
CYPRESS-Soar: A case study in

search and learning in algorithm design

D a v i d Steier
Department of Computer Science

Carnegie-Mel lon University
Pittsburgh, PA 15208 USA

Abstract

This paper describes a partial reimplementation of Doug Smith's CYPRESS
algorithm design system within the Soar problem-solving architecture. The
system, CYPRESS-SOAR, reproduces most of CYPRESS' behavior in the
synthesis of three divide-and-conquer sorting algorithms from formal
specifications. CYPRESS-Soar is based on heuristic search of problem
spaces, and uses search to compensate for missing knowledge in some
instances. CYPRESS-Soar also learns as it designs algorithms, exhibiting
significant transfer of learned knowledge, both within a single design run,
and across designs of several different algorithms. These results were
produced by reimplementing just the high-level synthesis control of
CYPRESS, simulating the results of calls to CYPRESS* deduction engine.
Thus after only two months of effort, we had a surprisingly effective
research vehicle for investigating the roles of search, knowledge, and learn­
ing in this domain.*

I I n t r o d u c t i o n
Good human programmers have at least two remarkable abilities: they

manage to produce programs in the face of incomplete knowledge, and they
make use of previous experience in solving new problems. How could we
get automatic programming systems to produce the same intelligent be­
havior? Al-based performance systems in other domains compensate for
incomplete knowledge by searching through a space of possible solutions,
and there exist a variety of mechanisms for learning from experience.
However, automatic programming research has so far produced only a few
systems that either search or learn, and, to my knowledge, none that do
both. This is true despite the field's growing acknowledgement of the
importance of both search and learning [2,3,4].

This paper describes a prototype system that both searches and learns
while performing part of an automatic programming task. An algorithm
design system, previously built within a special-purpose framework, was
reimplemented in a more general problem-solving architecture with built-in
search and learning capabilities. The previously implemented system is
Doug Smith's CYPRESS [11,12,13], which is most noted for its design of
divide-and-conquer algorithms. The foundation for the reimplementation is
Soar [7,8], an architecture for general intelligence developed by John Laird,
Allen Newell, and Paul Rosen bloom. The combined system, CYPRESS-
Soar, produces the bulk of three of CYPRESS' sorting algorithm deriva­
tions, and takes advantage of the properties of Soar to search and learn
while doing so.

In Section I I , I describe CYPRESS and its approach to the synthesis of
divide-and-conquer sorting algorithms and in Section III I give an overview
of the Soar architecture. The remaining sections discuss CYPRESS-Soar,
presenting the following results:

• Performance without fixed design strategies: CYPRESS-
Soar uses any knowledge available at run-time to decide when
algorithm refinement operators should be applied. If the
knowledge is unavailable, CYPRESS-Soar automatically falls
back on general problem-solving methods, initiating lookahead
search to evaluate the possibilities. In contrast, design
strategies control operator application in CYPRESS, and any
necessary search must be guided by an expert user. (Section
IV)

• Transfer of learned knowledge: CYPRESS-Soar knows what
goal it is working on, and caches the result of the goal for
future use. Because some goals show up more than once, this

learning mechanism reduces problem-solving effort, both
within the design of a single algorithm, and on later designs of
different algorithms. CYPRESS does not learn, and con­
sequently can not take advantage of repeated subgoals.
(Section V)

Section VI concludes with a discussion of several issues involved in
extending the prototype CYPRESS-Soar system into a more general
automatic algorithm designer.

I I H o w C Y P R E S S designs d iv ide-and-conquer a lgo r i t hms
CYPRESS is a semi-automatic system that derives algorithms from for­

mal specifications. It works by top-down refinement of program schemes,
or templates, which represent abstractions such as divide-and-conquer and
generate-and-test. A problem specification is matched against a program
scheme, and with the aid of a design strategy, decomposed into specifica­
tions of simpler problems. This problem reduction process continues recur­
sively until a specification can be solved directly by primitive operators
known to the system. When more than one design strategy is applicable, or
more than one operator matches a specification, the user makes a selection
among alternatives.

CYPRESS spends most of its time in calls to RAINBOW, its deduction
engine. RAINBOW performs a generalized version of theorem-proving
known as antecedent derivation [11]. Given a set of hypotheses, H and a
goal formula, G, RAINBOW tries to give the weakest possible precon­
dition, or antecedent, P such that the hypotheses in H conjoined with P
imply G. If P is just true, then G is already a valid formula given H. In the
context of algorithm synthesis, RAINBOW is used to reason backwards
from output conditions to test if a specification is satisfied. If it is not
satisfied, the derived antecedent is used as dictated by the active design
strategy as the basis for further action. Viewed in problem-solving terms,
RAINBOW provides a sophisticated form of means-ends analysis.

The input to CYPRESS is a formal specification of the problem to be
solved, giving the input and output domains (types, or sets), and input and
output conditions for the problem. A specification of the problem of sorting
lists of natural numbers from [13] is

S O R T : X = Z such that B a g : x = B a g : z A Ordered:z
where SORT: L IST(N)- ->LIST(N) .

The SORT function maps the input x into the output z. An implicit input
condition, true is assumed. The output condition is that the bag (multiset)
of elements in x is the same as in z, and z is ordered. The specification
assumes pre-existing knowledge of the terms "Bag" and "Ordered".

The sorting problem is amenable to a divide-and-conquer solution. The
CYPRESS scheme for divide-and-conquer is expressed in a typed func­
tional programming language, a derivative of Backus' FP [1]:

F:x i f

*This research was supported in part by the National Science Foundation under Grant
DCR-8412139. and in part by the Defense Advanced Research Projects Agency under Contract
F336 15-81 -K-1539. Work on Cypress-Soar was begun while the author was visiting Kestrel

Primit ive:x —► Directly_Solve:x []
- -P r im i t i ve : ! —► Compose • (G x F) • Decompose:x

fi

The scheme abstractly specifics how to compute the value of F on input r.
If x is a base-case input, then solve it directly; otherwise, decompose x into
two subproblems, recursively solve one and apply an auxiliary function G to
the other, then compose the results.

Steier 327

To instantiate this scheme for a given specification, CYPRESS creates
subspecifications for Directly.Solve, Compose, and Decompose, and then
attempts to design algorithms for these subspecifications or to verify that
known operators satisfy them. Along the way, the auxiliary function G is
refined, usually either to a recursive call to the top-level algorithm, or to the
identity operator, Id. The Primitive control predicate is derived as the input
condition to Decompose.

The design strategies for instantiating the divide-and-conquer scheme al­
low the choice of either simple decomposition or simple composition
operators. For sorting, choosing a simple decomposition operator leads to
insertion-sort and mergesort, while a simple composition operator leads to
selection-sort and quicksort. The algorithms for the top levels of the quick­
sort and partition algorithms are

The top level function for quicksort is a divide-and-conquer scheme that
uses the simple composition operator Append, while the partition algorithm
called by quicksort is the scheme instantiated to use the simple decom­
position FirstRest (equivalent to returning the head and tail of a list). The
top level function Qsort is the conventional quicksort: If x is of length 0 or
1, it returns x. Otherwise, it partitions x into two sublists, sorts them both
and appends the results. The partition algorithm created by CYPRESS dif­
fers from the standard partition algorithm in that it is a divide-and-conquer
algorithm, and it does not use a partitioning element If there are only two
elements in the list, it produces two singleton lists, with the smaller element
in the first list. Otherwise, it builds up two lists by recursively partitioning
off the rest of the list, and adding each element in turn to the appropriate
sublist as determined by its value. The functions implementing
Partition Directly Solve and Partition Compose for the partition algorithm
were also produced by CYPRESS, but are not shown here.

I l l Soar
CYPRESS-Soar is built in Soar, an architecture developed to study the

computational mechanisms necessary for intelligent behavior [6). Soar is
based on the hypothesis that all goal-directed cognitive activity can be
represented as search in a problem space. A problem space is defined by a
set of states, and a set of operators to move from state to state. Soar uses
knowledge, represented as productions, to generate and select problem
spaces, states, and operators to move towards a goal state. The knowledge
accumulates in the elaboration phase and is used as a basis for action in the
decision phase of each decision cycle, the basic unit of problem-solving
effort in Soar-based systems. Several productions may fire in accumulating
the knowledge to make a given decision (about 4-5 productions per decision
cycle for CYPRESS-Soar).

Often the knowledge directly available in a given situation is insufficient
to determine the next thing to do immediately. In Soar, such situations are
called impasses', subgoals arise exclusively in response to these impasses.
The types of impasses that may arise in Soar systems are determined by the
architecture. For example, a common impasse, operator-tie, occurs when
several operators are proposed as acceptable for application to a given state,
and there is insufficient knowledge to choose between them. The subgoal
to resolve an operator-tie impasse would be satisfied when the system ac­
quired knowledge indicating that one of the operators initially causing the
tie is actually preferable to all other candidates.

When Soar finishes working on a subgoal, it can learn from its ex­
perience by building productions called chunks for use in future problem
solving. The conditions of a chunk are the features of the pre-impasse
situation that were used to produce the results of the subgoal, where the
results are those working-memory elements created in the subgoal (or its
subgoals, etc.) that are accessible from a supergoal. The actions of a chunk
are based on the results. At first glance one would expect chunking to yield
nothing more than rote learning, but generalization does occur because
chunks test only relevant attributes of the problem-solving context [7].

The Soar architecture has by now been subjected to extensive study and
experimental use in many applications. Soar systems have solved problems
and learned in domains ranging from the traditional AI toy problems such as
the eight-puzzle to more complex knowledge-intensive tasks, such as the
part of VAX configuration performed by the Rl expert system [10]. Other
work has demonstrated that Soar can exhibit the behavior of a wide variety
of problem-solving methods [5]. Also, chunking, which was developed

from psychological models of human learning [9], has proven to be a
powerful mechanism capable of improving performance in many applica­
tions. Therefore, while Soar is not yet a complete model for intelligent
behavior, it already demonstrates many of the characteristics necessary for
such a model.

IV CYPRESS-Soar
One encodes a task in Soar by writing productions implementing one or

more task problem spaces. CYPRESS-Soar consists of 195 Soar (Version
4.4) productions. Of these productions, 60 contain Soar's default search
control knowledge, and the remaining 135 (comprising about 4500 lines of
text) are task-specific. This section describes the problem spaces in
CYPRESS-Soar implemented by the task-specific productions. The deriva­
tion of the quicksort algorithm discussed earlier is summarized to illustrate
the operation of the system.

CYPRESS-Soar follows the same principles of "Soarware engineering"
used in the construction of Rl-Soar [10]. The top level problem space
attempts to apply a single operator (Conf igure-backplane in Rl-
Soar, Synthesize in CYPRESS-Soar) to solve the problem. Because no
productions implement this operator directly. Soar creates a subgoal to im­
plement it, selecting a special problem space associated with this operator.
This problem space in turn contains other operators which may be them­
selves implemented in other problem spaces, or else implemented directly
by productions that fire in the appropriate context In this manner, tasks are
decomposed into problem spaces in the same way that large conventional
programs are broken up into modules. Other problem spaces are evoked to
handle search control, such as the selection of operators.

Inn CYPRESS-Soar, the Synthesize operator is implemented by sub-
goaling into the Synthesize problem space. In this space, operators may be
applied to synthesize either a divide-and-conquer algorithm, or a simple
conditional. This paper focuses on the creation of divide-and-conquer al­
gorithms, for which the states in the Synthesize space arc the successive
refinements of the divide-and-conquer program scheme. The initial state is
a completely abstract scheme, and the desired state is a scheme with all of
its parts refined to known operations. The Specify-decompose,
Specify-auxiliary, Specify-primitive,
Specify-compose, and Specify-directly-solve operators map
directly onto the parts of the scheme that need to be refined.
Specify-ordering chooses a well-founded ordering on the input
domain to be preserved by the decomposition operator; this is necessary to
guarantee that the synthesized algorithm terminates. Each of these
operators is implemented in its own problem space, where the knowledge
about divide-and-conquer taken from CYPRESS is used for operator selec­
tion and implementation. In the Specify-decompose, Specify-compose,
and Specify-directly-solve problem spaces, the Synthesize operator
may be recursively invoked to satisfy specifications for complex algorithms.

For example, the Specify-decompose problem space is used to refine the
divide-and-conquer algorithm's Decompose operation. For decomposing
lists, operators in this problem space might choose FirstRest, which returns
the element at the head of the list along with the rest of the list. However,
suppose one desires an algorithm that uses a simple method of composing
lists, say the Cons operator. Then FirstRest will probably not suffice for the
decomposition, because FirstRest does not satisfy a strong enough output
condition to guarantee correct results with the chosen composition method.
The existence of such constraints imposed by already instantiated parts of
the algorithm will make other refinement operators acceptable. In this case,
CYPRESS-Soar uses an antecedent derived from the output conditions of
the problem specification, the auxiliary operator, and the specification of
Cons in conjunction with knowledge about divide-and-conquer to find a
stronger output condition for the decomposition specification.

A complete implementation of some of the operators in the Synthesize
space would require a separate space for deduction (the kind done by
CYPRESS' RAINBOW). In developing CYPRESS-Soar, we wanted to
focus on the knowledge involved in making design choices, rather than on
deduction, so we simulated RAINBOW'S behavior without implementing it
in Soar. CYPRESS-Soar includes rules that return the results of calls to
RAINBOW on the particular sets of premises and goal formulae needed for
the sorting derivations. While this is inadequate for a fully general design
system, it is sufficient for an investigation of search and learning at the
design choice level, where the method of deduction does not affect the
results.

For the sorting specification, CYPRESS-Soar currently has the
knowledge to design insertion-sort, mergesort, and quicksort (though it
could easily be extended to design selection-sort). Figure 1 illustrates the
behavior of CYPRESS-Soar during its synthesis of quicksort. The first
column describes the major choices made in the design. The second
column states the design alternative that CYPRESS-Soar selected, and the
third column lists any alternatives that were rejected. The fourth column
classifies the processes and knowledge involved in making the choices

328 KNOWLEDGE ACQUISITION

using the following categories:
• Lookahead: Candidates are evaluated by trying them out to see

if they lead to a complete algorithm.
• Derived antecedent'. An antecedent is derived from the con­

straints imposed by previous design choices.
• Domain compatibility. The input or output domain of the

proposed refinement be compatible with a domain commitment
resulting from a previous design choice or from the specifica­
tion.

• Operator match: The specification of a known operator
matches the specifications set up for the subproblem being
solved.

• Preselected preferences: Preferences dictating some of the
choices are set up beforehand in order to produce a specific
sorting algorithm. Extra attributes added to the specification
for each different synthesis trigger these preferences.

The creation of divide-and-conqucr algorithms at two levels results from
decisions #2 and #8. while the forms of these algorithms are chosen in
decisions #3 and #10. The specification for the Partition subalgorithm is
first derived in decision #7, but the input condition must be strengthened in
order for the specification to be satisfiable. In making decision #15,
CYPRESS-Soar suggests candidates for the new input condition, rejecting
the first two because they lead to an unsatisfiable subspecification for
Directly-solve. With the exception of the synthesis of Directly-solve and
Compose for Partition (which require knowledge about conditionals rather
than just divide-and-conquer) and the details of the deduction, the behavior
in designing quicksort is the same as that of CYPRESS.

Furthermore, this behavior was obtained without the fixed design
strategies controlling the synthesis in CYPRESS. CYPRESS-Soar has
enough task knowledge so that it can exhibit the characteristic behavior of
the design strategies, but it is not constrained to follow a fixed procedure.
This is possible for the same reasons that Soar can exhibit the behavior of
the weak methods (such as steepest-ascent hill climbing) without having to
be programmed explicitly to do so [5]. Soar-based systems propose apply­
ing an operator as soon as enough knowledge is available to apply it, as
determined by the current state and the preconditions of the operator. The
appropriate behavior is thus determined at run-time rather than system
design time, by evaluating these operators. If CYPRESS-Soar goes into a
subgoal to carrv out the evaluation process, the result of the subgoal will be

saved as a chunk. Such chunks may produce future behavior corresponding
to the effects of one of CYPRESS' design strategies.

V Search and Learning in CYPRESS-Soar
Because of the Soar-based foundation of CYPRESS-Soar, we were able

to run several experiments measuring the effects of search control
knowledge and learning on the problem-solving effort required for algo­
rithm design. For example, when CYPRESS-Soar has complete search
control knowledge, the lengths of solutions reflect only the processing re­
quired to fill in all the details of the algorithm. It is possible to remove the
search control knowledge from CYPRESS-Soar so that search is required as
well, by removing 15 of the 195 productions. CYPRESS-Soar still yields
correct algorithms under these conditions, albeit with greater problem-
solving effort (a factor of 2 to 4 more decision cycles).

Then using chunking, we can measure the effects on solution lengths of
learning from experience, not only on different algorithms, but also with
different levels of search control knowledge. In some cases, the effects of
learning are more pronounced when search control knowledge is absent.
This is true not only because the solutions from which effort can be saved
are longer, but also because the larger number of impasses lead to more
opportunities for learning.

Figure 2 shows the effects of chunking in CYPRESS-Soar with the
search control knowledge removed. The three clusters of bars give the
lengths of syntheses of insertion-sort, mergesort, and quicksort under
various learning conditions. The first bar in each cluster shows the number
of decision cycles used by CYPRESS-Soar with no previous learning and
learning off during the run. The second bar displays the solution length
again with no previous learning, but with learning on during the run. The
last three bars in each cluster give solution lengths with previous learning
on each of the three algorithms, with learning off during the run.''

The second bars of each cluster in Figure 2 illustrate what is known as
within-trial transfer, a relatively rare phenomenon in the machine learning
literature. Within-trial transfer results in CYPRESS-Soar because
knowledge learned early in the design of an algorithm is applied produc­
tively later in the same design. In the runs with full search control, learning
has little effect, since there is no search, and the operators perform distinct
functions. However, in the runs with minimal search control, the search

Steier 329

Further experiments with learning on more than one algorithm or more than one learning
trial showed no noteworthy additional reductions.

Figure 2: Effects of learning with minimal search control
leads to a large number of similar situations and operator applications, and
with the generalization performed by chunking, much redundant problem-
solving effort can be saved. This is especially true in in the quicksort
synthesis where the system needs to search for the right input condition for
partition: the reduction in decision cycles from learning is close to 70%.

In CYPRESS-Soar, the majority of the within-trial transfer results from
the need to actually apply an operator after it has been evaluated by
lookahead. Since evaluating an operator by lookahead implies computing
the result of the operator in the process, after lookahead there will be a
chunk that directly creates the new state once the operator is actually
selected. The context in which the chunk fires is identical to the one in
which the chunk was formed, so the transfer is not very surprising.

The remaining within-trial transfer occurs when an algorithm is syn­
the sized for a subproblem specification in one context, and the same
specification shows up again later in another context in the same design.
An example of this shows up in the quicksort derivation. In synthesizing
partition, CYPRESS-Soar proposed three possible input conditions in
searching for the correct one, each time retaining the same output condition.
Since the specification for the composition subalgorithm was unaffected by
changes in the input condition, the same composition algorithm could be
used on each attempt. With minimal search control, the savings from
eliminating redundant syntheses of the composition amounted to about one-
fifth of the total problem-solving effort of the run without learning. In more
complicated algorithms and specifications, one would expect the savings
from learning to be even greater.

The last three bars show that CYPRESS-Soar also exhibits across-trial
transfer, improving performance on subsequent designs of the same algo­
rithm, and across-task transfer, applying knowledge learned from the
design of one algorithm to subsequent designs of different algorithms. For
example, with full search control and no learning, it took CYPRESS-Soar
303 decision cycles to synthesize insertion-sort. As one might expect, it
took almost no effort to synthesize quicksort after learning on it, only 20
decision cycles, a savings of 93%. But some of the transfer also occurred
after designing the other algorithms: 269 decision cycles after mergesort
and 249 after quicksort, savings of 11% and 18% respectively. Reductions
of 8-26% in solution lengths were observed across all pairs of algorithms, in
both the minimal and the full search control runs.

The transfer occurs mostly because all three algorithms solve the same
problem, namely sorting. Each sorting algorithm must decompose lists, and
so the same well-founded ordering by list length can be preserved by all
three top-level decomposition operators. Other transfer occurs in im­
plementing simple deduction operators, such as negating certain logical
expressions. Also, refining Directly solve to Id led to transfer between
mergesort and quicksort, because in both cases the input is either a single-
element or null list. There is no transfer to insertion-sort, because there the
input condition specifies only sorting null lists. The representation of the
input condition would have to be changed for the matcher, which only fires
chunks in the case of an exact syntactic match to the context, to detect that
an operator that handled a certain type of input could also handle subsets of
that input.

VI Discussion
While a system that designs three algorithms is better than a system that

only designs one, CYPRESS-Soar is still not a general automatic algorithm
designer, not even within the class of divide-and-conquer algorithms. This
is mainly due to the special-case rules for deduction and conditional syn­
thesis, a consequence of the strategic choice in this research to focus first on
search and learning in a few divide-and-conquer algorithms. For a general
system, one would need to implement additional problem spaces that would
perform these functions. We foresee no theoretical barriers to such exten­
sions. The major hurdles to be dealt with are the construction of better
interfaces for working with logical formulae in Soar, and the efficiency of a
Soar-based deduction engine.

Perhaps most important is that with the existing chunks and the ability to
precisely measure across-task transfer, CYPRESS-Soar forms a unique ex­
perimental vehicle with which to explore the potential for learning in this
domain. The degree to which a Soar-based system can apply chunks to
improve its performance depends on how often similar situations are
repeated as subgoals while problem-solving. The repetition may be less
frequent than it could be because CYPRESS-Soar does not currently break

down the deduction into subgoals. It is likely that more transfer would
occur if the deduction engine were implemented completely within Soar.
More fundamentally the representation used by CYPRESS-Soar may need
to capture abstractions common to the algorithms in the syntax of the
representation language. On the other hand, it may be the case with these
sorting algorithms that no further transfer is possible; that the design
processes needed for their creation are just not very similar.

While much work remains to be done, it is encouraging that the current
results were obtained in CYPRESS-Soar with only two months' work. This
demonstration that a formal theory of design is fully compatible with a
general framework for intelligent action was possible only because of the
strong foundations available in the work on CYPRESS and Soar. It is also
encouraging that the issues raised in the course of developing CYPRESS-
Soar have seemed to be worthwhile research topics; in addressing them, we
expect to gain useful insights about algorithms and the processes involved
in their design.
Acknowledgements

I am most grateful to Doug Smith and the Kestrel Institute for providing
me with the opportunity and the environment to begin this research, and to
Allen Newell for numerous discussions during the development of
CYPRESS-Soar. Doug Smith, Allen Newell, Elaine Kant, John Laird,
Craig Knoblock, Dorothy Setliff and Oren Etzioni also made useful com­
ments on earlier drafts of this paper.

References

1. Backus, J. Tan programming be liberated from the von Neumann
style?: a functional style of programming and its algebra of programs".
Communications of the ACM 21,8 (August 1978), 613-641.
2. Balzer, R. "A 15-year perspective on automatic programming". IEEE
Transactions on Software Engineering SE-11, 11 (November 1985).
3. Barstow, D. R. "Domain-specific automatic programming". IEEE
Transactions on Software Engineering SE-11 , (November 1985).
4. Dietzen, S. R. and Scherlis, W. L. Analogy in program development
Proceedings of the Second Conference on the Role of Language in Problem
Solving, April, 1986.
5. Laird, J. E. Universal subgoaling. In Universal Subgoaling and Chunk-
ing: The Automatic Generation and Learning of Goal Hierarchies, Kluwer
Academic Publishing, Hingham, MA, 1986.
6. Laird, J. E.. Newell, A„ and Rosenbloom, P. S. "Soar An architecture
for general intelligence". Artificial Intelligence (1987). in press.
7. Laird, J. E., Rosenbloom, P. S*. and Newell. A. Towards chunking as a
general learning mechanism. Proceedings of AAAI-84, The American As­
sociation for Artificial Intelligence, Austin, Texas, August, 1984, pp.
188-192.
8. Laird, J. E., Rosenbloom, P. S., and Newell, A. "Chunking in Soar: The
anatomy of a general learning mechanism". Machine Learning 1,1 (1986).
9. Rosenbloom, P. S. The chunking of goal hierarchies. In Universal
subgoaling and chunking: The automatic generation and learning of goal
hierarchies, Kluwer Academic Publishing, Hingham, MA, 1986.
10. Rosenbloom, P. S.. Laird, J. E., McDermott. J., Newell, A., and Or-
ciuch, E. "Rl-Soar. An experiment in knowledge-intensive programming in
a problem-solving architecture". IEEE Transactions on Pattern Analysis
and Machine Intelligence 7,5 (1985). 561-569.
11. Smith, D.R. Derived preconditions and their use in program synthesis.
In Sixth Conference on Automated Deduction, Springer-Verlag, 1982. Lec­
ture Notes in Computer Science 138.
12. Smith, D.R. "The design of divide-and-conquer algorithms". Science
of Computer Programming 5 (1985), 37-58.
13. Smith, D.R. "Top-down synthesis of divide-and-conquer algorithms".
Artificial Intelligence 27,1 (1985), 43-96.

330 KNOWLEDGE ACQUISITION

