Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jul 2024 (v1), last revised 9 Jul 2024 (this version, v2)]
Title:CBM: Curriculum by Masking
View PDF HTML (experimental)Abstract:We propose Curriculum by Masking (CBM), a novel state-of-the-art curriculum learning strategy that effectively creates an easy-to-hard training schedule via patch (token) masking, offering significant accuracy improvements over the conventional training regime and previous curriculum learning (CL) methods. CBM leverages gradient magnitudes to prioritize the masking of salient image regions via a novel masking algorithm and a novel masking block. Our approach enables controlling sample difficulty via the patch masking ratio, generating an effective easy-to-hard curriculum by gradually introducing harder samples as training progresses. CBM operates with two easily configurable parameters, i.e. the number of patches and the curriculum schedule, making it a versatile curriculum learning approach for object recognition and detection. We conduct experiments with various neural architectures, ranging from convolutional networks to vision transformers, on five benchmark data sets (CIFAR-10, CIFAR-100, ImageNet, Food-101 and PASCAL VOC), to compare CBM with conventional as well as curriculum-based training regimes. Our results reveal the superiority of our strategy compared with the state-of-the-art curriculum learning regimes. We also observe improvements in transfer learning contexts, where CBM surpasses previous work by considerable margins in terms of accuracy. We release our code for free non-commercial use at this https URL.
Submission history
From: Radu Tudor Ionescu [view email][v1] Sat, 6 Jul 2024 21:35:18 UTC (19,688 KB)
[v2] Tue, 9 Jul 2024 09:40:38 UTC (19,688 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.