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Abstract 

This paper describes a partial reimplementation of Doug Smith's CYPRESS 
algorithm design system within the Soar problem-solving architecture. The 
system, CYPRESS-SOAR, reproduces most of CYPRESS' behavior in the 
synthesis of three divide-and-conquer sorting algorithms from formal 
specifications. CYPRESS-Soar is based on heuristic search of problem 
spaces, and uses search to compensate for missing knowledge in some 
instances. CYPRESS-Soar also learns as it designs algorithms, exhibiting 
significant transfer of learned knowledge, both within a single design run, 
and across designs of several different algorithms. These results were 
produced by reimplementing just the high-level synthesis control of 
CYPRESS, simulating the results of calls to CYPRESS* deduction engine. 
Thus after only two months of effort, we had a surprisingly effective 
research vehicle for investigating the roles of search, knowledge, and learn­
ing in this domain.* 

I I n t r o d u c t i o n 
Good human programmers have at least two remarkable abilities: they 

manage to produce programs in the face of incomplete knowledge, and they 
make use of previous experience in solving new problems. How could we 
get automatic programming systems to produce the same intelligent be­
havior? Al-based performance systems in other domains compensate for 
incomplete knowledge by searching through a space of possible solutions, 
and there exist a variety of mechanisms for learning from experience. 
However, automatic programming research has so far produced only a few 
systems that either search or learn, and, to my knowledge, none that do 
both. This is true despite the field's growing acknowledgement of the 
importance of both search and learning [2,3,4]. 

This paper describes a prototype system that both searches and learns 
while performing part of an automatic programming task. An algorithm 
design system, previously built within a special-purpose framework, was 
reimplemented in a more general problem-solving architecture with built-in 
search and learning capabilities. The previously implemented system is 
Doug Smith's CYPRESS [11,12,13], which is most noted for its design of 
divide-and-conquer algorithms. The foundation for the reimplementation is 
Soar [7,8], an architecture for general intelligence developed by John Laird, 
Allen Newell, and Paul Rosen bloom. The combined system, CYPRESS-
Soar, produces the bulk of three of CYPRESS' sorting algorithm deriva­
tions, and takes advantage of the properties of Soar to search and learn 
while doing so. 

In Section I I , I describe CYPRESS and its approach to the synthesis of 
divide-and-conquer sorting algorithms and in Section III I give an overview 
of the Soar architecture. The remaining sections discuss CYPRESS-Soar, 
presenting the following results: 

• Performance without fixed design strategies: CYPRESS-
Soar uses any knowledge available at run-time to decide when 
algorithm refinement operators should be applied. If the 
knowledge is unavailable, CYPRESS-Soar automatically falls 
back on general problem-solving methods, initiating lookahead 
search to evaluate the possibilities. In contrast, design 
strategies control operator application in CYPRESS, and any 
necessary search must be guided by an expert user. (Section 
IV) 

• Transfer of learned knowledge: CYPRESS-Soar knows what 
goal it is working on, and caches the result of the goal for 
future use. Because some goals show up more than once, this 

learning mechanism reduces problem-solving effort, both 
within the design of a single algorithm, and on later designs of 
different algorithms. CYPRESS does not learn, and con­
sequently can not take advantage of repeated subgoals. 
(Section V) 

Section VI concludes with a discussion of several issues involved in 
extending the prototype CYPRESS-Soar system into a more general 
automatic algorithm designer. 

I I H o w C Y P R E S S designs d iv ide-and-conquer a lgo r i t hms 
CYPRESS is a semi-automatic system that derives algorithms from for­

mal specifications. It works by top-down refinement of program schemes, 
or templates, which represent abstractions such as divide-and-conquer and 
generate-and-test. A problem specification is matched against a program 
scheme, and with the aid of a design strategy, decomposed into specifica­
tions of simpler problems. This problem reduction process continues recur­
sively until a specification can be solved directly by primitive operators 
known to the system. When more than one design strategy is applicable, or 
more than one operator matches a specification, the user makes a selection 
among alternatives. 

CYPRESS spends most of its time in calls to RAINBOW, its deduction 
engine. RAINBOW performs a generalized version of theorem-proving 
known as antecedent derivation [11]. Given a set of hypotheses, H and a 
goal formula, G, RAINBOW tries to give the weakest possible precon­
dition, or antecedent, P such that the hypotheses in H conjoined with P 
imply G. If P is just true, then G is already a valid formula given H. In the 
context of algorithm synthesis, RAINBOW is used to reason backwards 
from output conditions to test if a specification is satisfied. If it is not 
satisfied, the derived antecedent is used as dictated by the active design 
strategy as the basis for further action. Viewed in problem-solving terms, 
RAINBOW provides a sophisticated form of means-ends analysis. 

The input to CYPRESS is a formal specification of the problem to be 
solved, giving the input and output domains (types, or sets), and input and 
output conditions for the problem. A specification of the problem of sorting 
lists of natural numbers from [13] is 

S O R T : X = Z such that B a g : x = B a g : z A Ordered:z 
where SORT: L IST(N)- ->LIST(N) . 

The SORT function maps the input x into the output z. An implicit input 
condition, true is assumed. The output condition is that the bag (multiset) 
of elements in x is the same as in z, and z is ordered. The specification 
assumes pre-existing knowledge of the terms "Bag" and "Ordered". 

The sorting problem is amenable to a divide-and-conquer solution. The 
CYPRESS scheme for divide-and-conquer is expressed in a typed func­
tional programming language, a derivative of Backus' FP [1]: 

F:x i f 
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Primit ive:x —► Directly_Solve:x [] 
- -P r im i t i ve : ! —► Compose • ( G x F ) • Decompose:x 

fi 

The scheme abstractly specifics how to compute the value of F on input r. 
If x is a base-case input, then solve it directly; otherwise, decompose x into 
two subproblems, recursively solve one and apply an auxiliary function G to 
the other, then compose the results. 
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To instantiate this scheme for a given specification, CYPRESS creates 
subspecifications for Directly.Solve, Compose, and Decompose, and then 
attempts to design algorithms for these subspecifications or to verify that 
known operators satisfy them. Along the way, the auxiliary function G is 
refined, usually either to a recursive call to the top-level algorithm, or to the 
identity operator, Id. The Primitive control predicate is derived as the input 
condition to Decompose. 

The design strategies for instantiating the divide-and-conquer scheme al­
low the choice of either simple decomposition or simple composition 
operators. For sorting, choosing a simple decomposition operator leads to 
insertion-sort and mergesort, while a simple composition operator leads to 
selection-sort and quicksort. The algorithms for the top levels of the quick­
sort and partition algorithms are 

The top level function for quicksort is a divide-and-conquer scheme that 
uses the simple composition operator Append, while the partition algorithm 
called by quicksort is the scheme instantiated to use the simple decom­
position FirstRest (equivalent to returning the head and tail of a list). The 
top level function Qsort is the conventional quicksort: If x is of length 0 or 
1, it returns x. Otherwise, it partitions x into two sublists, sorts them both 
and appends the results. The partition algorithm created by CYPRESS dif­
fers from the standard partition algorithm in that it is a divide-and-conquer 
algorithm, and it does not use a partitioning element If there are only two 
elements in the list, it produces two singleton lists, with the smaller element 
in the first list. Otherwise, it builds up two lists by recursively partitioning 
off the rest of the list, and adding each element in turn to the appropriate 
sublist as determined by its value. The functions implementing 
Partition Directly Solve and Partition Compose for the partition algorithm 
were also produced by CYPRESS, but are not shown here. 

I l l Soar 
CYPRESS-Soar is built in Soar, an architecture developed to study the 

computational mechanisms necessary for intelligent behavior [6). Soar is 
based on the hypothesis that all goal-directed cognitive activity can be 
represented as search in a problem space. A problem space is defined by a 
set of states, and a set of operators to move from state to state. Soar uses 
knowledge, represented as productions, to generate and select problem 
spaces, states, and operators to move towards a goal state. The knowledge 
accumulates in the elaboration phase and is used as a basis for action in the 
decision phase of each decision cycle, the basic unit of problem-solving 
effort in Soar-based systems. Several productions may fire in accumulating 
the knowledge to make a given decision (about 4-5 productions per decision 
cycle for CYPRESS-Soar). 

Often the knowledge directly available in a given situation is insufficient 
to determine the next thing to do immediately. In Soar, such situations are 
called impasses', subgoals arise exclusively in response to these impasses. 
The types of impasses that may arise in Soar systems are determined by the 
architecture. For example, a common impasse, operator-tie, occurs when 
several operators are proposed as acceptable for application to a given state, 
and there is insufficient knowledge to choose between them. The subgoal 
to resolve an operator-tie impasse would be satisfied when the system ac­
quired knowledge indicating that one of the operators initially causing the 
tie is actually preferable to all other candidates. 

When Soar finishes working on a subgoal, it can learn from its ex­
perience by building productions called chunks for use in future problem 
solving. The conditions of a chunk are the features of the pre-impasse 
situation that were used to produce the results of the subgoal, where the 
results are those working-memory elements created in the subgoal (or its 
subgoals, etc.) that are accessible from a supergoal. The actions of a chunk 
are based on the results. At first glance one would expect chunking to yield 
nothing more than rote learning, but generalization does occur because 
chunks test only relevant attributes of the problem-solving context [7]. 

The Soar architecture has by now been subjected to extensive study and 
experimental use in many applications. Soar systems have solved problems 
and learned in domains ranging from the traditional AI toy problems such as 
the eight-puzzle to more complex knowledge-intensive tasks, such as the 
part of VAX configuration performed by the Rl expert system [10]. Other 
work has demonstrated that Soar can exhibit the behavior of a wide variety 
of problem-solving methods [5]. Also, chunking, which was developed 

from psychological models of human learning [9], has proven to be a 
powerful mechanism capable of improving performance in many applica­
tions. Therefore, while Soar is not yet a complete model for intelligent 
behavior, it already demonstrates many of the characteristics necessary for 
such a model. 

IV CYPRESS-Soar 
One encodes a task in Soar by writing productions implementing one or 

more task problem spaces. CYPRESS-Soar consists of 195 Soar (Version 
4.4) productions. Of these productions, 60 contain Soar's default search 
control knowledge, and the remaining 135 (comprising about 4500 lines of 
text) are task-specific. This section describes the problem spaces in 
CYPRESS-Soar implemented by the task-specific productions. The deriva­
tion of the quicksort algorithm discussed earlier is summarized to illustrate 
the operation of the system. 

CYPRESS-Soar follows the same principles of "Soarware engineering" 
used in the construction of Rl-Soar [10]. The top level problem space 
attempts to apply a single operator (Conf igure-backplane in Rl-
Soar, Synthesize in CYPRESS-Soar) to solve the problem. Because no 
productions implement this operator directly. Soar creates a subgoal to im­
plement it, selecting a special problem space associated with this operator. 
This problem space in turn contains other operators which may be them­
selves implemented in other problem spaces, or else implemented directly 
by productions that fire in the appropriate context In this manner, tasks are 
decomposed into problem spaces in the same way that large conventional 
programs are broken up into modules. Other problem spaces are evoked to 
handle search control, such as the selection of operators. 

Inn CYPRESS-Soar, the Synthesize operator is implemented by sub-
goaling into the Synthesize problem space. In this space, operators may be 
applied to synthesize either a divide-and-conquer algorithm, or a simple 
conditional. This paper focuses on the creation of divide-and-conquer al­
gorithms, for which the states in the Synthesize space arc the successive 
refinements of the divide-and-conquer program scheme. The initial state is 
a completely abstract scheme, and the desired state is a scheme with all of 
its parts refined to known operations. The Specify-decompose, 
Specify-auxiliary, Specify-primitive, 
Specify-compose, and Specify-directly-solve operators map 
directly onto the parts of the scheme that need to be refined. 
Specify-ordering chooses a well-founded ordering on the input 
domain to be preserved by the decomposition operator; this is necessary to 
guarantee that the synthesized algorithm terminates. Each of these 
operators is implemented in its own problem space, where the knowledge 
about divide-and-conquer taken from CYPRESS is used for operator selec­
tion and implementation. In the Specify-decompose, Specify-compose, 
and Specify-directly-solve problem spaces, the Synthesize operator 
may be recursively invoked to satisfy specifications for complex algorithms. 

For example, the Specify-decompose problem space is used to refine the 
divide-and-conquer algorithm's Decompose operation. For decomposing 
lists, operators in this problem space might choose FirstRest, which returns 
the element at the head of the list along with the rest of the list. However, 
suppose one desires an algorithm that uses a simple method of composing 
lists, say the Cons operator. Then FirstRest will probably not suffice for the 
decomposition, because FirstRest does not satisfy a strong enough output 
condition to guarantee correct results with the chosen composition method. 
The existence of such constraints imposed by already instantiated parts of 
the algorithm will make other refinement operators acceptable. In this case, 
CYPRESS-Soar uses an antecedent derived from the output conditions of 
the problem specification, the auxiliary operator, and the specification of 
Cons in conjunction with knowledge about divide-and-conquer to find a 
stronger output condition for the decomposition specification. 

A complete implementation of some of the operators in the Synthesize 
space would require a separate space for deduction (the kind done by 
CYPRESS' RAINBOW). In developing CYPRESS-Soar, we wanted to 
focus on the knowledge involved in making design choices, rather than on 
deduction, so we simulated RAINBOW'S behavior without implementing it 
in Soar. CYPRESS-Soar includes rules that return the results of calls to 
RAINBOW on the particular sets of premises and goal formulae needed for 
the sorting derivations. While this is inadequate for a fully general design 
system, it is sufficient for an investigation of search and learning at the 
design choice level, where the method of deduction does not affect the 
results. 

For the sorting specification, CYPRESS-Soar currently has the 
knowledge to design insertion-sort, mergesort, and quicksort (though it 
could easily be extended to design selection-sort). Figure 1 illustrates the 
behavior of CYPRESS-Soar during its synthesis of quicksort. The first 
column describes the major choices made in the design. The second 
column states the design alternative that CYPRESS-Soar selected, and the 
third column lists any alternatives that were rejected. The fourth column 
classifies the processes and knowledge involved in making the choices 
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using the following categories: 
• Lookahead: Candidates are evaluated by trying them out to see 

if they lead to a complete algorithm. 
• Derived antecedent'. An antecedent is derived from the con­

straints imposed by previous design choices. 
• Domain compatibility. The input or output domain of the 

proposed refinement be compatible with a domain commitment 
resulting from a previous design choice or from the specifica­
tion. 

• Operator match: The specification of a known operator 
matches the specifications set up for the subproblem being 
solved. 

• Preselected preferences: Preferences dictating some of the 
choices are set up beforehand in order to produce a specific 
sorting algorithm. Extra attributes added to the specification 
for each different synthesis trigger these preferences. 

The creation of divide-and-conqucr algorithms at two levels results from 
decisions #2 and #8. while the forms of these algorithms are chosen in 
decisions #3 and #10. The specification for the Partition subalgorithm is 
first derived in decision #7, but the input condition must be strengthened in 
order for the specification to be satisfiable. In making decision #15, 
CYPRESS-Soar suggests candidates for the new input condition, rejecting 
the first two because they lead to an unsatisfiable subspecification for 
Directly-solve. With the exception of the synthesis of Directly-solve and 
Compose for Partition (which require knowledge about conditionals rather 
than just divide-and-conquer) and the details of the deduction, the behavior 
in designing quicksort is the same as that of CYPRESS. 

Furthermore, this behavior was obtained without the fixed design 
strategies controlling the synthesis in CYPRESS. CYPRESS-Soar has 
enough task knowledge so that it can exhibit the characteristic behavior of 
the design strategies, but it is not constrained to follow a fixed procedure. 
This is possible for the same reasons that Soar can exhibit the behavior of 
the weak methods (such as steepest-ascent hill climbing) without having to 
be programmed explicitly to do so [5]. Soar-based systems propose apply­
ing an operator as soon as enough knowledge is available to apply it, as 
determined by the current state and the preconditions of the operator. The 
appropriate behavior is thus determined at run-time rather than system 
design time, by evaluating these operators. If CYPRESS-Soar goes into a 
subgoal to carrv out the evaluation process, the result of the subgoal will be 

saved as a chunk. Such chunks may produce future behavior corresponding 
to the effects of one of CYPRESS' design strategies. 

V Search and Learning in CYPRESS-Soar 
Because of the Soar-based foundation of CYPRESS-Soar, we were able 

to run several experiments measuring the effects of search control 
knowledge and learning on the problem-solving effort required for algo­
rithm design. For example, when CYPRESS-Soar has complete search 
control knowledge, the lengths of solutions reflect only the processing re­
quired to fill in all the details of the algorithm. It is possible to remove the 
search control knowledge from CYPRESS-Soar so that search is required as 
well, by removing 15 of the 195 productions. CYPRESS-Soar still yields 
correct algorithms under these conditions, albeit with greater problem-
solving effort (a factor of 2 to 4 more decision cycles). 

Then using chunking, we can measure the effects on solution lengths of 
learning from experience, not only on different algorithms, but also with 
different levels of search control knowledge. In some cases, the effects of 
learning are more pronounced when search control knowledge is absent. 
This is true not only because the solutions from which effort can be saved 
are longer, but also because the larger number of impasses lead to more 
opportunities for learning. 

Figure 2 shows the effects of chunking in CYPRESS-Soar with the 
search control knowledge removed. The three clusters of bars give the 
lengths of syntheses of insertion-sort, mergesort, and quicksort under 
various learning conditions. The first bar in each cluster shows the number 
of decision cycles used by CYPRESS-Soar with no previous learning and 
learning off during the run. The second bar displays the solution length 
again with no previous learning, but with learning on during the run. The 
last three bars in each cluster give solution lengths with previous learning 
on each of the three algorithms, with learning off during the run.'' 

The second bars of each cluster in Figure 2 illustrate what is known as 
within-trial transfer, a relatively rare phenomenon in the machine learning 
literature. Within-trial transfer results in CYPRESS-Soar because 
knowledge learned early in the design of an algorithm is applied produc­
tively later in the same design. In the runs with full search control, learning 
has little effect, since there is no search, and the operators perform distinct 
functions. However, in the runs with minimal search control, the search 
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Figure 2: Effects of learning with minimal search control 
leads to a large number of similar situations and operator applications, and 
with the generalization performed by chunking, much redundant problem-
solving effort can be saved. This is especially true in in the quicksort 
synthesis where the system needs to search for the right input condition for 
partition: the reduction in decision cycles from learning is close to 70%. 

In CYPRESS-Soar, the majority of the within-trial transfer results from 
the need to actually apply an operator after it has been evaluated by 
lookahead. Since evaluating an operator by lookahead implies computing 
the result of the operator in the process, after lookahead there will be a 
chunk that directly creates the new state once the operator is actually 
selected. The context in which the chunk fires is identical to the one in 
which the chunk was formed, so the transfer is not very surprising. 

The remaining within-trial transfer occurs when an algorithm is syn­
the sized for a subproblem specification in one context, and the same 
specification shows up again later in another context in the same design. 
An example of this shows up in the quicksort derivation. In synthesizing 
partition, CYPRESS-Soar proposed three possible input conditions in 
searching for the correct one, each time retaining the same output condition. 
Since the specification for the composition subalgorithm was unaffected by 
changes in the input condition, the same composition algorithm could be 
used on each attempt. With minimal search control, the savings from 
eliminating redundant syntheses of the composition amounted to about one-
fifth of the total problem-solving effort of the run without learning. In more 
complicated algorithms and specifications, one would expect the savings 
from learning to be even greater. 

The last three bars show that CYPRESS-Soar also exhibits across-trial 
transfer, improving performance on subsequent designs of the same algo­
rithm, and across-task transfer, applying knowledge learned from the 
design of one algorithm to subsequent designs of different algorithms. For 
example, with full search control and no learning, it took CYPRESS-Soar 
303 decision cycles to synthesize insertion-sort. As one might expect, it 
took almost no effort to synthesize quicksort after learning on it, only 20 
decision cycles, a savings of 93%. But some of the transfer also occurred 
after designing the other algorithms: 269 decision cycles after mergesort 
and 249 after quicksort, savings of 11% and 18% respectively. Reductions 
of 8-26% in solution lengths were observed across all pairs of algorithms, in 
both the minimal and the full search control runs. 

The transfer occurs mostly because all three algorithms solve the same 
problem, namely sorting. Each sorting algorithm must decompose lists, and 
so the same well-founded ordering by list length can be preserved by all 
three top-level decomposition operators. Other transfer occurs in im­
plementing simple deduction operators, such as negating certain logical 
expressions. Also, refining Directly solve to Id led to transfer between 
mergesort and quicksort, because in both cases the input is either a single-
element or null list. There is no transfer to insertion-sort, because there the 
input condition specifies only sorting null lists. The representation of the 
input condition would have to be changed for the matcher, which only fires 
chunks in the case of an exact syntactic match to the context, to detect that 
an operator that handled a certain type of input could also handle subsets of 
that input. 

VI Discussion 
While a system that designs three algorithms is better than a system that 

only designs one, CYPRESS-Soar is still not a general automatic algorithm 
designer, not even within the class of divide-and-conquer algorithms. This 
is mainly due to the special-case rules for deduction and conditional syn­
thesis, a consequence of the strategic choice in this research to focus first on 
search and learning in a few divide-and-conquer algorithms. For a general 
system, one would need to implement additional problem spaces that would 
perform these functions. We foresee no theoretical barriers to such exten­
sions. The major hurdles to be dealt with are the construction of better 
interfaces for working with logical formulae in Soar, and the efficiency of a 
Soar-based deduction engine. 

Perhaps most important is that with the existing chunks and the ability to 
precisely measure across-task transfer, CYPRESS-Soar forms a unique ex­
perimental vehicle with which to explore the potential for learning in this 
domain. The degree to which a Soar-based system can apply chunks to 
improve its performance depends on how often similar situations are 
repeated as subgoals while problem-solving. The repetition may be less 
frequent than it could be because CYPRESS-Soar does not currently break 

down the deduction into subgoals. It is likely that more transfer would 
occur if the deduction engine were implemented completely within Soar. 
More fundamentally the representation used by CYPRESS-Soar may need 
to capture abstractions common to the algorithms in the syntax of the 
representation language. On the other hand, it may be the case with these 
sorting algorithms that no further transfer is possible; that the design 
processes needed for their creation are just not very similar. 

While much work remains to be done, it is encouraging that the current 
results were obtained in CYPRESS-Soar with only two months' work. This 
demonstration that a formal theory of design is fully compatible with a 
general framework for intelligent action was possible only because of the 
strong foundations available in the work on CYPRESS and Soar. It is also 
encouraging that the issues raised in the course of developing CYPRESS-
Soar have seemed to be worthwhile research topics; in addressing them, we 
expect to gain useful insights about algorithms and the processes involved 
in their design. 
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