
Caching dynamic contents with varying popularity
Anu Krishna, Ramya Burra, Chandramani Singh

Department of Electronic Systems Engineering
Indian Institute of Science
Bangalore 560012, India

Email: {vasanthakuma, burra, chandra}@iisc.ac.in

Abstract—We study content caching in a cellular network con-
sisting of a base station with a cache. New contents arrive in the
network according to a Poisson process and the contents stay for
exponentially distributed times. At any given time, all the contents
in the network have the same popularity or request rate. Also,
contents’ request rates are time-varying, instantaneous request
rates being a decreasing function of the number of contents in the
network. Precaching contents at the base station incurs a cost.
However, fetching contents from the server on being requested
incurs an even higher cost. We formulate caching problem as a
Markov decision process and derive the optimal caching policy.
We also propose a Reinforcement Learning based algorithm
that yields precaching decisions when system parameters are
unknown. Numerical results show that the proposed algorithm’s
time averaged cost is close to the optimal average cost.

I. INTRODUCTION

With the widespread use of smartphones and laptops with
Internet connectivity, the Internet backhaul is experiencing a
severe overload due to the enormous demand for downloading
multimedia contents such as video. A significant portion of
multimedia traffic is due to recurrent transmissions of a few
popular contents, e.g., popular music videos, which lead to
a huge amount of redundant traffic. However, the current IP
based Internet, owing to its end-point based communication
model, is inept for content distribution services. This fun-
damental mismatch hurts network performance in terms of
end-user’s quality of experience, bandwidth costs, delay, and
energy consumption. One can easily tackle this by caching
contents at the Base Stations.

Adding cache to the Base Station invariably offers several
advantages:

a) Reduces latency: On caching contents at a nearby
base station, users encounter a less delay in fetching these
from the base station than fetching from the central server.

b) Saves network resources: Caching reduces traffic over
the back-haul link that connect BS to the server.

However, caching involves a cost.
c) Cost of caching infrastructure: Caching all the con-

tents from the server at the base station is not desirable because
the caches have finite capacity. Therefore, unnecessary caching
of contents adds to the bulk of infrastructure.

d) Cost of precaching: Caching content from the server
always incurs certain caching cost. Therefore, caching content
that would never be requested is undesirable. There are two
common caching strategies [1].

The first author and the second author are supported by Visvesvaraya PhD
Scheme and the third author by INSPIRE Faculty Research Grant (DSTO-
1363).

1) Reactive caching: Contents are cached only on request.
For example: Least Recently Used (LRU), Least Fre-
quently used (LFU) are reactive caching policies used
to replace existing contents in cache with the requested
content.

2) Proactive caching: Contents may be proactively cached
even before being requested based on their popularity.

Reactive caching leads to more cache miss. Since cellular
networks face increasingly unprecedented change in demand
of contents, proactive caching is preferred to reactive caching.
This reduces cache miss and in long term saves cost [2].
Therefore, in view of the above discussion, we aim to study
proactive caching policies. In our work, we study caching
problem in the context of dynamic contents. Throughout
this work, the contents have time varying popularity. We
also propose a reinforcement learning algorithm to decide
precaching decisions when system parameters are unknown.

A. Related Work

Plenty of literature is available dedicated to caching in the
context of cellular networks.

The authors of [3] address the problem of content replication
and request routing in a distributed caching system. In this
paper, the number of contents at the server scales with the
cache size. The authors in [4] provide algorithms for cache
content update in a cellular network, motivated by Gibbs
sampling techniques. In this paper, the number of contents
at the server is fixed. The request rate for the contents follow
a time homogeneous process.

The authors in [5] and [6] study content placement of
fixed collection of contents in a cellular network, over geo-
graphically distributed caches. The authors in [7] propose an
intelligent proactive caching scheme to cache fixed collection
of contents, in online social network, to reduce the energy
expenditure while downloading the contents.

The authors in [8] propose a dynamic probabilistic caching
for the scenario when the instantaneous content popularity may
vary with time. However, the paper assumes that the average
popularity is known. The authors in [9] propose a caching
algorithm to derive the accurate optimal caching probabilities,
which satisfy the caching capacity constraint of every caching
device. The authors in [10] propose optimal dynamic schemes
to minimise the expected network cost aggregated across
caching entities, contents and time instants. The authors in [11]
provides a caching policy that is guaranteed to learn-and-adapt
to unknown policies of leaf nodes and space-time evolution of
contents requests. The authors in [12] study reactive caching
of dynamic contents.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

All the works from [3] to [13], study proactive caching
problem with a huge catalogue of fixed number of contents
at the server. However, in reality, the number of contents at
the server evolve [14]. To the best of our knowledge, there
has been little work that focuses on modelling the temporal
evolution of contents.

B. Contributions

We consider content caching at a base station when the
number of contents at the server and their popularities evolve
with time. We characterize the optimal caching policy for
a few variants of this problem. We first consider a special
scenario where all the contents have the same requests rate
which evolves over time. We see that, it is enough to consider
optimal caching of single content in this case. We then extend
the results to heterogeneous contents. We study these problems
under the assumption that the parameters guiding evolution
and popularity of contents are known a priori. However, in
reality, these parameters are unknown. So, we also propose
a reinforcement learning based algorithm to make precaching
decisions for dynamic contents when the system parameters
are unknown.

C. Organization

The rest of the paper is organized as follows. In Section II,
the system model is defined for the caching problem where
the contents are all homogeneous. That is, all content have
same costs and popularity associated with it. In Section III,
we argue that it suffices to obtain optimal caching policy
for any single content. In the context of single content, we
formulate the optimal caching problem as a discrete time
controlled Markov Chain. We derive the optimal caching
policy for both infinite and finite cache sizes. In Section IV, we
discuss the caching problem in the context of heterogeneous
contents at the server. That is, each content has different
cost and popularity associated with it. We provide optimal
caching policy in this context. In Section V, we provide a
Reinforcement Learning based algorithm for caching in the
context of unknown system parameters. Finally, we provide
numerical results in Section VI.

II. SYSTEM MODEL

In this section, we define the system model for the caching
problem.

a) Network Model: We consider a cellular network of
server and a single Base Station (BS) such that the BS has
users associated with it. A BS has a cache of size B. In our
model, the server can host a huge catalogue of contents, and
the total number of contents in the server evolve with time. A
user can place a content request to its Base Station. Contents
can be precached at the cache from server. The contents that
are not precached are automatically cached at cache, on being
requested and served, if there is space. If the content is already
cached at the BS, the user can download it from the BS. We
assume that there is no delay involved in downloading content
directly from BS.

b) Dynamic Contents: Below, we present the details of
content evolution.

1) Arrival of contents: The content arrival at the server is a
Poisson process of rate λ. The authors in [12] also used
a similar arrival process.

2) Exit of contents: Each content stays at the server for a
life time that has an exponential distribution of rate µ.

Most of the previous work, for example, [15], [5], [2], [16],
had assumed fixed number of contents. This can be modelled
by assuming mean life times of the contents much larger than
the time scale of requests.

c) Popularity or Request rate: Unlike existing works,
which assume that any contents’ popularity or request rate
remains constant throughout its lifetime, we let contents’
popularity vary. In particular, we assume that all the contents
have same popularity or request rate at any given time. But
their instantaneous request rates are function of number of
contents at the server. We denote request rate by r(n). As
explained in [14], the popularity of a content evolves with
time and they compete for attention. As the attention for a
content depends on the total number of contents, attention
decreases as n increases. So we assume that r(n) decreases as
n increases and limn→∞ r(n) = 0. For e.g., r(n) = r0

nα ,
r0

logn

where r0 > 0, α ∈ [0, 1].
d) Content Delivery Costs: The cost of caching a content

at the cache from the server includes
1) Communication Cost: The communication cost essen-

tially includes power (or bandwidth) cost. It depends on
the server location. In general, it also depends on the
contents. We use c to denote this cost.

2) Content Delay Cost: If the requested content is available
at the BS, then this cost includes the look-up cost. If the
requested content is not available at the BS, in addition
to the above cost, a cost d modeling the user’s wait time
is also incurred.

Therefore, a content precached incurs a cost c and a content
that is procured on request incurs a cost c+ d.

A. Heterogenous contents
In the context of homogeneous contents, all the costs are

identical. However, in reality the caching cost involved in
caching a content from a server near by is different from the
caching a content that is located at a distant server. According
to [17], recent experimental studies show that popularity
evolution of different contents can be clustered into few classes
that exhibit similar temporal popularity profiles. Therefore,
contents may be grouped into various class. Each class may
have its own parameters like c, d, r(·) etc.

Our aim is to study system with heterogeneous contents.
We obtain an optimal policy in this context. To obtain the
optimal policy for heterogeneous contents, we use results
from homogeneous content variation. Therefore, we first focus
on homogeneous content problem. And later, we extend the
results to heterogeneous content problem in Section IV.

B. Optimal Caching Problem
We see from the system model that it is beneficial to

precache a content if it is likely to be requested during its
lifetime. Let us also observe from II-0c, that if the number of
contents at the server remain high throughout the lifetime of
a content, this content is less likely to be requested. Clearly,
the precaching decision for a content at anytime should also
depends on the expected future evolution of the number of
contents. This evolution, being Markovian, is independent of
the past given the current state.

The optimal caching problem entails determining whether
or not to precache an uncached content given the system state.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

Notice that a content, once cached, either due to precaching
or on being requested remains in the cache until it exits the
system. Also, once a content is cached or exits the system, no
further cost is incurred on this content.

We now introduce some notation to formalise the problem.
Notice that the total cost is the sum of the costs incurred on
contents. Let us index the contents in the order of their arrival.
Let τi denote the time at which ith content is cached or exits
without being cached. Also, Li be the cost associated with ith
content. Li is defined as follows.

Li =


c, if ith content is precached at τi
c+ d, if ith content is requested and cached at τi
0, if ith content exits at τi without being cached

Let us also define A(T), which is the set of contents till
time T .

A(T) = {i : τi ≤ T}

We aim to minimize the following time-averaged cost of
downloading the contents to the users.

lim
T→∞

1

T
E
(∑
i∈A(T)

Li

)
.

Let N (t) be the set of contents at the server at time t.
N(t) = |N (t)|, t ≥ 0. Further, let B(t) be the set of cached
contents at time t. While N (t), t ≥ 0, are independent of
the caching decisions, B(t), t ≥ 0, are dependent on these
caching decisions. Since all the contents have equal popularity
at any given time, a cached content is removed from the cache
only when it exits the system. In Section III, we formulate the
optimal caching problem as a discrete time controlled Markov
Chain. We derive the optimal caching policy. In the following
we derive results for infinite cache varient i.e., B = ∞. We
then extend these results to finite cache size in Section III-B.

III. OPTIMAL CACHING POLICY

We see that the total cost is sum of the costs incurred
on individual contents. As mentioned in the previous section,
the precaching decision for a content at anytime should also
depends on the expected future evolution of the number
of contents. Therefore, the cost incurred on the ith content
depends only on the evolution of N(t) until τi, and not on the
caching decisions on other contents. Hence, we can minimize
the time averaged cost by individually optimizing the costs
incurred on different contents. In the following, we fix a
content, referred to as the tagged content, and minimize the
cost incurred on it.

A. Single Content Problem
Let us consider a tagged content and without loss of gener-

ality, assume that it arrives at time 0. Recall that N(t), t ≥ 0,
represent the number of contents at the server. Precaching
decisions depend on N(t), t ≥ 0. We thus consider a system
with N(t), t ≥ 0, until the content is cached or exited. The
cost incurred on the tagged content depends on whether it is
precached, is requested before being cached or is exited before
being precached or requested. Moreover, once any of these
epochs happens, no cost is incurred on the tagged content in
the future, and the problem terminates. Accordingly, we define
terminal states C, R, and E as follows.

1) State C is encountered if the tagged content is precached.

2) State R is encountered if the tagged content is requested.
3) State E is encountered if the tagged content exits.

We thus have a system with a state space S = {1, 2, 3, 4, ...}∪
{C,R,E}. This is an absorbing Markov Chain.

Let X(t), t ≥ 0, denote the state, X(t) = N(t) un-
til the termination epoch, say τ . X(τ) ∈ {C,R,E} and
X(t) = X(τ),∀t ≥ τ . Caching problem can be cast as
a continuous time Markov Decision Process. However, the
problem is essentially the same as the discrete time problem
with the same transition probabilities. We describe the discrete
time Markov Decision Process as follows.

State Space: S = {1, 2, 3, 4, ...} ∪ {C,R,E}
Action Space: A = {0, 1}, 1 represents precaching

whereas 0 denotes not precaching.
State Transition: Transition Probability Matrix P , such

that such that Pi,j (a) is the transition probability from the
state i to j when you choose action a. Note that we can take
actions in states {1, 2, 3, ...} only. Pi,j(a), at a = 0 is given
by

Pi,j (0) =



(i−1)µ
λ+iµ+r(i) , i = {1, 2, 3, ...}, j = i− 1

λ
λ+iµ+r(i) , i = {1, 2, 3, ...}, j = i+ 1

r(i)
λ+iµ+r(i) , i = {1, 2, 3, ...}, j = R

µ
λ+iµ+r(i) , i = {1, 2, 3, ...}, j = E

0, otherwise.

Pi,j(a), at a = 1 is given by

Pi,j (1) =

{
1, i = {1, 2, 3, ...}, j = C

0, otherwise.

Average cost per stage: Average cost at state i ∈ S when
action a ∈ A is chosen is g(i, a).

g(i, a) =

{
r(i)

r(i)+iµ+λ (c+ d) , a = 0

c, a = 1
(1)

Policy: It is a sequence of functions π̄ = (π1, π2, ...),
πi : {1, 2, 3, ..} → {0, 1},∀i. A stationary policy π̄ is of the
form π̄ = (π, π, π...).

Objective function: Let the content i be the tagged
content. Since the goal is to minimise the average cost of
downloading the content i, the objective function is given by

Eπ
(τi∑
t=0

g(N(t), π)

)
.

As cost per stage (see (1)) in this formulation is non negative
and action set is finite for every state, Proposition 3.1.3
from [18, Chapter-3] implies existence of an optimal stationary
policy (see the paragraph following proof of Proposition 3.1.3
in [18, Chapter-3]). Thus, this problem assumes solution in
the class of stationary policies. Hence we look at the policies
of the form (π, π, π...); for brevity we use π to denote this
policy. A stationary policy π is called a threshold policy if

π(n) =

{
1, n ≤ n̄
0, n > n̄

for an integer n̄ ≥ 0. n̄ is referred as the threshold of π. We
refer to a threshold policy with threshold n̄ as policy πn̄. Let
π∗ denote the optimal policy.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

Bellman equation: Let V : {1, 2, 3..} → R+ be the
optimal cost function for the problem. It is the solution of
the following Bellman’s equation. For all n ∈ {1, 2, 3, ..}, 1

V (n) = min
a∈{0,1}

{
g(n, a) +

∑
j∈S

Pn,j(a)V (j)

}
. (2)

Substituting the values of g(n, a) and Pn,j(a) in (2), and using
the fact that on exit no cost is incurred on the tagged content,
the following can be observed.

V (n) = min

{
c,

r (n)

r (n) + nµ+ λ
(c+ d)

+
(n− 1)µ

r (n) + nµ+ λ
V (n− 1) +

λ

r (n) + nµ+ λ
V (n+ 1)

}
.

We also define the following

Vπn̄(n) =


c, n ≤ n̄

r(n)
r(n)+nµ+λ (c+ d)

+ (n−1)µ
r(n)+nµ+λVπn̄(n− 1)

+ λ
r(n)+nµ+λVπn̄(n+ 1), n > n̄.

(3)

In the following lemma, we show that the optimal policy is
a threshold policy. We first focus on infinite cache size (i.e.,
B =∞) case. In Section III-B, we consider finite cache sizes.

The following lemma establishes that the optimal policy,
π∗, is a threshold policy.

Lemma 3.1: The optimal policy is a threshold policy when
B =∞. In other words, π∗ = πn̄ for some n̄ ≥ 0.

Proof: See [19, Appendix A].
We next define n∗ as

n∗ := min{n : Vπn(n+ 1) ≤ c}. (4)

We prove that πn
∗

is an optimal policy. The optimality proof
uses the following lemma which in particular establishes that
n∗ <∞.

Lemma 3.2: If Vπn̄(n̄+ 1) ≥ c, then

Vπn̄+1(n̄+ 2) < Vπn̄(n̄+ 1).

Moreover, if µc > r(n)d, then Vπn(n+ 1) ≤ c.
Proof: See [19, Appendix B].

It is observed from Lemma 3.2 that Vπn(n+ 1) decreases in
n only when Vπn(n+ 1) ≥ c. Since limn→∞ r(n) = 0, there
exist a n̄ < ∞ such that r(n̄) < µc

d . Then, from the above
lemma, Vπn̄(n̄+ 1) ≤ c. Consequently, n∗ ≤ n̄.

We also need the following lemma which says that, under
certain conditions, both n∗ and n∗ + 1 may yield same cost.

Lemma 3.3: If Vπn∗ (n∗ + 1) = c, then Vπn∗+1(n) =
Vπn∗ (n), ∀ n.

Proof: See [19, Appendix C].
The following theorem establishes optimality of πn

∗
.

Theorem 3.1:

1We have countable state space with unbounded transition rates. However,
unlike [18, Chapter-5], we do not need uniformization in our problem, since
we do not have a cost that is accrued over time.

(a) If Vπn∗ (n∗ + 1) < c, policy πn
∗

is the unique optimal
policy.

(b) If Vπn∗ (n∗+ 1) = c, both, policy πn
∗

and policy πn
∗+1,

are optimal.
Proof: See [19, Appendix D].

B. Finite Cache Sizes
In reality, caches have only finite capacity (i.e., B < ∞).

Thus in this subsection, we extend our analysis when the cache
size is finite. Let us define n∗B = min{n∗, B} and n∗B1

=
min{n∗+1, B}. The following Proposition yields the optimal
policy for B <∞.

Proposition 3.1:
(a) If V

πn
∗
B

(n∗B + 1) < c, policy πn
∗
B is the unique optimal

policy.
(b) If V

πn
∗
B

(n∗B + 1) = c, both, policy πn
∗
B and policy πn

∗
B1 ,

are optimal.
Proof: See [19, Appendix E].

C. Computation of Vπn(n+ 1)

The goal of this subsection is to determine n∗. Recollect
that, to determine n∗ one needs to evaluate Vπn(n+1), ∀n ∈
{1, 2, ..} (See (4)). In the following, we provide the details
of computation of Vπn(n + 1),∀n ∈ {1, 2, 3, ...}. Note that
Vπn(n+ 1) can be written as

Vπn(n+ 1) = Preq(c+ d) + Pcc

where Preq is the probability that a tagged content is requested
when there are n + 1 content at the server, and Pc is the
probability that a tagged content is copied when there are n+1
content at the server. We cannot compute Preq and Pc exactly.
Since there are n+ 1 contents at the server, under policy πn,
when the number of contents drop to n, we hit the terminal
state and the problem ends. Therefore, to obtain Preq and Pc
approximately, we truncate the state space of X(t) to {n, n+
1, n+2, ., N}∪{R,E} for a sufficiently large integer N . Note
that C = n. Let us call the truncated CTMC, XN (t), t ≥ 0.

The transition probability matrix of the embedded Markov
Chain of XN (t), t ≥ 0, say PN , will have the following form

PN =

(
Q R
0 I

)
where,

1) Q is a N − n×N − n matrix with elements Qi,j given
by:

Qi,j =


λ

r(i)+iµ+λ , i ∈ {n+ 1, n+ 2, ..., N − 1}, j = i+ 1
(i−1)µ

r(i)+iµ+λ , i ∈ {n+ 2, n+ 2, ..., N}, j = i− 1

0, otherwise

2) R is a N − n× 3 matrix with elements Ri,j given by:

Ri,j =


µ

r(i)+iµ+λ , i ∈ {n+ 1, n+ 2, ..., N}, j = E
r(i)

r(i)+iµ+λ , i ∈ {n+ 1, n+ 2, ..., N}, j = R
(i−1)µ

r(i)+iµ+λ , i = n+ 1, j = i− 1

0, otherwise

Let us define D
D = (I −Q)−1R.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

Note that D is a N − n × 3 matrix with elements Di,j , i ∈
{n + 1, n + 2, .., N}, j ∈ {R,E, n}. From [20, Chapter
11], it follows that, for the truncated CTMC XN (t), Preq =
Dn+1,R and Pc = Dn+1,n. Therefore, we approximate
Vπn(n+ 1) as

Vπn(n+ 1) = Dn+1,R(c+ d) +Dn+1,nc.

D. Optimal Caching Policy of Homogeneous Content Caching
Problem

In Section III-C, we computed n∗ for a single content
problem. In our original problem (see Section II-B), we want
to take optimal decision for every content. In the next
section we derive optimal caching algorithm for heterogeneous
contents. An optimal algorithm for homogeneous case can be
deduced from Algorithm 1 by setting n∗f = n∗,∀f .

IV. HETEROGENEOUS CONTENTS

We now allow the contents to have different communication
costs, content delay costs and request rates. This is justifiable
since the caching cost and delay cost of a content depends on
several factors like content size, location of the server, memory
device for caching etc. Also, in reality, the request rates differ
depending on the type of contents.

Recall that the cost incurred on the ith content depends on
the other contents only through the evolution of number of
other contents until content i is either precached, requested
or exited. Therefore, the optimal caching decision for the
ith content is independent of cj , dj , and rj(n), ∀j 6= i.
In particular, the analysis in Section III-A for single content
applies to this scenario as well, with c, d and r(n) replaced
with ci, di and ri(n), respectively. Let us define cost-to-go
function under policy πn̄ for any content i, V (i)

πn̄ (n), as follows.

V
(i)
πn̄ (n) =


ci, n ≤ n̄

ri(n)
ri(n)+nµ+λ (ci + di)

+ (n−1)µ
ri(n)+nµ+λV

(i)
πn̄ (n− 1)

+ λ
ri(n)+nµ+λV

(i)
πn̄ (n+ 1), n > n̄.

The optimal policy for the ith content πn
∗
i , where

n∗i = min{n : V
(i)
πn (n+ 1) ≤ ci}.

Therefore, we use policy πn
∗
i for ith content to obtain min-

imum cost. The optimal caching algorithm for the heteroge-
neous contents case can now be given as follows. Recall that
N(t), t ≥ 0, is a CTMC that represents the number of contents
at the server. State change of this CTMC is brought by arrivals
and departures. Let us define tm, m ∈ {1, 2, ..}, as the arrival,
departure and request epochs of any content.

Optimal caching decisions for heterogeneous contents are
given by Algorithm 1. Observe that N (tm) and B(tm) denote
the set of contents at the server and the cache, respectively, at
time tm.

V. UNKNOWN SYSTEM PARAMETERS

In the previous sections, we discussed the optimal caching
policy, when the parameters are known. However, in reality,
the system parameters e.g., λ, r(n) and µ are unknown2.

2We assume that the parameters c, d are known. This assumption is justified
as the server would know content delivery costs.

Algorithm 1 Optimal Caching Policy for Heterogeneous
Contents
Input: B(t0) = ∅
for m = 1, 2, ... do

if tm is arrival epoch of a content f then
N (tm)← N (tm) ∪ {f}
N(tm)← N(tm−1) + 1
if N(tm) ≤ n∗f then
B(tm)← B(tm) ∪ {f}

end if
else if tm is departure epoch of a content f then
N (tm)← N (tm) \ {f}
B(tm)← B(tm) \ {f}
N(tm)← N(tm−1)− 1
for every content j /∈ B(tm) do

if N(tm) ≤ n∗j then
B(tm)← B(tm) ∪ {j}

end if
end for

else
B(tm)← B(tm) ∪ {f}

end if
end for

In this section, we want to develop a proactive caching
algorithm that does not rely on apriori knowledge of the
parameters (λ, r(n) and µ) and still gives a time average cost
close to the optimal average cost. Towards this, we use the
theory of reinforcement learning. More precisely, we propose
Algorithm 2 based on Monte Carlo Simulation [21, Chapter
5.1]. For clarity of exposition, we restrict to the scenario of
homogeneous files. Our algorithm iteratively learns estimates
of required parameters and also uses the current estimates
for caching decisions at any point of time. While we do not
have any theoretical bound on performance of this algorithm,
simulation show that it yields time average costs that approach
the optimal cost as the number of iterations increase.

Recall from Theorem 3.1 and (4) that the optimal policy
πn

∗
depends on Vπn(n+1), ∀n ≥ 0, which in turn depend on

the parameters λ, µ and r(n), n ≥ 1. So we have following
two approaches of learning πn

∗
.

1) Estimate parameters λ, µ and r(n) and compute Vπn(n+
1), ∀n ≥ 0 and then n∗ from these.

2) Directly estimate Vπn(n+ 1), ∀n ≥ 0, and compute n∗
from these.

Clearly the first approach is computationally heavy and more
error-prone as it entails estimating multiple parameters and
using these to compute Vπn(n + 1), ∀n ≥ 0. We therefore
adopt the second approach.

A. Estimating Vπn(n+ 1), ∀n ≥ 0

Realize that in a caching setup, the decision maker is
provided only the details of arrival, requests and departure
of every file as time progresses. For brevity, we define vn :=
Vπn(n + 1), n ≥ 0. We start with an arbitrary estimate of
vn, n ≥ 0 and update this estimate iteratively. At any time,
the current estimates of vn, n ≥ 0, give an estimate of n∗
in accordance with (4). As vn, n ≥ 0, evolve with time,
so does n∗. Following is the proposed reinforcement learning
algorithm.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

Let Af be the number of contents in the system on arrival
of a content f (not counting f). On a arrival of a new content
f , we can decide

1) to use policy πAf , not πn
∗

for content and to use it to
improve our estimate of vAf . We refer to it as exploration.

2) to use policy πn
∗

for content f, where n∗ is obtained
based on the current estimates of vn, n ≥ 0. We refer to
it as exploitation.

As expected, exploration helps to quickly arrive close to an
optimal policy but also incurs substantial cost in the process.
On the other hand, exploiting policies based on current esti-
mates of n∗ may save on instantaneous costs but do not let
us approach the optimal policy. To balance between explo-
ration and exploitation costs we use widely adopted ε-greedy
approach, wherein for each content we perform exploration
with probability ε and exploitation with probability 1− ε.

In practice, we may want to aggressively explore initially in
order to quickly arrive at a close to optimal policy but would
like to exploit more as the iterations proceed. We can formally
execute this strategy as follows. Recall that tm, m ≥ 1,
denote successive arrival, departure and request epochs. For
a content f with arrival epoch tm, we use ε = ε(m)
to determine whether we should perform an exploration or
exploitation. More precisely, we define a Bernoulli random
variable ef that takes values 1 and 0 with probabilities ε(m)
and 1−ε(m), respectively; 1 corresponds to exploration and 0
to exploitation. ε(m), m ≥ 1 constitute a decreasing sequence,
and is referred to exploration sequence. We use

ε(m) = 1− e−10−7m.

We also maintain a count of number of times vn, n ≥ 0 has
been updated; we call this vector ’Count’. Initially Count is a
zero vector. Finally, we describe how we update the estimates
of vn, n ≥ 0.

a) Departure of an uncached content: If the content f
exits before being cached the server incurs 0 units of cost.
Therefore, vAf is updated as follows

vAf =
CountAf vAf
CountAf + 1

.

CountAf is then incremented by one unit.
b) Request of an uncached content: If the content f has

been requested before it is cached, the server incurs a cost of
c+d units in this instant. Therefore, vAf is updated as follows

vAf =
CountAf vAf + c+ d

CountAf + 1
.

And then CountAf is incremented by one unit.
Precaching an uncached content under exploration:

Precaching of any content f incurs a cost of c units. Therefore,
vAf is updates as follows

vAf =
CountAf vAf + c

CountAf + 1
.

And then CountAf is incremented by one unit.
Recollect that contents cached at any instant tm is given by

B(tm). We now formalise the reinforcement learning based
algorithm in Algorithm 2.

Remark 5.1: Note that, unlike what we do in the Q-learning,
we do not update Vπm(n+ 1), ∀n,m ∈ {1, 2, 3, ...}. We only

update Vπn(n+ 1), ∀n ≥ 0, since we need only these values
to arrive at n∗(see (4)).

Algorithm 2 Optimal Caching Algorithm for Unknown Pa-
rameters
Input:B(t0) = ∅, n∗ = 1,Countn = 0,∀ n ≥ 0
for m = 1, 2, ...,M do

if tm is an arrival epoch of file f then
Af ← N(tm−1)
N(tm)← N(tm−1) + 1

e(f) =

{
1 , with a probability ε(m)

0 , with a probability 1− ε(m)

else if tm is a departure epoch of file f then
if f is not cached and ef = 1 then

vAf =
CountAf vAf
CountAf + 1

CountAf = CountAf + 1
end if
N(tm)← N(tm−1)− 1

else
if f is not cached and ef = 1 then
B(tm)← B(tm−1) ∪ {f}

vAf =
CountAf vAf + c+ d

CountAf + 1

CountAf = CountAf + 1
end if

end if
for ∀f ∈ N (tm) do

if ef = 0 then
if f is not cached and N(tm) ≤ n∗ then
B(tm)← B(tm−1) ∪ {f}

end if
else

if f is not cached and N(tm) ≤ Af then
B(tm)← B(tm−1) ∪ {f}

vAf =
CountAf vAf + c

CountAf + 1

CountAf = CountAf + 1
end if

end if
end for
n∗ ← min{n : vn ≤ c}

end for

VI. NUMERICAL RESULTS

In this section, we discuss how n∗B varies with µ, λ and d, in
the context of single content. We use the following parameters
throughout the discussion: c = 1, r(n) = r0/n

α, for α =
0.2, 0.3, 0.4 and 0.5. Cache size B = 100.

A. n∗B vs λ, µ and d
Recollect that as λ increases, the number of contents at

the server increases. Recall that r(n) is inversely related to

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

0 20 40 60 80 100
1

2

3

4

5

6

7

(a)

0 2 4 6 8 10
0

2

4

6

8

10

(b)

0 10 20 30 40 50
0

20

40

60

80

100

(c)

Fig. 1: n∗B vs λ, µ and d. We simulate for B = 100. We use r(n) = r0/n
α, for α = 0.2, 0.3, 0.4, and 0.5. Fig 1a gives n∗B vs

λ. We use the parameters c = 1, d = 15, µ = 10 and r0 = 1. Fig 1b gives n∗B vs µ. We use the parameters c = 1, d = 1, λ = 20
and r0 = 3.13. Fig 1c gives n∗B vs d. We use the parameters c = 1, λ = 100, µ = 10 and r0 = 1.

0 10 20 30 40 50
0

20

40

60

80

A
v

e
ra

g
e

 C
o

s
t

Optimal Policy

LRU

(a)

0 10 20 30

20

40

60

80

A
v

e
ra

g
e

 C
o

s
t

Optimal Policy

LRU

(b)

2 4 6 8 10

10
7

0

0.5

1

1.5

2

2.5

3

3.5

A
v
e
ra

g
e
 C

o
s
t

(c)

Fig. 2: Average cost vs λ, µ and M . Figure 2a gives Average Cost vs λ. We use µ = 10. Figure 2b gives Average Cost vs µ.
We use λ = 10. In both Figure 2a and Figure 2b, we use the parameters B = 100, c = 1, d = 20, r0 = 1 and r(n) = r0/n

α,
for α = 0.2. Figure 2c gives Average cost vs M . We see average cost vs M for d = 2 and d = 10. Other system parameters
are c = 1, λ = 0.4, µ = 0.01 and r(n) = r0/n

α, for r0 = 1. We use α = 0.2. Under these parameters, the average cost under
optimal policy corresponding to d = 2 and d = 10 are 0.3997 and 0.4, respectively.

n. Therefore, for a fixed µ, c, and d, r(n) decreases as
λ increases. This means that the contents are copied less
aggressively. We observe the same trend in Figure 1a. We
use the following parameters: d = 15, µ = 10 and r0 = 1.
We observe that, for a fixed α, n∗B decreases as λ increases.
For example, at α = 0.2, n∗B = 7 for λ = 10, n∗B = 6 for
λ = 50, n∗B = 5 for λ = 80 and n∗B = 4 for λ = 100.

As µ increases, the frequency of content expiry increases.
Therefore, the number of contents at the server decreases.
So, n∗B decreases as µ increases. We observe similar trend
in Figure 1b. We use the following parameters d = 1, λ = 20
and r0 = 3.13.

It can be noted that, as d increases, BS incurs more cost
to fetch the content from the server on being requested. To
avoid this, BS tends to cache more contents. Therefore, n∗B
increases with increase in d. We observe the same trend in
Figure 1c. We use the following parameters, λ = 100, µ = 10
and r0 = 1, to obtain Figure 1c. We observe that n∗B increases
with d in all the cases.

B. Average Cost vs λ, µ and M
In Figure 2a, we compare the average cost incurred under

the optimal policy with the average cost incurred under reac-
tive policies, e.g., LRU. We use the parameters B = 100, c =
1, d = 20, µ = 10, r0 = 1, r(n) = r0/n

α, α = 0.2. We
observe that our policy considerably outperforms LRU. Note
that in our formulation each content has same popularity at any
given instant. So the average cost does not change when any
other reactive caching policy is used (e.g., LFU). Therefore,
we use LRU to compare our policy.

In Figure 2b, we compare the average cost incurred under
the optimal policy with the average cost incurred under reac-
tive policies, e.g., LRU. We use the parameters B = 100, c =
1, d = 20, λ = 20, r0 = 1, r(n) = r0/n

α, α = 0.2 We observe
that our policy considerably outperforms LRU.

In Figure 2c, we compare the average cost from Algorithm 2
when d = 2 and d = 10. It follows that the time average
cost increases as d increases. We observe the same trend
in figure 2c. We use the following parameters c = 1, λ =
0.4, µ = 0.01, r0 = 1, r(n) = r0/n

α. We use α = 0.2.
Under these parameters, the average cost under optimal policy
corresponding to d = 2 and d = 10 are 0.3997 and 0.4,

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

respectively.

VII. CONCLUSION

We studied a caching problem for dynamic contents with
varying popularity. We first studied the problem where all
the contents at the server have same communication cost and
delay cost associated with them. We considered both finite
and infinite cache sizes. In either case, the optimal policy is a
threshold policy. In Theorem 3.1, we established the optimality
of threshold policy. We provided an algorithm, Algorithm 1,
to implement the optimal policy for heterogeneous content
problem. Finally, we provided a reinforcement learning based
algorithm, Algorithm 2, to implement the optimal policy when
the system parameters are unknown. In the future, we would
like to extend this work to networks with multiple BSs, each
with a set of associated users.

REFERENCES

[1] J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi,
“Applying machine learning techniques for caching in next-generation
edge networks: A comprehensive survey,” Journal of Network and
Computer Applications, vol. 181, p. 103005, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804521000321

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[3] S. Moharir and N. Karamchandani, “Content replication in large dis-
tributed caches,” in 2017 9th International Conference on Communica-
tion Systems and Networks (COMSNETS). IEEE, 2017, pp. 128–135.

[4] A. Chattopadhyay, B. Błaszczyszyn, and H. P. Keeler, “Gibbsian on-
line distributed content caching strategy for cellular networks,” IEEE
Transactions on Wireless Communications, vol. 17, no. 2, pp. 969–981,
2017.

[5] K. Avrachenkov, X. Bai, and J. Goseling, “Optimization of caching
devices with geometric constraints,” Performance evaluation, vol. 113,
pp. 68–82, 2017.

[6] J. Yang, C. Ma, B. Jiang, G. Ding, G. Zheng, and H. Wang, “Joint
optimization in cached-enabled heterogeneous network for efficient
industrial iot,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 5, pp. 831–844, 2020.

[7] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5g using reinforcement learning of space-time
popularities,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 180–190, 2017.

[8] J. Gao, S. Zhang, L. Zhao, and X. S. Shen, “The design of dynamic
probabilistic caching with time-varying content popularity,” IEEE Trans-
actions on Mobile Computing, pp. 1–1, 2020.

[9] S. Zhang and J. Liu, “Optimal probabilistic caching in heterogeneous
iot networks,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3404–
3414, 2020.

[10] A. Sadeghi, A. G. Marques, and G. B. Giannakis, “Distributed network
caching via dynamic programming,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 4574–4578.

[11] A. Sadeghi, G. Wang, and G. B. Giannakis, “Hierarchical caching
via deep reinforcement learning,” in ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 3532–3536.

[12] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini,
“Analyzing the Performance of LRU Caches under Non-Stationary
Traffic Patterns,” arXiv e-prints, p. arXiv:1301.4909, Jan. 2013.

[13] H. Hui, W. Chen, and L. Wang, “Caching with finite buffer and
request delay information: A markov decision process approach,” IEEE
Transactions on Wireless Communications, vol. 19, no. 8, pp. 5148–
5161, 2020.

[14] J. Yang and J. Leskovec, “Patterns of temporal variation in online
media,” in Proceedings of the fourth ACM international conference on
Web search and data mining, 2011, pp. 177–186.

[15] E. Altman and N. Shimkin, “Individual equilibrium and learning in
processor sharing systems,” Operations Research, vol. 46, no. 6, pp.
776–784, 1998.

[16] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in 2015 IEEE international conference on commu-
nications (ICC). IEEE, 2015, pp. 3358–3363.

[17] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini,
“Analyzing the performance of LRU caches under non-stationary
traffic patterns,” CoRR, vol. abs/1301.4909, 2013. [Online]. Available:
http://arxiv.org/abs/1301.4909

[18] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II,
1st ed. Athena Scientific, 1995.

[19] A. Krishna. Caching dynamic contents with varying popularity.
[Online]. Available: https://tinyurl.com/hcufvh6h

[20] C. M. Grinstead and J. L. Snell, Introduction to Probability. American
Mathematical Society, 1997.

[21] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,
1st ed. Athena Scientific, 1996.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

 ISBN 978-3-903176-37-9 © 2021 IFIP

