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CHAINS OF STRUCTURALLY COMPLETE

PREDICATE LOGICS WITH THE APPLICATION

OF PRUCNAL’S SUBSTITUTION

A b s t r a c t. A logical system is structurally complete (or smooth) if

structural and admissible rules are derivable in it. It is shown that if

some peculiar ”omitting” rules are neglected then classical predicate

logic L2 is structurally complete. A unique structural and struc-

turally complete extension of L2 is described. Next, it is shown that

among negation-free intermediate predicate logics, there are chains

of type ω
ω + 1 of such logics (extensions of Gödel–Dummett logic)

which are hereditarily structurally complete. This is in contrast with

the case of propositional logics.

Since deducibility rather than theoremhood is studied here, by logic L

we mean a logical system L = 〈R,A〉 of rules R and axioms A. Equivalently,

we may consider a consequence operation CnL (in the sense of A. Tarski)

corresponding to L = 〈R,A〉. CnL coincides with the provability operation

for 〈R,A〉; we will omit subscript in CnL and write Cn. The set of formulae

provable in a logic L will be denoted by L, i.e. L = Cn(Ø). By a rule r we
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mean a set of pairs 〈π, ϕ〉, where π is a finite set of formulae (premises) and

ϕ is a formula (a conclusion); we also write r : π/ϕ. By S we denote that set

of all formulae. A rule r is structural if 〈π, ϕ〉 ∈ r implies 〈h(π), h(ϕ)〉 ∈ r,

for every substitution h : S → S. We consider here only structural logics,

i.e. such that h[Cn(X)] ⊆ Cn(h[X]), for any substitution h and X ⊆ S.

This means that the rules in R are structural and h(L) ⊆ L, for all h. Let

L be a logic. A rule r is admissible in L, if, for every 〈π, ϕ〉 ∈ r, whenever

π ⊆ L, then ϕ ∈ L. A rule r is derivable in L, if ϕ ∈ Cn(π), for every

〈π, ϕ〉 ∈ r. It is clear that rules derivable in L are admissible in L; the

converse does not hold (it holds only for complete logics).

A logic L is called structurally complete, L ∈ SCpl, if structural and

admissible rules in L are derivable in L (L is also called smooth by some

authors). This notion was introduced by Pogorzelski [7]; it was shown that

the classical propositional logic (with Modus Ponens as the only rule) is

structurally complete. Several other propositional logics were shown to be

structurally complete, e.g. modal S5 with adjunction rule, Medvedev logic

(T. Prucnal, solving the problem of H. Friedman), linear logic LC of Gödel–

Dummett and its extensions, (Dzik and Wroński [3]). Intuitionistic logic

is not structurally complete. Rybakov in [11] presents (Kripke) semantical

conditions for hereditarily structural completeness of modal and intermedi-

ate propositional logics. In case of (1-st order) predicate logics, structural

completeness was considered by Pogorzelski and Prucnal [4]. It was shown

that classical predicate logic L2 in the standard formalization i.e. based

on the rules of Modus Ponens and Generalization, is not structurally com-

plete. Addition of the rule of substitution for predicate variables to the

rules of L2 results in structurally complete logic. The notion of substitu-

tion for predicate variables is essential here (free individual variables are

preserved). It differs from those found in the literature (eg. of Church,

Hilbert and Ackermann and others).

In part 1, we describe ‘omitting rules’, which are structural and admis-

sible in classical logic L2. We show that all the structural and admissible

rules in L2, which are not omitting, are derivable in L2. Then we describe

a unique structurally complete extension of L2.
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In part 2 we consider negation-free intermediate (between intuitionistic

and classical) predicate logics. We provide examples of chains of type ωω+1

of hereditarily structurally complete predicate logics which are not finitely

axiomatizable and infinitely many such logics which are Kripke incomplete.

This is in contrast with the analogous results in propositional logics.

¿From now let S denotes the language of pure 1-st order logic with

individual variables, predicate symbols (without equality), the connectives

¬,∧,∨,→ and the quantifiers ∀ and ∃. We use only the ‘type ε’ of substitu-

tions for predicate variables defined in Pogorzelski and Prucnal [8]. In short,

such substitution h preserves all the connectives, all signs of quantifiers and

all the free individual variables, but may change indices of bounded vari-

ables. The same letter h will denote both a substitution function h from

the set of atomic formula to the set S and the extension of this function to

a homomorphism of S into S. We deal with the structural rules only.

1. Classical predicate logic

By classical predicate logic L2 we mean the standard formalization

of classical predicate logic (for example as in Mendelson [5]), with axiom

schemata for propositional logic plus two predicate axioms and two rules of

inference: Modus Ponens and Generalization (the standard rules). L2 de-

notes the set of all formulae deducible in classical predicate logic (=classical

predicate tautologies).

Unlike the case of classical propositional logic, in predicate logics there

are formulae α1, . . . , αn such that for no substitution h, h({α1, . . . , αn}) is

included in L2, and, at the same time, {α1, . . . , αn} is classically consistent,

i.e. Cn(α1, . . . , αn) 6= S (this is due to the presence of negation connective

and existential quantifier). For example, formulae ∃xϕ,∃x¬ϕ are of this

type. This leads to rules that are admissible but not derivable in L2.

A rule r is called omitting if, for every 〈π, ϕ〉 ∈ r and for every substi-

tution h, h(π) ⊆/ L2.
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Example. The rules ∃xϕ,∃x¬ϕ/ ⊥ and ¬(∃xϕ→ ∀xϕ)/ψ are omitting.

Corollary 1. Every omitting rule is admissible in L2. The rules from the

above example are admissible but not derivable in classical predicate logic.

Corollary 2. Classical predicate logic in the standard (structural) for-

malization is not structurally complete (see [8]). The same holds for all

predicate logic weaker then classical predicate logic with the standard rules.

We will show that for classical predicate logic only omitting rules can

be admissible but not derivable. Let tr be a set of formulae of the form:

∃xϕ(x) → ∀xϕ(x), ϕ ∈ S, (”quantifiers are triavial”).

We define an equivalence relation of Lindenbaum–Tarski ≈ between

formulae as follows: α ≈ β iff both α→ β and β → α are deducible in L2.

Let >n = (Pn
k (x1, . . . , xn) → Pn

k (x1, . . . , xk)) and

⊥n= ¬(Pn
k (x1, . . . , xn) → Pn

k (x1, . . . , xk)), n = 1, 2, . . .. Observe that the

set {>n,⊥n} is closed (modulo ≈) with respect to ¬,∧,∨,→,∀,∃. Also

>n ≈ >m and ⊥n≈⊥m, for all m,n. Hence only abbreviations > and ⊥

will be used. This should not lead to a contradiction.

A substitution h is called 1-0-substitution if h(β) ≈ > or h(β) ≈⊥ for

any atomic formula β, and h is of the ε-type. Example: h(β) = β → β or

h(β) = ¬(β → β) are 1-0-substitutions. It can be shown, by induction on

the length of a formula α that, for every α, h(α) ≈ > or h(α) ≈⊥, for every

1-0- substitution h.

Lemma 1. Let Cn be a consequence operation of L2. For any rule r let

γ be a conjunction of all premises of r. Then the following conditions are

equivalent:

a) h(γ) 6∈ L2, for every substitution h, i.e. r is omitting,

b) h0(γ) ≈⊥, for every 1-0-substitution h0,

c) ¬γ ∈ Cn(tr),

d) Cn(tr ∪ {γ}) = S.

Proof. Equivalence of a) and b) is straightforward. Now assume b)

and let ¬γ 6∈ Cn(L2 ∪ tr). For any formula ϕ ∈ S, let ϕ0 be an open
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formula which is obtained by deleting all signs of quantifiers in ϕ, and let

X0 = {ϕ0 : ϕ ∈ X}.

Let x = x1, . . . , xn, y = y1, . . . , yn be arbitrary sequences of individual

variables. Now observe that for every ϕ ∈ S:

if ϕ0 ∈ CnMP (L0
2 ∪ {ϕ(x) → ϕ(y) : ϕ ∈ S0, arbitrary x, y}), then ϕ ∈

Cn(L2 ∪ tr), where CnMP is a consequence operation with Modus Ponens

rule only. In particular ¬γ0 6∈ CnMP (L0
2∪{ϕ(x) → ϕ(y) : ϕ ∈ S0, arbitrary

x, y}). There is a valuation v : S0 → {0, 1} such that v(L0
2 ∪ {ϕ(x) →

ϕ(y) : ϕ ∈ S0, any x, y}) ⊆ {1} and v(¬γ0) = 0, i.e. v(γ0) = 1. Let

h0v : S → {>,⊥} be a substitution defined as follows:

for atomic formula P (x), h0v(P (x)) = >, if v(P (x)) = 1 and h0v(P (x)) =⊥

otherwise. Then, for every ϕ ∈ S, v(ϕ0) = 1 iff h0v(ϕ0) ≈ > iff h0v(ϕ) ≈ >,

because {>,⊥} is closed with respect to quantifiers. Hence h0v(γ) ≈ >,

which contradicts b).

Obviously c) implies d). Now, if b) is not true i.e. there is a 1-0

substitution h0 such that h0(γ) ≈ > then by d): h0(S) ⊆ Cn(h0(tr ∪

{γ})) ⊆ {>}, which is impossible.

Remark. A rule r is omitting iff negation of conjunction of its premises is

valid in every model with 1-element domain.

Lemma 2. Let h0 be a 1-0-substitution, let γ be a sentence (a closed for-

mula) and let us define a substitution hγ depending on γ and h0: hγ(P ) =

γ ∧ P , if h0(P ) ≈⊥ or hγ(P ) = γ → P , if h0(P ) ≈ >, for atomic P . Then

hγ(α) ≈ γ ∧ α, if h0(α) ≈⊥ or hγ(α) ≈ γ → α, if h0(α) ≈ > for every

formula α.

In particular, hγ(γ) ≈ γ → γ, if h0(γ) ≈ > and hγ(γ) ≈ γ, otherwise.

Proof. The proof (by induction on the length of a formula α) is based

on classical predicate logic.

The following fact is known.

Lemma 3. Assume that Cn is a consequence operation of a logic L. Then

L ∈ SCpl if and only if the following holds



42 WOJCIECH DZIK

(∗) If, for every substitution h, h(γ) ∈ L implies h(α) ∈ L, then

α ∈ Cn(γ).

Theorem 1. For every rule r which is not omitting, if r is structural and

admissible in classical predicate logic, then r is derivable in it.

Proof. Let r be a structural and admissible rule which is not omitting,

let γ be universal closure of conjunction of its premises and let α be its

conclusion.

We have either (a) h(γ) ∈L2, for some substitution h, or (b) h(γ) 6∈L2

for every substitution h. In case of (b), r is omitting, which is excluded

by the assumption. In case of (a) observe that it is enough to show that

the condition (∗) in Lemma 3 holds, where Cn is a consequence operation

of classical predicate logic L2. Put in (∗) the substitution hγ defined in

Lemma 2. By Lemma 2 and 3 we have hγ(α) ∈ L2.

Now, since hγ(α) → (γ → α) ∈ L2 in both cases of Lemma 2, we have

γ → α ∈ L2, i.e. α ∈ Cn(γ).

It is known that a logic is structurally complete iff it can not be prop-

erly extended without extending the set of its axioms. Moreover, for every

logic there is a unique structurally complete extension with the same set of

deducible formulae (theorems). This is also true for predicate logics.

Remark. For a given logic L we define an operation ΣL, as follows:

α ∈ ΣL(X) iff for every substitution h, h(X) ⊆ L implies h(α) ∈ L.

If Cn is a consequence operation of a (structural) logic L, then it can

be shown that

L ∈ SCpl iff ΣL(X) = Cn(X), for every finite X.

Hence, in Th.1 we have proved that Cn(X) = ΣL(X), for every finite

X, as long as X ∪ tr is consistent, in case of consequence operation of

classical predicate logic.

Theorem 2. A unique structurally complete extension of classical predi-

cate logic can be obtained by adding the rules of the form:

(%n) (∃x1
ϕ1 ∧ ∃x1

¬ϕ1) ∨ . . . ∨ (∃xn
ϕn ∧ ∃xn

¬ϕn)/ ⊥,
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for any formulae ϕ1, . . . , ϕn, n ∈ IN, where xi is here a finite sequence of

individual variables xi1 , . . . , xim
and ∃xi

is an abbreviation of ∃xi1
. . . ∃xim

(⊥= universally false sentence).

Proof. We show that every ommitting rule r: γ1, . . . , γn/α is derivable

by means of the rules (%n), n ∈ IN. Let γ = γ1 ∧ . . . ∧ γn. By Lemma 1, a)

and c), ¬γ ∈ Cn(L2∪tr). Hence, by deduction theorem, (∃x1
ϕ1∧∃x1

¬ϕ1)∨

. . .∨ (∃xn
ϕn ∧∃xn

¬ϕn) ∈ Cn(γ), for some ϕ1, . . . , ϕn, n ∈ IN, and, by (%n),

⊥∈ Cn(γ). Hence α is deducible from γ1, . . . , γn in the logic extended with

the rules (%n).

Remarks

1. The rules (%n) are used only for deducing inconsistency from premises

which can be consitent but are inconsistent with tr.

2. Theorem 2 describes a unique structurally complete extension of L2

among structural logics; in [8] another, structurally complete but non-

structural extension L∗

2 of L2 is obtained by adding the (non-structural)

rule of substitution for predicate variables as an additional rule. Since the

rules (%n) are derivable in L∗

2, by Theorem 2 we have L∗

2 ∈ SCpl.

3. Theorems 1 and 2 are also true for any structural extension of classical

logic.

4. There exists a proper structurally complete extension of L2 which is not

complete.

2. Negation-free intermediate predicate logics

An intermediate (between intuitionistic and classical) predicate logic

L has a standard set of rules. A set L of deducible formulae is closed

with respect to Modus Ponens, generalization and substitution for predicate

variables, INT ⊆ L ⊆ L2, where INT is the set of deducible formulae in

intuitionistic predicate logic.

For the rest of the paper we deal with negation–free (positive) 1-st or-

der predicate logics i.e. such that the symbol of negation does not occur in
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the language. Negation-free intermediate predicate logics have been stud-

ied in several papers (see e.g. Casari, Minari [1], Minari [5]). In this case,

for every set of formulae X there is a substitution h such that h(X) ⊆L2.

Hence, there are no ommitting rules. We show that there are more various

types of structurally complete predicate logics than in the case of corre-

sponding propositional logics.

A logic L is called hereditarily structurally complete, L ∈ HSCpl, if all its

extensions (including L) are structurally complete. Let LW denote a logic

which is an extension positive predicate logic of Hilbert H (i.e. negation-

free fragment of Intuitionistic predicate logic) with the formulae:

(α→ β) ∨ (β → α) = Lin, for Linearity and

(α→ ∃xβ) → ∃x(α→ β) = Well, where α does not contain x free, for well

founded relation of a Kripke frame,

i.e. LW = H + Lin + Well. Note, that LW is an extension of Gödel–

Dummett logic.

T. Prucnal [9] used a particular substitution which is useful in proving

structural completeness of implicational propositional calculi. We make use

of Prucnal’s substitution in the case of negation-free predicate logics (cf.

[2]).

Lemma 4. (Prucnal’s Substitution). Let hγ be defined by: hγ(P ) =

γ → P , for every atomic formula P and any fixed closed formula γ. Then

hγ(α) ≈ γ → α, for every formula α, where ϕ ≈ ψ iff ϕ → ψ and ψ → ϕ

are deducible in LW.

Proof. We prove the lemma by induction on α. If α is atomic, this is

obvious. Let α = β⊗ δ, where ⊗ ∈ {∧,∨,→} or α = ⊗β, where ⊗ ∈ {∀,∃}

and assume the theorem holds for β and δ. For ∧,→ and ∀ the proof uses

intuitionistic logic. For ∨ we need:

(γ → β ∨ δ) → (γ → β) ∨ (γ → δ), which is equivalent to Lin. For ∃ we

need Well.
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Theorem 3. Every negation-free predicate logic which contains LW is

hereditarily structurally complete.

Proof. Let L be a logic extending LW. Then, combining Lemma 3

and Prucnal’s substitution Lemma we have L ∈ SCpl. The same proof

holds for every extension of L.

Let K be a Kripke frame, K = 〈P,≤, V 〉, where 〈P,≤〉 is a poset (of

worlds), and V is a domain function; for each world k ∈ P, V (k) is a domain

of a classical structure for predicate logic.

Let K(α) be a Kripke frame based on an ordinal α, with constant

domain, i.e. P = α and, for each world k ∈ α, V (k) = max(ω, card (α)).

By L(α) we denote a set of negation-free formulae which are valid in

every Kripke frame K(α) and by L(α) a predicate logic with the set of

axioms L(α) and with the standard rules of inference. Since LW ⊆ L(α)

we have:

Corollary 3. L(α) is hereditarily structurally complete, for any ordinal α.

Theorem 4. There are descending chains of hereditarily structurally com-

plete predicate logics over LW with the order type ωω + 1. In particular,

among hereditarily structurally complete predicate logics extending LW:

a) there is a chain of type ωω + 1 of logics which are not finitely axiomati-

zable,

b) there is a chain of type ωω +1 of logics which are finitely axiomatizable,

c) there are infinitely many logics which are Kripke incomplete.

Proof. Minari [5] showed that for every ordinal ξ < ωω, there is

a negation–free formula Wξ (defined by induction) such that Wξ ∈ L(ξ) \

L(ξ + 1). Wξ is based on combination of instances of a schema

∀x((α(x) → ∀yα) → ∀yα) → ∀xα(x) and a schema

Gn : β0 ∨ (β0 → β1) ∨ . . . ∨ (βn → βn+1).

By Cantor normal form theorem every ordinal ξ < ωω can be uniquely

presented as ωnm0 + ωn−1m1 + . . . + ω0mn, hence there is a 1 − 1 map-

ping between ordinals ξ < ωω and finite sequences of natural numbers
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[n;m0, . . . ,mn]. It can be shown by multiple induction, cf. [5], that

Wξ ∈ L(ξ) and that Wξ 6∈ L(ξ + 1).

Hence all the logics L (ξ), ξ < ωω, are distinct and they form a strictly

descending chain. It is known that for every infinite ordinal α, the logics

L (α) are not recursively axiomatizable, see Skvortsov [12]. This proves a).

For b) take logics LW + Wξ, ξ < ωω.

For c) observe that logic LW and all its extensions which do not con-

tain constant domain formula D : ∀x(α ∨ β(x)) → (α ∨ ∀xβ(x)) are Kripke

incomplete, since every Kripke frame which validates logic LW has a con-

stant domain. In particular, LW +Gn, n < ω, are Kripke incomplete (cf.

[1]).

Conjecture. There is a chain of type ωω + 1 of logics extending LW,

which are Kripke incomplete.

Remark. We may compare these results with results in corresponding

propositional logic.

A propositional logics corresponding to LW is a positive fragment of

linear logic LC of Gödel–Dummentt. Both LC and positive fragment of

LC are (hereditarily) structurally complete, cf. [3].

All extensions of LC form a chain of type ω + 1 and all of them are

hereditarily structurally complete but extensions of LW are much richer.

Also a) and c) are in contrast with results on propositional logic: if a

propositional intermediate logic L is hereditarily structurally complete then

L is finitely axiomatizable and Kripke complete with respect to a class of

finite frames of special type, cf. Rybakov [11].

Some limitations of structural completeness in negation–free interme-

diate predicate logics are presented below.

Fact. Positive predicate logic of Hilbert H is not structurally complete.

The following rule:

(∗∗) ((∀yβ(y) → γ) → ∃xβ(x))/∃x((∀yβ(y) → γ) → β(x)),
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where γ is a closed, is structural and admissible but not derivable in H.

Proof. To prove that the rule (∗∗) is admissible in H let us assume

that the conclusion of (∗∗) is not in H. By means of Kleene slash |, see [4],

we have (∀yβ(y) → γ)|(∀yβ(y) → γ), hence, by Kleene result ∃x((∀yβ(y) →

γ) → β(x)) is in H, contradiction. On the other hand the rule (∗∗) is not

derivable in H. The formula ((∀yβ(y) → γ) → ∃xβ(x)) → ∃x((∀yβ(y) →

γ) → β(x)) is not H–valid. It is false in a topological model (cf. [10]) on the

set of real numbers, taking for β(xn) open sets Bn = (−∞, 0)∪(1/n,∞) and

for γ, a set C = (−∞,−1)∪ (−1,−1/2)∪ (−1/2,−1/3)∪ (−1/3,−1/4)∪ . . .

.

Remarks. Both logics obtained from LW by deleting Lin or Well respec-

tively are not structurally complete i.e. H + Lin 6∈ SCpl and H + Well

/∈ SCpl. Hence the structurally complete (positive) propositional logic LC

has the minimal corresponding predicate logic H + Lin 6∈ SCpl and a

stronger corresponding predicate logic LW ∈ HSCpl (predicate logic L1

corresponds to propositional logic L0 if propositional schemata in L1 and

L0 coincide).
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