed from
the computational experiments that threading with comdggroduces better results than
the threading with no constraints. Moreover, in most of thses the lesser the number of
unsatisfied constraints, the better is the RMSD of the ptedistructure.

Moreover, adding more constraints also results in the asg@f number of unsatisfied
constraints. In this scenario, the NTHREAD algorithm depeld for non-strict constraints
is much more useful than the FTHREAD algorithm developedsfact constraints. How-
ever, the current version of NTHREAD algorithm is not as &ssthe FTHREAD algorithm.
Hence, one of the major future works is to work on the improeethof efficiency of the
NTHREAD algorithm.

About the practical usage of the NTHREAD algorithm for ndrie$ constraints, it
seems to be very useful especially when there are a numbersatfisfied constraints. Es-
pecially, when a number of constraints like simulated disgaconstraints, NOE distances
constraints or distances between disulfide bonds are usedna$raints, it is likely that
the number of unsatisfied constraints in this case will bédéigHence, the algorithm for
non-strict constraints can be expected to be very usefuléh a scenario.

We showed that a small number of experimental distance i@ntt already suffice
to improve the query sequence template structure alignn@thier additional constraints
like disulfide bridges, NOE restraints could also be usedrprove the accuracy of the
prediction. Although, there exists similar methods likésthour method is simple and
general and hence, can be applied to any type of profile-thsedding algorithms and
modified easily.

We have utilized profiles of template structures in ordemntpriove the quality of thread-
ing algorithms. Sadreyest al.!® have utilized profile-profile alignment to protein thread-
ing. In this context, our method can also be applied to prgiteile alignment approach
for protein threading. Hence, another important futurelwisrto explore the possibilities
of our approach for possible application in profile-profiligmment for protein threading.

Even though we did not perform any experiments for fold rexdtign, we expect to
obtain better results in case of fold recognition also. Ttaomdifference between fold
recognition and sequence-structure alignment is the $iteesearch space that is needed
to be searched or the number of the alternatives to choose ffold recognition is aimed
at finding a structure in a representative fold databasewdoatains about some thousand
folds whereas threading algorithm applied to predictiothoéading two proteins tries to
explore the search space that is much larger compared tolithegace. In this sense, it
can be inferred that our algorithm might work well for thedoécognition problem as fold
recognition problem is less demanding than the sequengetiste alignment problem.
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