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Abstract

Instantiation orderings over formulas (the re-
lation of one formula bemg an instance of an-
other) have long been central to the study of
automated deduction and logic programming,
and are of rapidly-growing importance in the
study of database systems and machine learn-
ing A variety of instantiation ordenngs are
now |IP use, many of which incorporate some
kind of background information in the form
of a constraint theory Even a casual exami-
nation of these instantiation orderings reveals
that they are somehow related, but in exactly
what way? This paper presents a general in-
stantiation ordering of which all these order-
ings are special cases, as are other instantia-
tion ordenngs The paper shows that this gen-
eral ordering has the semantic properties we de-
sire in an instantiation ordering, implying that
the special cases have these properties as well
The extension to this general ordering is useful
in applications to inductive logic programming,
automated deduction and logic programming,
knowledge-base vivification, and database sys-
tems

1 Introduction

Instantiation orderings over formulas (the relation of one
formula bemg an instance of another) have long been
central to the study of automated deduction and logic
programming, and are of rapidly-growmg importance
to the study of database systems and machine learn-
ing (e g, in inductive logic programming) One com-
mon way—perhaps the most common way-to build a
theory of background information into a computational
system based on instantiation is to generalize the ordi-
nary definition of instantiation to take account of the
theory The earliest work of this kind was Plotkin's
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[1972] method of building an equational theory into res-
olution merely by replacing unification with the more
general operation of unification with respect to the the-
ory, an operation he called T-unification" and is today
called "E-unification " E-unification can be thought of
as an operation used to obtain the greatest lower bound
in an instantiation ordering that is relative to the built-in
equationaltheory SortedJogics can be thought of as log-
ics that incorporate background information about sorts,
which are sets of objects in the domain All automated
deduction systems for sorted logic (e g , [Walther, 1987,
Conn, 1987, Schmidt-Schauss, 1989, Frisch, 1991]) per-
form sorted unification, which, once again, can be
thought of as an operation used to obtain the greatest
lower bound in an instantiation ordering with a built-in
theory about sorts

This paper presents an instantiation ordering for con
straint logic, a logic that generalizes previous logics that
incorporate background information, and proves that
previous instantiation ordenngs are special cases of this
ordering Furthermore, Section 5 shows the utiliy of
this generalized instantiation ordering by discussing ap-
plications to (1) induction and inductive logic program-
ming, (2) deduction and logic programming, and (3)
knowledge-base vivification We are currently investi-
gating applications to constraint databases and database
query languages as well The extension to constraint
logic is vital for each of these applications

After defining our generalized instantiation ordering,
we identify two semantic properties that one should ex-
pect of instantiation orderings, properties that make in-
stantiation orderings useful Theorem 2 establishes that
our general instantiation ordering has these properties,
consequently (because of the nature of these properties)
all special cases of the general ordering must have these
properties

A major consequence of defining instantiation in such
a general setting is that the traditional substitution-
based definitions are inadequate The definition of in-
stantiation presented in this paper (Section 3) does not
involve substitutions, it is primarily semantic Two
of the principle theorems of this paper, Theorems 3
and 6, each identify conditions under which an instanti-
ation ordering can be based on substitution Examples
are presented that show that substitution-based defini-
tions cannot be guaranteed to work when these condi-



tions are not met Thus, this paper demonstrates that
substitution-based definitions, such as that embodied in
E-unification, are not applicable in all generalized set-
tings, and the paper identifies some of the limits of ap-
plicability For example, we see that the instantiation
ordering for sorted logic can be generalized from sorts to
arbitrary predicates provided that there are no built-in
equations However, if there are built-in equations, then
additional conditions, which are identified in the paper,
must be met

By showing that sorted logic meets the conditions of
Theorem 3, and that logic with built-in equations meets
the conditions of Theorem 6, we are able to prove that
the instantiation orderings associated with these two log-
ics are special cases of our general instantiation ordering
These proofs are simple, suggesting that it also may be
simple to prove that other instantiation ordenngs are
special cases of the general ordering Other properties,
such as the existence of least upper bounds and greatest
lower bounds and the finiteness of antichains, ascending
chains, ard descending chains, hold only in some instan-
tiation ordenngs Elsewhere sufficient conditions for ob-
taining these algebraic properties are presented [Page,
1993]

2 Constrained Formulas and Constraint
Theories

A constrained formula is composed of two ordinary for-
mulae, one called the head and the other called the con-
straint The constraint can be any formula whose pred-
icates are drawn from a distinguished set of predicates
called constraint predicates In addition, TRUE is a con-
straint and has the obvious interpretation We stipulate
that the interpreted equality predicate ("=") is a con-
straint predicate For clarity, constraint predicates (ex-
cept equality) are written in email capital letters, e g
"ELEPHANT " The head of a constrained formula can be
any formula that contains no constraint predicates We
require that every variable that has a free occurrence in
the constraint also has a free occurrence in the head
Constraint formulas are written m the form ¢/C, where
¢ is the head and C is the constraint

But what does a constrained formula mean’ In all
the applications of constrained formulas that we know
about, the variables in the formulas are either all univer-
sally quantified or all existentially quantified " Where ¢
is any formula (ordinary or constrained), we say that the
universal closure of ¢ is the result of universally quanti-
fying all free variables in ¢, and we denote the universal
closure of <p by ¥¢ Similarly, the existential closure of <t>
is the result of existentially quantifying all free variables
in O/, and it is denoted by A4 Tf &/C is a constrained
formula, then we define ¥(¢/C') to be logically equiva-

lent to, ?(C —+ ), and §(¢/C} to be logically equivalent
to 3(C A ¢)

Operations on constrained formulae act with respect
to background information about the constraint predi-
cates This background information takes the form of a

'In fact, substantia] difficulties confront attempts to mix
the quantifiers on constrained formulas

E) = {¥z unrv(z}, ELEPHANT(clyde) V 1N-CTRCUS(elpde),
ELEPHANT(Jumbs) V IN-CIRCUS{yumnbo),
GRAY(mom{ clyde)}, GRAY(mom{rumbo}),

¥z ELEPHANT(Z) — ELEPHANT(mom(x)),
Yz ELEPHANT(z) — MAMMAL(T)}}

E; = {party{amold) = republican,
spouse{ mana) = amold, spowse{armold) = marag,
BIGGER(arnsid,mara), KENNEDY(mana},
¥z KENNEDY(z) — (pariy(z) = democrubic),
LEGISLATURE( tis-Aouse), LEQISLATURE( us-senate) }

Es = {Y2¥y (f(z,¥) = [, 2)), (c=0)V(c =)}

Fagure 1 Three Constramt Theories

constrmini theory A constrant theory 18 any (possibly
wfinate) zatisfinble set of sentences all of whose pred-
icates are constraint predicates Figure 1 gives three
examples of conatramt theories, called £y, g and ¥4
Notice that ¥, contains monadic constraint predicates
only Therefore, we also call 1t a sort theory 3

The following definitions are used throughout the pa-
per A value gssignment 18 an assignment of individuals
from the domain of & given model to all Iree vanables
Let £ be a constraunt theory, and let M be a model We
say that M 18 n E-model if nd only f M satisfies T We
say that a constreunt that 18 satisfied by some T-model
and some value sasignment 18 E-sgiwfiable Where T 18,
more generally, any {possibly infiniie) first-order theory,
and ¥, end v are logcal sepntences, we say that vy, E-
eniass Yo if and only f ZU {¥n} E ¢z, and we write
¥1 Fr ¥s More generally, where ¢, and ¢4 are log-
cal formulas, we say that ¢ I-entals ¢, o and only o
any L-model and value assignment that satisfy ¢, also
satiafy ¢o A quam-onrdening, or preonder, 15 a relation
thet 18 refleive and transiive Aliernatively, a quasi-
ordering may be thought of as a relation that partitions
a set 1to equvalence classes and partially orders those
equivalence classes It 18 straightforward to verdy that
5 15 8 quasi-ordering on constraints

A consiraned formula 18 admissble with respect to
copstrant theory I, or D-asdmussible, o 1ts constraint
18 T-satisfiable Otherwise, 1t 13 E-mnadmssibie The
remainder of the paper considers only constraned for-
mulas that are admissible with respect to the consiraint
theory under consideration Thus “constrained formula”
always means “T-admussible constramed formula ©

Let ¢ be any formula with n lop-level ierm oocur-
rences, that 18, n occurrences of terms as arguments
to predicates Number the occurrences from 1 to n
wn jeft-to-right order, as they appear m ¢ We use
@[t1, ,ta] to denote a formula whose sth top-level
term occurrence 5 &, for 6l 1 € 1+ € n Sub
scquently we use ¢[t}, ,i!] to denote the formula
thet results from replacing the ith top-level term oc-
currence m ¢[t, ,tn) with ¢, forall 1 <: < n
For example, f ¢|f(a), f{a), g(c, )] denotes the [ormula
p(f(a)) A q(f(a), g(c,3)) then Blg(a,b),c, f(z)) denctes

2 Monadic constraint predicates are often referred to as
Boris
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o{g(a, b)) A qlc, (=)

3 The General Instantiation Ordering

The ordunary mstantiation ordering on ordinary formu-
las 18 particularly useful for three reasons Fust, if
#1 > ¢ then the set of ground nstances of ¢; 18 &
superset of the set of ground instances of ¢3 Second,
f ¢y > ¢ then ¥g, = Vo and Iy = 3¢y Thurd,
for atome formulas (atoms), tis second atatement 18 an
¢/ end only +f, that 18, the following three siatementa
are equivalent (1) ¢1 > ¢o, (2) V1 |= Vi, and (3)
J¢é2 |= 3¢ We seek an wstantiation ordering for con-
strauned formulas that has anelogous properties, where
we replace entaslment with Z-entalment and ground 1n-
stances with ground “X-instances”, or ground mstances
under the new ordenng

Definition 1 {E-more general} Let T be o constrant
theory Let ¢1/C) and ¢9/Cy be consirained formulas
and let @ be the free varmables of ¢, Let ¢4 /C; be
¢ vananl of ¢a/Cy thot shares no free varsables uath
# We say thal ¢, /C, 1a T-more general than ¢,/Cy
{unitten ¢ /Cy 2g ¢3/Ca) of and ondy of ¢y 18 of the
form ¢[ty, .ta), ¢4 ts of the form o[t;, .i,] and
CrEe3th=tiA Al,=t,AC
As an example, the constrained formula
controlx{party( spouse( armold)) , x, 1993) /LEGISLATURE(z )
18 D3-more general than the constraiped formula
conirois{democratic, y, 1993) /(v = ua howse)
becalse

¥ = us house g,
3z pariy(spouse (arnold)) = democratic A 2=y A
1993 = 1993 A LEGISLATURE(Z)

For another example, observe that p(f(c, z}) >,
pU.(“a b)} because #Ea 3z _f(C. I) = fla,b) This ex-
ample 1llustrates the dufficulty with ueing a substitution-
based definit)on of instantiation 1 this general setilng
For example, under the standard instantiation order-
ing associated with F-umification p{f(e,b)) 1 oot sn
instance of p(f(c, z)), there exists no substitution that
maps f{c, z) to a term that 18 equal to f(a, b) according
to the equational theory Eg

Like the usual instantiation ordering for formulsa of
FOPC, the >r ordering on constramned formulas 18 not
a partial ordenng bui a guasi-ordering, or preorder, [or
any choice of £ Because >r 18 a quasi-ordenng, if ¢, /C;
>s5 ¢2/C; then every ground mstance of ¢/C; 18 also
a ground wstance of ¢;/C; Thus the >y orderng 18
analogous to the > ordernng on ordinary atoms 1n at least
ope of the three ways we wanied it to be What about
the other two? Theorem 2, which follows, revenls that
the ordering >z for constraned formulas 18 analogous
to the ordening > for ordinary formulas in these ways as
well

Theorem 2 Let ¢,/C) and ¢3/Ca be constraned for-
mulas, and let & be a constramnt theory If ¢ /Cy 2%

$2/Ca then ¥(¢h /C1) x V(:/C) ond 3(¢2/Ca) x
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At /C)) Furthermore, 1f ¢, and ¢ are atoms then the

Jollounng three statements are equrvalent (1) &/C >

%C;é )(a;) V(¢1/C1) Ex V(e /Ca), (3) T(da/Ca)
1

Il we wanted to extend the X-more general ordenng
to include T-inadmissible constraned formulas as well,
all three of the desired properties of the o are re-
tewed if we specify that the Z-madmisable constraned
formulas are the jeast formulas in the ordering In other
words, we retawn the properties f for any constraned
formulas ¢, /C; and ¢9/Ca, f ¢2/Cz 18 T-inedmsaible
then ¢ /Cy 25 2/Cs

4 The Relationship to
Substitution-based Orderings

This section shows that other, established watantiation
ordenngs for various restnicied classes of constrained
formulas and copstraint theories sre equvalent to the
E-more general ordering (given the appropnate restric-
tions) Our analysis 18 based on Theorem 3 and Theo-
rem §, which under specified conditions provide alterna-
tive, substitution-based characterizations of the >g or-
dering Using theee theorems it 18 easy to equate the > ¢
ordenng with vanous establhished orderings For brevity,
we consider only two of the best known orderings

The following theorem gives a substitution-based char-
actenzation of the instantiation ordenng when neither
the constrawnte nor the constraint theory contauns equal-

ity

Theorem 38 Le! ¢, /C, and ¢q/C3 be construmned for
mulas and let T be o construsné Lheory, none of whch
contains the equality prediente Then ¢ /Cy 25 ¢afCa
of ond only « there exmsts a subsbulion @ such that
$10 = ¢ and C3 = (C16)

The following 18 an example of this charactenzation

lovea(z, y)/MAMMAL(zZ) A MAMMAL(Y) 2,
loves(z, mom(z)) /ELEPHANT(z)

To see this conmder any substitution & that maps z to =
and y to mom(z)

Thus characterization of >y 15 in fact the instantiation
ordenng lor a restricted class of equality-free constraned
formulas that Page and Frisch [1992] used in their study
of constrawned generubizaiwn. Thus tlus theorem tell us
tbat the ordenng used by Fage and Frisch 18 a special
case of the orderng defined In thus paper

To see why equality 18 forbidden, conmider an ex-
ample where ¥ = {Vzvy(f(z,y) = flv.,z))} Then
p[f(b,I)) 2 P(f(al b))l but not accordmg to the char-
actenzation Similarly, consider a case where E 18 empty
but equality appears 1n a constrant p(a) >y p(b)/(a =
b), but not according to the characterization

Taking & hunt from the definilion of E-umfication, it
appears that the above examples could be handled if the
characterization in the above theorem were to test not

? All proofa wre omitted from this paper, but appear mn &
longer, unpublished version of this paper The proofs of The-
orems 2, 3 and G are long and involved Theorems 9 and 10
follow strught(orwardly from Thecorems 3 and 6, respectively




for simple equality, but rather for equality according to
the theory £ We now formulate a substitution-based
characterization motivated by this idea, prove that it is
correct under certain conditions, and show by example
that this approach cannot always work The characten
zation allows equality in the const ram t theory, E, though
not in the constrained formulas

We now provide several additional definitions that are
needed The definition of homomorphum between mod-
els, which follows, is standard The definition of initial
model, taking into account the truth values of predicates,
is taken from Goguen and Meseguer [1986]

Defimition 4 (Homomorphism between models)
Let M and M' be models unth domains Dy ond Dy,
respeciwely Then o function i Djyy — Dpap 18 a ho-
momorphism from M to M' of and only of

s for every functwn symbol f of anty n > Q,
MUYy, 1dn)) = LAY (Bldh),  h(dn)) and
o for every predicate symbol p of anty n > 0,
1f [}::]M(dh ,dn) = True then we alse have
[P1 (Ald1). ,h(da)) = True,
where (dy, ,d,) u any n-tuple of indwnduals 1n Dy,

Definition 5 (Initial Model) Let £ be any theory of
first-order logne wnth equality A E-model M 13 an mitial
model of T 1f and only tf there exists a unique homomor-
phism fram M ioc any ather L-model

The reader can confirm that X; has en initial model,
but that neither T, nor 3 do To see that ¥, has no
mitial model observe thai there 15 no homomorphism
m either direction between any T;-model that satisfies
ELEPHANT(jumbo) and falsifies IN-CIRCUS(rumbo) and
any T)-model that falsifies ELEPHANT(jumbo) and satis-
fies IN-CIRCUS (rumbds)

Theorem 6 Let ¥ be o constramnt theory wn Skolem
Normal Form that has an mpal model Let
#la,  1n)/CL and @[y, ,1,]/Ca be constraned for-
mulag, where C; and C; are conpunchions of aloms
Then ¢[t1, ,1a]/C1 2x @[t;, 1,.]/Ca of and only of
there ersts a subsirtution 8 such that Cp =g (C18) and
Cabptf=1,1<1<n

Let's return to an earher example to dlustrate this
characterization Recall the consirant theory I;, and
consider the following pair of constrained formulas

controls{ pariy{ speuse(z)), y, 1993}/ BIGUER(z, marajA
LEGISLATURE (1)

controls(party( z),us-house, 1993)/KENNEDY (2}

In the notation of Theorem &, t; 18 party( spowse(z)), iz 18
1h 3 18 1993, ¢] 18 party(z), t, 18 us-house, and (3 15 1993
In addition, Cy 18 (BIGGER{Z, mara) A LEGISLATURE(p))
and C; 18 KENNEDY(z) Let 6 map z to amold a.nd' ¥
o wi-house Clearly Cs g, (C18), Ca =z, (t20 = 1),
and C, f=x, (238 = t}), these would hold even if Cy were

‘We found it quite surprimng that this last condition
{Ca l=¢ 88 = t{) had to involve Cz even though C1 11 non-
equational An example lustrating the need for this wll be
presented

aunply TRUE The interesting part of this example 18
that &5 |=x, (£18 =¢]), note that both C; and # are
wvolved nontrivially

The lollowing examples show that without the addi-
tional restnctions the characterzation of Theorem 6 18
wmcomplete The exampies are sumular, (o the firsi exam-
ple, the consiraunt theory does not have an 1utial model,
because of the disjunction, and in the second, the con-
straint of one copstrained formula contains disjunction
For the first example, let T be

{BABY(ralph) v BOY(ralph}, Yz¥u(/(z,y) = f(y,=))}
Then

p{f(z, 1))/ (BABY(z) A BOY(1)) >
p(/(raiph, 2))/(2ABY(z) A BOY(2)),

but not nccording to the charactennzation For the second
%:mele, let £ be the theory {V2¥y(f(z,y) = f(y,2))}
en

p(f(z,¥))/(BABY(x) A BOY(y)) 2
p(f{w, z)) /{(BABY{w) V BOY(w}} A BABY(z) A BOY(z})

but pot accordung to the charactenzation
We are now prepared to relaie the >y ordenng to two
estabhished orderings

41 The Instantiation Ordering for Sorted
Logic

As poted in the Section 1, if the predicates 1o a constraint
theory are monadic, the theory 1 called a sori theory In
sorted logic, the constramt theory 1 a sort theory, and
the formulas are sorted formulas A sorted formula s a
constrained formula whose constramnt 15 a conjunction of
atoms built from mopadic constramnt predicates and van-
ebles that appear 1n the head, such that each vanable
occurs &t most once 1 the constraint Because of these
additional restnetions on the constrants of sorted formu-
lns, sorted formulas are often represented 1n an alterna-
tive, mn-hne ayntax, 1 which the constraints are attached
directly to the vanables Thus, for example, the sorted
formula eats(z,y)/ELEPHANT(Z) A VEGETABLE(y) may
be expressed as eats{z ELEPHANT,y VEGETABLE)

Definition 7 (In-line Representation) Let

¢/ (T (1) A A Ta(Za)) be a sorted formuls Then a
s the 1n-line representation of ¢/C sf and only 1f o re-
sults from replacyng every occurrence of the varable z,
m ¢ unth an accurrence of the soried vanable z, 7, for
all1<i1<n

The additional restrictions on sorted formulas make
possible anciher defiution of an instantiation ordering
on sorted formulas {called S-more general, or > 5, m Def-
mition B), 1n which substitutions are ceniral, this 13 the
established mstantiation ordenng for sorted formulas
Theorem 9 states that Lhie established ordenng on sorted
formulas 18 the same s the >5; ordenng, provided a small
additional assumption 18 made The assumption 18 that
every sort conlains at least one individual, and 1t 18 made
for the established ordering anyway [Frisch, 1991] The
definiticn of the estabhahed ordering for sorted formulas,
given below, 18 based on the alternative syntax for sorted
formulas
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Definition 8 (S-more general) Let S be a sort the.
ory such that for every sort 1 we have S = 3z 7(z)
(according Lo S every sort contarna some mndindual) A
substritution & 1 well-sorted with respect to S of and only
tf for any varable z v, 70 = ! where S = Vr(t) A
sorted formula a; 18 S-more generad than another, aa,
of and only 18 = ay for some subsitubon 0 that
well-sorled unth respect to S If a; 13 S-more general
than aq, we wrile a; > 5 ag

It 18 worth noting that because we require that S =
Jdz 7(x) lor each sort r, every sorted formula 15 I-
admwsaible

Theorem 9 Let ay and ag be the m-hne represenia-
tions of sorted formulas ¢, /C, and ¢2/Ca, respectiely
Let 5 =T be a sort theory such that for every sort T,
S | dr 7(z) Then ¢/C1 2x ¢2/Ca of and ondy \f
ay 25 g

4 2 E-Unification

E-unification 1 a form of unification that takes wnto ac-
count a set of equations {universally closed atomuc for-
mulas formed with the equal.lta' predicate symbol), E®
Following standard deflmtions,® d s and s* are terms, we
say that s =g &' of and only of the pair {s 5') 18 a member
of the finest congruence on the term algebra contmmng
all pairs (&4 t'd), where V(t = t') 18 2 member of F and #
18 @ substitution We say that # 18 an E-unifijer of s and ¢
i end only f 88 =g 18 Asssciated with thus rotron of B-
ucifier, 1s an instantiation ordering over the set of terms
s > g t If and only i 38 =g ¢ for some eubstitution § We
can strasghtforwardly extend these standard definitiong
to generale an ordering over formulas ¢[t;, ,ix] 2 ¥
if and only il ¥ 15 of the form ¢[t], ,t] and for some
8§, =gt lorevery 1 <1< n

Observe that t =z ' fand oply Jf E e =1 Also
observe that any set of equations 18 1 Skolem Normal
Form and has an 1nitial model From these obaervations
and Theorem 6, the correspondence between <z and <p
follows unmediately

Theorem 10 Let E = ¥ be a set of equations and ¢ and
Y be formulas Then ¢ > g v of and only of ¢/TRUE >y
¥/TRUE

5 Applications

The introduction to this paper mentioned many appli-
cations of the instantiation ordenngs for ordinary first-
order logic, for logic with built-in equations! theories
and for sorted logic This section extends the discus-
sion to applications that employ the generalized order
ings characterized by Definition 1 and by Theorems 3
and 6 The application areas discussed are (1) induc-
tion and inductive logic programming, (2) deduction and
logic programming, and (3) knowledge-base vivification

6Jaffar, Lanez, and Maher [Jaffar et ai , 1986] relax this
reatnctioD to allow E to be any set of definite clauses whose
only predicate is the equality predicate

°For example, see the survey by Siekmann [1989]
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Inductive Logic Programming HP focuses on
inductive learning using a first-order representation,
specifically a definite clause representation [Muggleton,
1992] At the foundation of ILP is the work of Plotkin
[1970] and Reynolds [1970] on the computation of least
upper bounds for ordinary logic This foundational work
has been extended by Fnsch and Page to cover sorted
logic (based on Theorem 9) [Pnech and Page, 1990],
and then further to constraint logic (using a special case
of the characterizations of Theorem 3 and Theorem 6)
[Page and Fnsch, 1992] The extension to constraint
logic can also be viewed as an extension of Buntine's
[1986] definition of generalized subsumption.

One active area of ILP research over the last four
years has been the study of PAC-leamability of restricted
classes of definite clause concepts, relative to various
classes of definite clause background theories, this work
is summarized in [Cohen and Page, 1995] The earliest
results (both positive and negative) within this area ac-
tually were proven using the aforementioned extensions
of the work of Plotkin and Reynolds based on special
cases of the ordenngs developed in this paper [Page and
Frisch, 1992] Crucial to these results are the semantic
properties of these ordenngs, as provided in the theo-
rems of this paper

These early results on learnabuity in ILP have been
extended significantly to yield a positive result that ap-
plies to structural domains, such as molecular biology or
blocks world problem solving [Page, 1993] The foun-
dation of this extended result is the characterization
of instantiation in Theorem 6, which allows equality in
the background theory The extended result general-
izes Haussler's [1989] learnabihty result for structural do-
mains with subset queries in a number of ways, the most
significant of which are (1) the ability to learn disjunc-
tive concepts, and (2) the use of much richer background
theories (for example, background theories that are not
restricted to use only unary predicates) Furthermore,
it can be shown that this result subsumes most of the
positive PAC-learnability results for ILP (though not the
positive PAC-preditction results) ’

Deductive Systems  Constraint logic has been used
as the basis of constraint logic programming [Jaffar and
Lassez, 1987, Hohfeld and Smolka, 1988] and in gener-
alizations of certain deductive systems [Burckert, 1991,
Friech, 1994] Such systems typically employ a resolu
tion inference rule that generalizes the ordinary rule of
resolution Let us first observe how the ordinary rule
of resolution is based on the ordinary instantiation or-
dering, and then consider how this inference rule can be
generalized to constraint logic by basing it on our instan-
tiation ordering for constraint logic

The ordinary rule of resolution operates by tak-
ing most-general instances of the two parent clauses
such that the two literals being resolved upon become
complements (that is, identical but opposite m sign)

7For PAC-predictability as opposed to PAC-learnability,
the final hypothesis need not have any particular form (e g,
a logic program or a propositional DNF formula)



This is accomphshed by computing the mosi-general
umfler and applying 1t te the clauses bewng resolved
This 1dea can be generalized to obtain a resolution
rule for constrawned clauses To resolve constreuned
clauses P(d1, ,tn)V ¢/C and -P(2], ,t)v ¢'/C
we need to find the most geperal common wstance of
P(t1, ,ta)/C and -P(t], ,#,)/C’ Usmng Defin-
tion 11t can be confirmed that P(t;, ,¢,)/C (or, equiv
alently, P(¢}, ,2,)/C), where C18¢; =, A Aty =
t;, ACAC’, 18 a most-general common 1nstance, provided
C 13 L-satsfiable Consequently, the desired resolvent 1a
pv#'/C

In some simple constraint logics, such as some sorted
logics, a most general common instance may not exist, in
which case the above re9olutioD rule must generate many
resolvents to take account of the multiple maximally-
general, but incomparable, common instances The
longer version of this paper identifies conditions surfi-
cient for the existence of greatest lower bounds

The completeness of resolution and similar inference
systems is usually proved by a Herbrand Theorem, which
relates the satisfiability of non-ground clauses to the
satisfiability of their ground instances, and a Lifting
Theorem, which relates non-ground derivations to then-
ground instances In a series of papers, Frisch has
shown how, under certain conditions, the proofs of these
theorems can be systematically transformed to obtain
proofs of the corresponding theorems for inference sys-
tems based on instantiation with built-in theories These
results have been formulated for sorted logic based on
the characterization of Theorem 9 [Frisch, 1991], for
modal logic based on the characterization of Theorem 3
[Frisch and Scherl, 1991], and for arbitrary constraint
logic based on a characterization equivalent to that of
Definition 1 [Frisch, 1994]

Though not immediately obvious, the preceding dis-
cussion applies equally to many systems for automated
deduction in modal logic As is well-known, modal logic
often can be viewed as implicit discourse about possible
worlds and, therefore, can be translated to non-modal
logic that explicitly discusses possible worlds  Frisch
and Scherl [1991] show that for many modal logics the
sentences resulting from this translation can be trans-
formed into constrainted formulas in which the accessi-
bility conditions among possible worlds appear solely in
the constraints From this point of view, the path uni-
fication algorithms employed by many modal deduction
systems [Ohlbach, 1988, Jackson and Reichgelt, 1989,
Wallen, 1990] can be seen to be solvere for such con-
straints In other words, these path unification algo-
rithms compute the greatest lower bounds m the instan-
tiation ordering

Knowledge Base Viviflcation The premise of viv-
Ification is that much of the complexity of automated
deduction arises from incomplete knowledge m knowl-
edge bases (KBs), m particular from disjunctions leading
to reasoning by cases [Borgida and Etherington, 1989,
Ethenngton et of, 1989, Levesque, 1988] To use an ex-
ample from Levesque [1988], suppose our KB includes
agefjreo\7\) V agefJrea\72) Many of the interesting con-

sequences of thus fact follow from Fred being in lus early
seventies or, even more generally, belng a semor citizen
If we know that 71 and 72 belong to the category low-
seventies, we might replace age(fred,71) Vv age(fred,72)
with 3z (ege(fred, ) /LOW-SEVENTIES(x)) Of course,
examples that mvolve binary predicates in the back-
ground information (rather than just categories such as
low-seventies) or function symbols require more care

Based on the characterization of mstantiation w The-
orem 3, an eflicent vivification algonthm can be de-
fined that handles higher-arity predicates and [unction-
symbols [Page, 1993) As & aimple example of the algo-
rnthm's behavior, suppoae our KB contains Lthe following
sentence

inhimidates(son(sumbo), s0n(clyde)) Vv
mbimdates(son{fred} son(joe))

Suppose our knowledge base also tells us that Jumbo 15
bigger then Clyde, Jumbo's son w bigger than Clyde's
son, Fred is btg%er than Joe, and Fred's son 18 bigger
than Joe's son Then the vivification algonthm replaces
the preceding sentence with the following exstentially-
closed constramned formule

323y (ntwmrdates( son(x), son(y))/
BIGGER(Z, y) A BIGGER{8on(z), son(y)))

While some information 1s lost i the replacement, much
of the useful information 18 retamned and the disjunction

1 alirannotend

6 Conclusion

This paper has presented a general instantiation order-
ing for constrained formulas to which the established in-
stantiation orderings for various restricted classes of con-
strained formulas are equivalent This ordering allows us
to prove, at once, semantic properties of all these instan-
tiation orderngs The utility of building theories into
instantiation has been established by a long history of
applications in automated deduction and a short history
of applications m automated induction We anticipate
that instantiation with built-in theories will continue its
key role in deductive reasoning and will play an increas-
ing role in non-deductive reasoning
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