
Catching Up with the Data:

Research Issues in Mining Data Streams

Pedro Domingos Geo� Hulten

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98185-2350, U.S.A.

fpedrod,ghulteng@cs.washington.edu

Abstract

In many domains, data now arrives faster than we are able to mine it. To avoid

wasting this data, we must switch from the traditional \one-shot" data mining approach

to systems that are able to mine continuous, high-volume, open-ended data streams as

they arrive. In this paper we identify some desiderata for such systems, report on our

recent work realizing them, and outline a number of directions for future research.

1 The Problem

Many (or most) organizations today produce an electronic record of essentially every trans-

action they are involved in. When the organization is large, this results in millions of

records being produced every day. For example, in a single day WalMart records 20 million

sales transactions, Google handles 70 million searches, and AT&T produces 275 million call

records. Scienti�c data collection (e.g., by earth sensing satellites or astronomical observa-

tories) routinely produces gigabytes of data per day. Data rates of this level have signi�cant

consequences for data mining. For one, a few months' worth of data can easily add up to

billions of records, and the entire history of transactions or observations can be in the hun-

dreds of billions. Current algorithms for mining complex models from data (e.g., decision

trees, sets of rules) cannot mine even a fraction of this data in useful time. Further, mining

a day's worth of data can take more than a day of CPU time, and so data accumulates faster

than it can be mined. As a result, despite all our e�orts in scaling up mining algorithms,

in many areas the fraction of the available data that we are able to mine in useful time is

rapidly dwindling towards zero. Overcoming this state of a�airs requires a shift in our frame

of mind from mining databases to mining data streams. In the traditional data mining pro-

cess, the data to be mined is assumed to have been loaded into a stable, infrequently-updated

database, and mining it can then take weeks or months, after which the results are deployed

and a new cycle begins. In a process better suited to mining the high-volume, open-ended

1



data streams we see today, the data mining system should be continuously on, processing

records at the speed they arrive, incorporating them into the model it is building even if it

never sees them again. A system capable of doing this needs to meet a number of stringent

design criteria:

� It must require small constant time per record, otherwise it will inevitably fall behind

the data, sooner or later.

� It must use only a �xed amount of main memory, irrespective of the total number of

records it has seen.

� It must be able to build a model using at most one scan of the data, since it may

not have time to revisit old records, and the data may not even all be available in

secondary storage at a future point in time.

� It must make a usable model available at any point in time, as opposed to only when

it is done processing the data, since it may never be done processing.

� Ideally, it should produce a model that is equivalent (or nearly identical) to the one

that would be obtained by the corresponding ordinary database mining algorithm,

operating without the above constraints.

� When the data-generating phenomenon is changing over time (i.e., when concept drift

is present), the model at any time should be up-to-date, but also include all information

from the past that has not become outdated.

At �rst sight, it may seem unlikely that all these constraints can be satis�ed simultane-

ously. However, we have recently developed a decision tree induction system that meets the

�rst �ve, and are currently extending it to meet the sixth (Domingos & Hulten, 2000). The

system is called VFDT, and is able to mine on the order of a billion examples per day using

o�-the-shelf hardware, while providing strong guarantees that its output is very similar to

that of a \batch" decision tree learner with access to unlimited resources. We have also

begun to develop VFKM, a version of k-means clustering with similar properties. The goals

above, and our experience with VFDT and VFKM, lead us to identify a number of research

questions:

� How much data is enough? Even if we have (conceptually) in�nite data available, it

may be the case that we do not need all of it to obtain the best possible model of the

type being mined. Assuming the data-generating process is stationary, is there some

point at which we can \turn o�" the stream and know that we will not lose predictive

performance by ignoring further data?

� If the data-generating process is not stationary, how do we make the trade-o� between

being up-to-date and not losing past information that is still relevant? In the traditional

method of mining a sliding window of data, a large window leads to slow adaptation,

but a small one leads to loss of relevant information and overly-simple models. Can

we overcome this trade-o�?

2



� Which data mining algorithms are best suited to mining fast data streams? Some

algorithms may be harder to adapt to the data-stream setting than others. Can we

identify general properties that a�ect the ease of transformation, and devise general

techniques to transform entire classes of algorithms?

We consider each of these in turn.

2 How Much Data Is Enough?

A number of well-known results in statistics provide probabilistic bounds on the di�erence

between the true value of a parameter and its empirical estimate from �nite data. For

example, consider a real-valued random variable x whose range isR. Suppose we have made n

independent observations of this variable, and computed their mean �x. The Hoe�ding bound

(Hoe�ding, 1963) (also known as additive Cherno� bound) states that, with probability at

least 1 � Æ, and irrespective of the true distribution of x, the true mean of the variable is

within � of �x, where

� =

s
R2 ln(2=Æ)

2n

Put another way, this result says that, if we only care about determining x to within � of its

true value, and are willing to accept a probability of Æ of failing to do so, we only need to

gather n = 1

2
(R=�)2 log(2=Æ) samples of x. More samples (up to in�nity) produce in essence

an equivalent result. The main thrust of our research has been to \bootstrap" these results,

which apply to individual parameters, to similar guarantees on the di�erence (loss) between

the whole complex model mined from �nite data and the model that would be obtained

from in�nite data in in�nite time. These results allow us to dynamically decide how many

samples from the data stream to use for each decision or parameter, while guaranteeing that

the end result will be as close to the \in�nite data" case as the user desires. We have so far

successfully applied this method to decision tree induction and k-means clustering. Many

open issues remain, including obtaining better bounds for these two cases, extending the

approach to di�erent algorithms and di�erent types of data mining, and using distribution-

speci�c bounds instead of the generic Hoe�ding ones.

3 How Should Mined Models Evolve?

We have recently extended VFDT to handle time-changing phenomena by allowing examples

to be forgotten as well as remembered. Forgetting an example involves subtracting it from

the suÆcient statistics it was previously used to compute. When there is no drift, new

examples are statistically equivalent to the old ones and the decision tree does not change,

but if there is drift a new best split for a given node may surface. In this case we begin to

grow an alternative subtree using the new best split, and replace the old subtree with the

new one when the latter becomes more accurate on new data. Replacing the old subtree

with the new node right away would produce a result similar to windowing, but at a cost

of O(1) per new example, as opposed to O(w), where w is the size of the window. Waiting

3



until the new subtree becomes more accurate ensures that past information continues to be

used for as long as it is useful, and to some degree overcomes the trade-o� implicit in the

choice of window size. However, for very rapidly changing data the pure windowing method

may still produce better results (assuming it has time to compute them before they become

outdated, which may not be the case). An open direction of research that we are beginning

to pursue is to allow the \equivalent window size" (i.e., the number of time steps that an

example is remembered for) to be controlled by an external variable or function that the user

believes correlates with the speed of change of the underlying phenomenon. As the speed

of change increases the window shrinks, and vice-versa. Further research involves explicitly

modeling di�erent types of drift (e.g., cyclical phenomena, or e�ects of the order in which

data is gathered), and identifying optimal model updating and management policies for

them. Example weighting (instead of \all or none" windowing) and subsampling methods

that approximate it are also relevant areas for research.

4 Which Techniques Are Best Suited to Mining Streams?

We have found that adapting decision tree induction to mining data streams is easier than

adapting k-means clustering. The reason is that k-means is more sensitive to the \statistical

jitter" that results from a stream of all-new examples being used to do the job that previously

was done by repeatedly scanning the same examples. Decision tree induction is an example

of a data mining process where once a decision is made it is cast in concrete (once chosen,

the test for a node is never changed). In contrast, k-means clustering is an example of a

process where the end result (the cluster centroids) can change arbitrarily from step to step,

and errors may compound each other. An important direction for research is to systematize

these distinctions, uncover further relevant ones, and devise general methods that apply to

whole classes of algorithms with similar properties. The high-level approach that we propose

consists of three steps:

1. Derive an upper bound on the time complexity of the mining algorithm, as a function

of the number of samples used in each step.

2. Derive a upper bound on the relative loss between the �nite-data and in�nite-data

models, as a function of the number of samples used in each step of the �nite-data

algorithm.

3. Minimize the time bound (via the number of samples used in each step) subject to

user-de�ned limits on the loss.

Where successful, this approach e�ectively allows us to mine in�nite data in �nite time,

\keeping up" with the data no matter how much of it arrives. The tighter the bounds, the

more eÆcient the resulting algorithm will be. What algorithms this approach can be usefully

applied to is an open question. Our immediate plans are to extend it from k-means to learning

mixture models via the EM algorithm (of which k-means is a special case), and from there to

other applications of EM (e.g., learning Bayesian networks in the presence of missing data)

and other iterative-optimization algorithms (e.g., backpropagation). In parallel, we would

4



like to extend the decision-tree treatment to mining rules, building ensembles of models

via methods like boosting, and other sequential decision processes like feature and instance

selection.

5 Conclusion

In many domains, the massive data streams available today make it possible to build more

intricate (and thus potentially more accurate) models than ever before, but this is precluded

by the sheer computational cost of model-building; paradoxically, only the simplest models

are mined from these streams, because only they can be mined fast enough. Alternatively,

complex methods are applied to small subsets of the data. The result (we suspect) is often

wasted data and outdated models. In this paper we outlined some desiderata for data mining

systems that able to \keep up" with these massive data streams, and some of the research

issues that these desiderata bring up. These include determining how much data is needed

to obtain a model that is (nearly) as good as an in�nite-data one, �nding eÆcient methods

to let a model evolve without losing valuable past information, and determining general

properties of database mining algorithms that allow us to eÆciently transform them into

data-stream mining ones.

References

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(pp. 71{80). Boston, MA: ACM Press.

Hoe�ding, W. (1963). Probability inequalities for sums of bounded random variables. Journal

of the American Statistical Association, 58, 13{30.

5


