Computer Science > Computation and Language
[Submitted on 15 Jan 2024 (v1), last revised 24 Jul 2024 (this version, v2)]
Title:Cascaded Cross-Modal Transformer for Audio-Textual Classification
View PDF HTML (experimental)Abstract:Speech classification tasks often require powerful language understanding models to grasp useful features, which becomes problematic when limited training data is available. To attain superior classification performance, we propose to harness the inherent value of multimodal representations by transcribing speech using automatic speech recognition (ASR) models and translating the transcripts into different languages via pretrained translation models. We thus obtain an audio-textual (multimodal) representation for each data sample. Subsequently, we combine language-specific Bidirectional Encoder Representations from Transformers (BERT) with Wav2Vec2.0 audio features via a novel cascaded cross-modal transformer (CCMT). Our model is based on two cascaded transformer blocks. The first one combines text-specific features from distinct languages, while the second one combines acoustic features with multilingual features previously learned by the first transformer block. We employed our system in the Requests Sub-Challenge of the ACM Multimedia 2023 Computational Paralinguistics Challenge. CCMT was declared the winning solution, obtaining an unweighted average recall (UAR) of 65.41% and 85.87% for complaint and request detection, respectively. Moreover, we applied our framework on the Speech Commands v2 and HarperValleyBank dialog data sets, surpassing previous studies reporting results on these benchmarks. Our code is freely available for download at: this https URL.
Submission history
From: Radu Tudor Ionescu [view email][v1] Mon, 15 Jan 2024 10:18:08 UTC (528 KB)
[v2] Wed, 24 Jul 2024 20:50:04 UTC (970 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.