Computer Science > Machine Learning
[Submitted on 9 Jul 2024]
Title:Certified Continual Learning for Neural Network Regression
View PDF HTML (experimental)Abstract:On the one hand, there has been considerable progress on neural network verification in recent years, which makes certifying neural networks a possibility. On the other hand, neural networks in practice are often re-trained over time to cope with new data distribution or for solving different tasks (a.k.a. continual learning). Once re-trained, the verified correctness of the neural network is likely broken, particularly in the presence of the phenomenon known as catastrophic forgetting. In this work, we propose an approach called certified continual learning which improves existing continual learning methods by preserving, as long as possible, the established correctness properties of a verified network. Our approach is evaluated with multiple neural networks and on two different continual learning methods. The results show that our approach is efficient and the trained models preserve their certified correctness and often maintain high utility.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.