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ABSTRACT
Blueprint is a declarative domain-specific language for document
extraction. Users describe document layout using spatial, textual, se-
mantic, and numerical fuzzy constraints, and the language runtime
extracts the field-value mappings that best satisfy the constraints
in a given document.

We used Blueprint to develop several document extraction so-
lutions in a commercial setting. This approach to the extraction
problem proved powerful. Concise Blueprint programs were able
to generate good accuracy on a broad set of use cases. However, a
major goal of our work was to build a system that non-experts, and
in particular non-engineers, could use effectively, and we found that
writing declarative fuzzy constraint-based extraction programs was
not intuitive for many users: a large up-front learning investment
was required to be effective, and debugging was often challenging.

To address these issues, we developed a no-code IDE for Blue-
print, called Studio, as well as program synthesis functionality for
automatically generating Blueprint programs from training data,
which could be created by labeling document samples in our IDE.
Overall, the IDE significantly improved the Blueprint development
experience and the results users were able to achieve.

In this paper, we discuss the design, implementation, and de-
ployment of Blueprint and Studio. We compare our system with a
state-of-the-art deep-learning based extraction tool and show that
our system can achieve comparable accuracy results, with compa-
rable development time, for appropriately-chosen use cases, while
providing better interpretability and debuggability.
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Figure 1: A sample paystub.

1 INTRODUCTION
Document extraction is the process of retrieving data from doc-
uments, including the data’s semantics. For us, a document is a
digital version (PDF, DOCX, TIFF, etc.) of what would tradition-
ally be a normal paper document (a driver’s license, a tax form,
etc.). Documents may be digitized through scanning, or may be
created directly in digital form, e.g., by typing a Word document.
For example, given the paystub shown in Figure 1, a bank may wish
to extract the gross salary data (highlighted in red) and the pay
period begin and end dates (highlighted in green), in the context of
processing a loan application.

As businesses move to automate more of their operations, the
ingestion of unstructured or semi-structured documents often
presents as a major bottleneck, with manual data entry steps per-
formed by humans at high operational cost still common in many
critical business processes. In addition, many businesses have valu-
able data trapped in large stores of documents – financial reports,
expenditure receipts, contracts, etc. – for which full manual extrac-
tion would be cost-prohibitive.

Document extraction today typically begins with optical charac-
ter recognition (OCR), which over the last few years has become
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commoditized and widely-used in industry. OCR models ingest doc-
uments in image form, and return the documents’ text fragments
in string form, along with bounding rectangles identifying every
fragment’s origin in the document. After OCR, it is generally neces-
sary to use the document’s structure – spatial, textual, semantic, or
numerical – to extract the document’s full semantics. In this paper,
we describe Blueprint, a declarative domain-specific language that
works on OCR output and produces extractions.

In the course of this work, a primary focus area for us was
building tools for document extraction that non-experts, and ideally
non-engineers, could use effectively, and picking abstractions that
would enable us to build those tools.

1.1 Outline
We begin by introducing our design principles in Section 2. Our
design is informed by challenges we experienced writing extraction
programs in a general purpose programming language (GPPL),
which we also discuss in some detail.

In Section 3, we compare our approach to related work.
In Section 4, we describe the Blueprint language. The major-

ity of a Blueprint program consists of declarations of constraints,
essentially statements of fact about a document’s spatial layout,
logical or numerical relationships among the document’s parts,
and so on. Blueprint provides a library of constraints which can
be used to describe basic document structure (e.g., left_aligned,
greater_than, etc.). These may be combined with logical connec-
tives to express more complex constraints. Blueprint also provides
good extensibility: for example, it is easy for users to define custom
constraints to be used as part of the language.

In Section 5, we sketch the Blueprint runtime implementation.
In Section 6, we discuss some challenges users encountered while

working with Blueprint as a programming language, and steps we
took to resolve these challenges. In particular, we built a no-code
graphical IDE called Studio, which includes program synthesis
functionality and intuitive debugging capabilities.

In Section 7, we provide some user feedback, and discuss lessons
we learned developing and deploying Blueprint and Studio.

In Section 8, we evaluate Blueprint using the MIDV-2020
dataset [6]. We first show that the performance and accuracy of
automatically-synthesized Blueprint programs is similar to that
of hand-written Blueprint programs. Next, we show that on this
dataset, Blueprint is able to achieve accuracy results comparable to
a state-of-the-art deep-learning-based document extraction system,
LayoutLM [34], while remaining interpretable and debuggable.

We discuss future work in Section 9 and conclude in Section 10.
The contributions of this paper are summarized as follows:

• We describe Blueprint, a novel constraint-based document
extraction language and runtime.

• We describe Studio, a no-code IDE for synthesizing, editing,
testing, and debugging Blueprint programs.

• The source code for Blueprint and Studio is available at [1].

2 BACKGROUND AND MOTIVATION
This work began while the authors were at a company building
document extraction tools and solutions for customers. Initially,

our solutions were implemented as heuristics-based programs writ-
ten using a general-purpose programming language (GPPL). This
approach was adequate for some use cases, but presented many
challenges. We begin this section by criticizing the GPPL approach,
and proceed to outline the Blueprint design principles that came
out of this experience.

2.1 Procedural Extraction Logic Using a GPPL
We begin by defining two key terms, field and extraction. In
document processing, a field is the name of a piece of data
that the user wishes to extract. For example, when working
with passports, some examples of fields might be 'issue_date'
and 'last_name'. An extraction for some sample document
is a field-to-value mapping. For example, an extraction for
a passport might look like {'issue_date': "Jan 2, 2003",
'last_name': "Smith", ...}.

A document class is a collection of documents having some shared
characteristic. Examples of document classes are “US passports”,
“global identity documents” (which includes US passports), and
“restaurant receipts”. The goal of an extraction program is to pro-
duce extractions for some document class. For example, a passport
extraction program should accept an image of a passport as input,
and return an extraction. For us, the extraction process always
starts with OCR, so all the extraction programs we discuss accept
OCR output – words and their bounding boxes – as input.

Extraction programs written in GPPLs, even for relatively sim-
ple document types, can be surprisingly complex. This is because
they require a lot of branching logic, both low-level (e.g., regex
tolerances) and high-level (e.g., choosing between two distinct lay-
outs for part of a document, or combining layouts), and fallback
error handling. The level of complexity can be such that writing
production-quality extraction programs in an industrial setting us-
ing a GPPL requires relatively highly-skilled and expensive software
engineers. We walk through some specific challenges.

Field extraction order. Extractions generally involve multiple in-
terrelated fields in a document. Often there are multiple reasonable-
looking choices of value for each of the fields individually, and
in order to get the right overall extraction we need to leverage
the interrelationships among the fields. The complete search space
is combinatorial in size and too big to search exhaustively in a
reasonable amount of time.

Therefore, GPPL extraction programs generally build up an ex-
traction incrementally, adding one field at a time and backtrack-
ing when they encounter an error condition. The order in which
fields are extracted is important for extraction quality and run-
time [30, 31], and in some cases there is no natural or obvious
order in which to proceed. Expressing this multiple-options-and-
backtracking logic in GPPL code becomes quite verbose and tedious.
If developers do not design their programs from the beginning to
gracefully support error fall-back between distant parts of their
programs, it can be difficult to add this capability later. We discuss
this further in Section 5.2.

Rank-ordering extractions by quality. It often becomes important
to have a way of comparing the quality of two candidate extractions.
This comes up especially when building an extraction program for
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a class of document which comes in one of several layouts. The
natural thing to do is to design a heuristic scoring system to evaluate
the quality of an extraction numerically, and indeed we observed
developers doing this in the course of writing extraction programs
using a GPPL, multiple times. This requires up-front design to
integrate well into a large, complex extraction program, and can
also be tedious.

We saw that developers were solving the field-ordering and
extraction-rank-ordering subproblems again and again, and decided
that an extraction framework having the right set of abstractions
could lift those burdens from developers.

Amenability to automation. An extraction program automates
the process of extracting data from a particular kind of document,
but the holy grail of extraction automation is automating the gener-
ation of the extraction programs themselves. This seems natural in
the context of the document extraction problem space: human la-
belers can generate training data by annotating sample documents,
which can then be used to generate extraction programs, or to train
machine learning models. Unfortunately, due to the nature of pro-
cedural programming, automatically generating GPPL extraction
programs from training data is hard.

2.2 Blueprint Language Design Principles
Declarative interface. We decided that it was important for the

user interface to be declarative rather than procedural. In other
words, rather than asking users to say something like, “find some
label A, and then find some value B in relation to A by following a
procedure C,” we ask user to write expressions of the form, “the
document contains a label A and a value B, and the relationship
between them is C.”

A declarative interface simplifies several of our other goals, such
as a unified scoring system, reduced verbosity, and amenability to
automation. In Blueprint, the bulk of user code is the specification of
constraints, which are essentially declarations of facts about the doc-
uments under consideration. For example, a user might say some-
thing like left_aligned('date_of_birth', 'first_name') to
indicate that in their document class, the date of birth and the first
name fields happen to be left-aligned.

Choice of scale. We needed to decide whether we would ask our
users to think at the level of pixels, individual characters, whole
words, paragraphs, or some other scale. In the context of our system,
it made the most sense to operate at the word/sentence scale. We
accepted that this would mean a loss of flexibility at the margins,
where it might sometimes be useful to work at a lower level (e.g.,
to correct character-level OCR errors), and decided that errors of
that type could best be dealt with in pre- or post-processing.

Built-in fuzziness and scoring. The job of an extraction program
is to discriminate among different candidate extractions for a par-
ticular document and pick the best one. Procedural programs do
this implicitly. We made this explicit in our system via scoring
and ranking of candidate extractions. Given a Blueprint program
consisting essentially of a collection of constraints which are fuzzy
by design, for each candidate extraction (a possible output), we
compute a so-called extraction score which represents the degree
to which the extraction satisfies the constraints specified in the

program. The fuzziness is particularly important because real-life
documents have noise. For example, the Tesseract OCR engine,
when run on 100 upright images of Azerbaijani passports in the
MIDV-2020 dataset [6], reads the “gender” labels in these pass-
ports in five different ways: "Cinsi/Sex" (the correct reading),
"(insi/5ex", "(insi/$ex", "Cinsi /5ex", and "Cinsi/5ex". In
our extraction program, we will want to include the constraint
text_equals("Cinsi/Sex")('gender_label'), but if this con-
straint is not checked allowing some fuzziness or error tolerance, it
will result in extraction failing on many samples.

Explainability and debuggability. Wewanted it to be the case that
when an extraction program fails to generate the correct result for
some document, it is straightforward to inspect the output to figure
out why. This “output” can include the internal state of the runtime,
with the caveat that this internal state should be interpretable, or
easily made interpretable through tooling. For a counterexample,
one can inspect the internal state of a deep-learning model during
debugging, but this internal state can be very difficult to interpret –
we wanted to avoid this situation.

Amenability to automation. We wanted our system to be usable
by non-experts, ideally non-engineers, so we must auto-generate
as much extraction logic as possible from labeled training data. We
designed our system with this in mind.

3 RELATEDWORK
Rule-based extraction. Many important business problems have

been solved using rule-based approaches [5, 8, 13, 30, 31]. In the
document-processing space, various extraction systems [14, 15, 24,
26, 32] were built before the advent of modern OCR engines. These
systems worked at the pixel level, required extensive manual effort
to build and maintain, and failed to generalize to unexpected sce-
narios, for example to documents with colorful backgrounds. To
the best of our knowledge, Blueprint is the first rule-based docu-
ment extraction system that works at level of OCR output, i.e., at
the word-and-sentence level. Blueprint’s layout-oriented rules also
operate at this level of abstraction (as opposed to the pixel level),
facilitating extraction logic that maps more directly to document
structure as perceived by humans. Finally, Blueprint programs can
be synthesized, reducing the required manual labor. Previous re-
search [3] has shown that auto-generating information extraction
rules can significantly reduce manual effort. This was true in our
experience as well and led to drastic improvements in usability.

Similar to Blueprint, many rule-based systems have used the
page structure, as perceived by humans, such as for extracting
information fromwebpages [7, 12, 20, 21]. Some of these systems [7,
20, 25, 29] work on the webpage’s DOM trees that are not available
in document images. More generally, these systems do not deal with
noise originating from OCR engines and have differing usage goals
than Blueprint. Hence, these systems typically employ strict rules
whereas Blueprint is built using fuzzy rules. Further, these systems
usually only interface with expert engineers writing extraction
logic in the context of a search engine or a knowledge base trying
to understand the webpage. Whereas, we purposefully designed a
no-code IDE to support interactively synthesizing, editing, testing,
and debugging programs for use by non-experts.
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Figure 2: Another sample paystub with a different layout.

Deep-learning based document extraction. There are many re-
searchers tackling document extraction by building sophisticated
deep-learningmodels [22, 23, 34]. LayoutLM [34] extends BERT [11]
by adding bounding box position and image embeddings, enabling
extraction models to learn document layout. Majumder, et al., [23]
apply representation learning to learn the type representations of
fields to be extracted, e.g., learning that invoice_date is often a
date (a formal class or type), and to learn neighborhood relation-
ships.

Deep-learning models are tricky to understand, debug, and main-
tain in industry settings, an observation also made in past re-
search [9]. When a model is observed generating incorrect output,
it remains very hard to understand why the incorrect output was
generated, and even harder to fix the error. Further, deep-learning
models often require powerful GPUs to train and run, and have large
memory footprints. Blueprint programs are inherently explainable
and comparatively cheap to run.

However, deep-learning models can be very effective for extrac-
tion from long-tail document types: classes of document where the
format varies widely, making rule- or template-based extraction
difficult. US paystubs are one example of a long-tail document type.
Figures 1 and 2 show two sample paystubs. These two documents
contain the same kind of information – employer name, monthly
salary, etc. – but their layouts are very different. Using Studio, our
approach to creating an extraction program that works on both of
these samples will be to annotate these layouts separately. Blue-
print will test each given layout against each document sample,
and simply use whichever layout works best in each case. This
works well for classes of document having tens or even sometimes
hundreds of layouts, but breaks down when the number of layouts
grows beyond a certain point.

Synthesizing constraint programs. A major advantage constraint
programs have over ML models is interpretability. However, as
discussed in previous research [4, 17], when constraint programs
are synthesized, interpretability often vanishes because the number
of generated constraints may be very large and as a result, hard for
humans to reason about.

1 run(input_doc ,
2 extract(
3 is_dollar_amount('period_gross_pay '),
4 is_dollar_amount('ytd_gross_pay '),
5 text_equals("Gross Pay")('gross_pay_label '),
6 text_equals("Current")('period_label '),
7 text_equals("YTD")('ytd_label '),
8 right_aligned('gross_pay_label ', 'period_gross_pay ',
9 'ytd_gross_pay '),
10 bottom_aligned('period_label ', 'period_gross_pay '),
11 bottom_aligned('ytd_label ', 'ytd_gross_pay ')))

Listing 1: An example Blueprint program.

1 { 'gross_pay_label ': "Gross Pay",
2 'period_gross_pay ': "$625 .00",
3 'period_label ': "Current",
4 'ytd_gross_pay ': "$1250 .00",
5 'ytd_label ': "YTD" }

Listing 2: An example Blueprint extraction. Note that
extraction values technically are not just strings, but also
include bounding-box information.

Blueprint programs can be automatically synthesized, see Sec-
tion 6.1. In alignment with the previous research, we found that
indeed, synthesized Blueprint programs tend to be larger than
hand-written programs by a factor of about 5. However, in our
deployments, we observed that operators are rarely interested in
fully understanding extraction programs. Interpretability is impor-
tant primarily during debugging, where it is enough to determine
which particular constraints failed on a particular document, and
how they should be adjusted to fix the program. Our system allows
operators to do this easily and is described in Section 6.

Disjunctive programs. Recent research [18] improves deep-
learning based document extraction by verifying model outputs
with a synthesized disjunctive program. A disjunctive program
consists of a set of procedural programs, and a set of constraints
for the desired output [28]. Blueprint provides a more-fleshed-out
DSL for expressing complex document extraction logic, and con-
tains a larger library of constraints, such as spatial and algebraic
constraints, not present in [18].

4 THE BLUEPRINT LANGUAGE
Blueprint is a DSL, inner to Python 3, for document extraction.

When writing Blueprint programs, users describe their documents
by stating facts about them. These facts may be very general, but
often describe spatial, textual, semantic, or numerical relationships
among pieces of the document.

Suppose that given the document shown in Figure 2, we wish to
extract the 'period_gross_pay' and the 'ytd_gross_pay', high-
lighted by a red box for illustration. Listing 1 shows the body of a
possible Blueprint program solving this task. Running this program
on this document results in the extraction shown in Listing 2.

More formally, a Blueprint program consists of a collection of
constraints joined by logical connectives and other composition
mechanisms. The goal of a Blueprint program is, given an input
document, to produce an extraction for that document, satisfying
the constraints and other logic of the program. An extraction is a
dictionary or mapping from the fields of the program that produced
it to entities in the input document.
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Table 1: Examples of Blueprint constraints. Each entry is a single constraint.

Example Meaning
Textual, semantic, and numerical constraints
text_equals("Gross Pay")('gross_pay_label ') The text of the 'gross_pay_label' is roughly equal to "Gross Pay", scored by edit distance.
is_date('pay_date ') The 'pay_date' is a date. Scored based on similarity to hard-coded patterns like "JAN-01-01",

"01-JAN-01", "01-01-01", "January 1, 2001".
is_dollar_amount('gross_pay ') The 'gross_pay' is a dollar amount. Scored based on multiple heuristics: whether the candi-

date’s text consists of only digits and "$", ".", etc.
sum_is_approximately (15, [1, 2, -1])

('regular ', 'overtime ', 'gross ')

Checks an approximate weighted sum: informally, 15 ≈ 'regular' + 2 * 'overtime' -
'gross'. Scored based on the difference between the target and the observed sum.

sum_is_at_least (200, [1, 1.5])

('wages ', 'overtime ')

Checks an inequality with a weighted sum: informally, 200 <= 1 * 'wages' + 1.5 *
'overtime'. Scores 1 if the inequality is satisfied, else 0. This is a pass-fail constraint.

Spatial constraints
left_aligned('date_of_birth ', 'id_number ') The 'date_of_birth' and 'id_number' are left-aligned. Scored based on on the distance

between the x coordinates of the left sides of the candidates’ bounding boxes.
top_down('period_label ', 'period_pay ') The 'period_label' appears above the 'period_pay' in the document, as it might in a tabular

layout, for example. Scored based on the y coordinates of the bottom edge of the bounding box
of 'period_label' and the top edge of the bounding box of 'period_pay'.

nothing_between_horizontally

('pay_period_label ', 'period_begin_date ')

The 'pay_period_label' and 'period_begin_date' do not have anything occluding the
space between them, looking in the horizontal direction. For example, a dense block of text
placed between them would result in a constraint score near 0.

is_in_page_region ((0.5 , 1), (0, 0.5))

('pay_date_label ')

The 'pay_date_label' should appear in the upper-right quadrant of the page. Scored based
on the portion of the candidate’s bounding box which lies in the specified region.

is_entire_phrase('gross_pay_label ') The 'gross_pay_label' consists of all of the text in a cluster. For example, an entire multiword
table column header should satisfy this constraint, but a single word picked out of the same
header should not. Clustering is based on variance in word height, distance between words, etc.

Logical connectives and modifiers
any_holds(text_equals("Gross pay"),

text_equals("Total pay"))

('gross_pay_label ')

Disjunction: the text of the 'gross_pay_label'matches either "Gross pay" or "Total pay".
The score is the maximum of the scores of the subconstraints.

all_hold(text_equals("Current"),

is_entire_phrase)

('current_label ')

Conjunction: the text of the 'current_label'matches "Current", and it is not part of a larger
cluster of text. The score is the product of the scores of the subconstraints.

negate(is_in_page_region ((0, 0.5), (0.5, 1)))

('date_of_birth ')

The 'date_of_birth' must not be in the lower-left-hand quadrant of the page. The score is 1
minus the subconstraint score.

any_holds(text_equals("Mailing address"),

penalize(text_equals("Address")))

('mailing_address_label ')

The 'mailing_address_label' may have text equal to either "Mailing address" or
"Address", but matching with "Address" is penalized. The penalize modifier linearly scales
the score of its subconstraint [0, 1] ↦→ [0, 0.7]. Another modifier non_fatal linearly scales
the score of its subconstraint [0, 1] ↦→ [0.4, 1].

For example, the fields of the program in Listing 1 are
'period_gross_pay', 'ytd_gross_pay', 'gross_pay_label',
'period_label', and 'ytd_label'. If E is the extraction in List-
ing 2, then E('period_gross_pay') = "$625.00", etc.

An entity is defined to be a piece of the document that can appear
as a value in an extraction. We discuss entities further in Section 5.1.
For now, we should think of the entities as (1) the individual words
in the document, and (2) clusters of words, e.g., "PAY PERIOD". We
call {E(f) | f ∈ Fields(E)} the extracted values of E.

The main primitives of the Blueprint language are fields, enti-
ties, extractions, predicates, constraints, and nodes. We have just
described what fields, entities, and extractions are, and will de-
scribe predicates, constraints and nodes in the rest of this section.
Throughout, it will be helpful to refer to Table 1 for examples.

4.1 Constraints
Blueprint programs consist mostly of constraints. A constraint
is a declaration of fact about a document, and consists of a
predicate, which is the verb portion, and one or more fields
that the predicate applies to. For example, the constraint

is_date('date_of_birth') applies the predicate is_date to the
field 'date_of_birth'.

The syntax to define a constraint is predicate_name(field1,
field2, ...). Some predicates, e.g., text_equals and
is_in_page_region, accept args – for these, the syntax is
predicate_name(arg1, arg2, ...)(field1, field2, ...).

Constraint scoring. We define a notion of constraint score, which
depends on (1) a constraint and (2) an extraction, andmeasures how-
well the extraction satisfies the constraint. A constraint score is a
number between 0 and 1, and how exactly it is calculated depends
on the predicate used to define the constraint – see Table 1.

As an example, if C = bottom_aligned('last_name',
'first_name'), and E is an extraction with values for
'last_name' and 'first_name', then ConstraintScore(C, E)
is a number in [0, 1], which is computed by examining the
bottom edges of the bounding boxes of E('first_name') and
E('last_name') and measuring their alignment.

Constraint composability. Blueprint ships with a library of basic
predicates. It also provides the logical connectives all_hold and
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any_holds to form conjunctions and disjunctions of predicates,
respectively. In addition, we provide the modifiers non_fatal and
penalize for finer-grained control over constraint scoring. Again,
refer to Table 1 for examples.

4.2 Simple Fixed-layout Extraction
For a document type with just a single, fixed layout, a Blueprint
solution can consist of essentially just a list of constraints describing
the document layout. Listing 1 is such a program. In this section we
deconstruct this program in slightly more detail. The only pieces
of this program, besides the constraints, are (1) the extract node
on line 2, and (2) the run(input_doc, ...) call on line 1.

extract nodes. We can think of an extract node as essentially
just a list of constraints. It is called a node because as we discuss
in the next section, Blueprint allows users to model hierarchical
extraction logic in a tree, and extract is one of the node types of
a Blueprint extraction tree.

When an extract node is given an input document, the node
returns a collection of extractions for that document which satisfy
the node’s constraints – a collection because there may be more
than one extraction that works, or zero. The extractions’ fields
will be the same as the union of the fields of the extract node’s
constraints. For example, compare the fields in Listings 1 and 2.
If an extract node cannot find an extraction having all of these
fields, and satisfying all of the constraints (except those wrapped
in non_fatal), it will return a null extraction. It will never return
“partial” extractions.

Extraction scoring. We need a way of comparing different extrac-
tions on the metric of how-well they satisfy the constraint logic of
a Blueprint program. To do this, we designed a method of scoring
extractions. We wanted a scoring method that has the properties
that (1) a partial or total failure of a constraint is reflected in the
score of every field participating in that constraint, and that (2)
scoring weighs the fields additively. We found that the following
heuristic approach worked well in practice:

Suppose that N is an extract node, that E is an extraction produced
by N, and that f is a field in E. Then

FieldScore(f, E, N) =
∏

C∈Constraints(N),
where f∈Fields(C)

ConstraintScore(C, E), and

ExtractionScore(E, N) = Average
f∈Fields(E)

FieldScore(f, E, N) .

The run function. Lines 2–11 of Listing 1 define an extract node.
The run call on line 1 generates entities for this input_doc (see
Section 5.1), passes the entities to this extract node, and returns
the highest-scoring extraction that is returned by the node. Every
Blueprint program looks like run(input_doc, node). We discuss
execution more in Section 5.

4.3 Hierarchical and Variable Document
Layouts

It can be useful to extract different portions of a document sepa-
rately and combine the results, or to express several alternative
approaches for extracting a particular part of a document due to
variations in format. For example, perhaps we wish to extract both

Figure 3: Blueprint extraction tree.

the green- and red-highlighted portions of the sample in Figure 2 –
the layouts of these two parts of the document are unrelated, so we
would like to express their extraction logics separately if we can,
for reasons of modularity and separation of concerns.

To support these capabilities, Blueprint allows users to model
extraction logic in a tree. The three main node types of a Blueprint
extraction tree are (1) extract, for expressing local, self-contained
document layout or structure, (2) pick_best, for handling variabil-
ity in document layouts, and (3) combine, which in effect allows
users to express extraction logic for different parts of their document
separately. We have just described extract nodes in Section 4.2;
we now move on to the other two node types.

Variable document layouts. The pick_best node type
is used to express that there are multiple, different
ways that part of a document could be extracted, de-
pending on layout format or other factors. For example,
suppose that we define gross_pay_node_2 = extract(
⟨constraints from Listing 1 which correspond to Figure 2⟩), and
gross_pay_node_1 to be another extract node consisting of
the constraints for extracting the red-highlighted portion of the
paystub in Figure 1, which has the same fields but in a different for-
mat. Then pick_best(gross_pay_node_1, gross_pay_node_2)
will be a Blueprint node for extracting gross pay values which will
work on both of our paystub samples.

More formally, the node pick_best(N1, N2, ...)multiplexes
the extractions returned by N1, those returned by N2, etc., into a
single collection, sorted roughly by extraction score. Typically the
Ni will have the same or largely-overlapping sets of fields.

Hierarchical layouts. The combine node type is used to combine
extraction logic for two different parts of a document. For example,
suppose we define dates_node to be an extract node which has
the appropriate constraints to extract the dates highlighted in green
in Figures 1 and 2 (noting that the labels and layout are the same in
both documents). Then we may put all of the above building blocks
together into an extraction program that extracts both the red- and
green-highlighted portions of the two sample paystubs as shown
in Listing 3. The resulting tree structure can be seen in Figure 3.

In general combine(N1, N2, ...)will be a node which returns
extractions having all of the fields of all the Ni. It is required that
the Ni do not have any fields in common.

4.4 Extensibility
Custom predicates. In addition to building predicates via com-

position using any_holds and all_hold, it is straightforward to
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1 # Defining a custom constraint
2 next_to_each_other = all_hold(
3 bottom_aligned , left_to_right ,
4 nothing_between_horizontally)
5
6 # Constraints to extract red portions of Figures 1 and 2
7 gross_pay_node_1 = extract (...)
8 gross_pay_node_2 = extract (...)
9
10 # Constraints to extract period beginning/ending
11 dates_node = extract(
12 text_equals("Period beginning:")('period_begin_label '),
13 text_equals("Period ending:")('period_end_label '),
14 is_date('period_begin_date '),
15 is_date('period_end_date '),
16 next_to_each_other('period_begin_label ',
17 'period_begin_date '),
18 next_to_each_other('period_end_label ',
19 'period_end_date '))
20
21 extraction_result = run(input_doc ,
22 pick_best(
23 # Note we can use the dates_node repeatedly
24 combine(gross_pay_node_1 , dates_node),
25 combine(gross_pay_node_2 , dates_node)))
26
27 # Alternate version
28 extraction_result = run(input_doc ,
29 combine(
30 pick_best(gross_pay_node_1 , gross_pay_node_2),
31 dates_node))
32
33 # An advantage of the first `extraction_result ` version
34 # is that it would be easier to add a third format that
35 # does *not* use the same layout for the period begin
36 # and end dates.

Listing 3: Blueprint program for extracting the gross pay and
date information from paystubs. The combine and pick_best
node types are used to form a hierarchical extraction tree.

define custom predicates. An arity-𝑛 predicate is defined by a score
function which takes 𝑛 entities as input and returns a number be-
tween 0 and 1. We refer readers to the source code [1] for examples.

Custom node types. The interface of a Blueprint node is: the node
will be passed an input document, and should return a collection
of extractions, with extraction scores. In order to write custom
node types, we need only to implement this interface. An example
of a useful custom node type that would be straightforward to
implement is one which returns extractions generated using a deep
learning model. These deep-learning-generated extractions could
be integrated with Blueprint-generated extractions using combine
nodes, or users could create extraction programs which use either
deep-learning or constraint-based logic for all or part of a document
depending on which performs better at runtime, using pick_best.

5 EXECUTION
The goal of a Blueprint program is, given OCR words coming from
an input document, produce an extraction for that document. We
break this process into two steps: (1) entity generation, where
we discretize the search space by identifying the entities in the
document which we may wish to return as extracted values, and
(2) exploring the search space of possible extractions to find one
that satisfies our program’s constraints and other logic.

5.1 Entity Generation – Discretizing the Search
Space

An entity is a data type which represents something in the docu-
ment which we may want to extract. In all of our examples, entities
consist of a string of text (without formatting information) and a
bounding box representing the entity’s location on the page, plus
some additional information, such as whether the entity has been
identified as a date. In principle [30], entities could include font or
color information, and then this information could be used in con-
straints, or we could include non-textual entities such as dividing
lines or images, but this is not done in the current implementation.

The top-level input to a Blueprint program is the output of an
OCR engine, which consists of words and their bounding box infor-
mation. Each of these words is taken to be an entity. The Blueprint
language itself does not give the user any control over entity gener-
ation. However, by default the Blueprint runtime generates further
entities from the OCR words, for example by forming entities from
clusters of nearby words, such as "Total Hours:", using spatial
heuristics. Note that entities are not pairwise-disjoint: the phrase
"Total Hours:" and its constituent words "Total" and "Hours:"
may all appear as entities simultaneously. The configuration pa-
rameters of this process are tweakable by the user.

Performing entity generation up-front discretizes our search
space for the constraint logic step. The only thingwhichmay appear
as a value in a Blueprint extraction is an entity. However, the more
entities we include in the entity pool, the larger the search space,
which can negatively impact runtime. We have found that optimal
entity generation varies from use case to use case, but Blueprint’s
current default configuration is generally a good starting point.

5.2 Searching the Space of Possible Extractions
Next, we pass the generated entity pool to the root node of our ex-
traction tree, which is in turn responsible for producing a collection
of extractions for this document. We return the highest-scoring
extraction as our final result.

It remains only to describe how the different node types produce
their extractions. We have already sketched the implementation of
pick_best in Section 4.3. The implementation of combine has a
similar spirit, combining extractions coming from its children to
produce a new collection of output extractions. The implementation
of extract is non-trivial.

An extract node N having fields f1, ..., fn is responsible for
producing extractions of the form E = {f1: e1, ..., fn: en},
where the ei are entities, such that E satisfies all constraints in N.
The search space is discrete but far too large to search exhaustively.

In our implementation, we build E iteratively by successively
adding values for the required fields one by one. After each addition,
we verify that every constraint C in N which we can check (those
C for which we have assigned values for every field in C) has non-
zero score. If we assign a value e to a field f, and this causes some
constraint involving f to fail, then we back out this assignment for
f and continue the search. Note that we may revisit the assignment
f: e at a later point in the search, since locally it may be the
correct assignment, and fails only in conjunction with some earlier
assignment for another field, which may be changed later. When
we arrive at an E which has an assignment for every required field,
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Figure 4: An extractnode’s implementation in terms of other
Blueprint primitives.

we save it in our list of extractions to return, and then back out one
or more assignments and continue the search.

The main implementation challenge is that the order in which
we assign values to the fields has a very large impact on run-
time. For example, referring back to Listing 1, if we assign val-
ues to 'period_gross_pay' and 'ytd_gross_pay' first, then we
will end up looping through every partial extraction of the form
{'period_gross_pay': V1, 'ytd_gross_pay': V2} where V1
and V2 are dollar values, searching essentially at random for the val-
ues of V1 and V2 for which we end up being able to find assignments
for the labels satisfying the layout constraints.

The solution in this case is to assign values to the label
fields first. Then when we reach the step of assigning a value
to 'period_gross_pay', we will be able to discard most candi-
dates immediately because they will cause one of the layout con-
straints to fail. Our solution in the general case is to use a combi-
nation of heuristics to determine a field extraction order at run-
time. Such heuristics include the number of entities which satisfy
the arity-1 constraints in which a field participates (consider the
number of entities which satisfy text_equals("Gross Pay") vs.
is_dollar_amount), and the number of outstanding constraints
that assigning a value for a field would immediately allow us
to check. We do this at runtime because these heuristics can be
document-dependent.

We implement extract nodes using the other Blueprint
language primitives. Specifically, we transform every extract
node into a Blueprint extraction subtree, as shown in Fig-
ure 4. In the figure, the green nodes are so-called leaf nodes,
which produce single-field extractions. The choice of field
extraction order corresponds to the order in which leaf nodes
appear in the tree, and again, this is computed at runtime
using heuristics on the constraints and the document. The
constraints from our extract node are distributed throughout
this tree, with each constraint pushed down to the lowest node
where all of the constraint’s fields are present. For example,
the constraint left_aligned('period_begin_label',
'period_end_label') will be checked at combine3, and

bottom_aligned('period_end_label', 'period_end_date')
will be checked at combine1. Combining the Blueprint primitives
in this way to implement extract effectively achieves the
implementation sketched above.

We may do further optimizations, such as by collecting and
employing data set statistics [31], but we found it to be unnecessary.
This is because Blueprint programs could finish reasonably quickly
on its target use cases and does not need to maintain an execution
context, such as for keeping statistics, across extractions.

6 STUDIO: NO-CODE IDE FOR BLUEPRINT
Our experience building Blueprint extractions in a commercial
setting, as well as training engineers to do the same, revealed sev-
eral challenges. First, we learned that writing declarative fuzzy
constraint-based programs, especially from scratch, is difficult and
unintuitive for many developers. This is true, in particular, for devel-
opers trained in Python and other GPPLs, who are used to thinking
procedurally. Also, debugging Blueprint programs often proved
challenging, for reasons discussed below.

To address these issues, we built a no-code GUI application called
Studio. Studio is written in React and runs in the browser. In a
similar spirit as other annotator GUIs [10, 19], Studio has five main
views, as shown in Figure 5:

1 A list of documents that a user has loaded into their project,
and extraction accuracy metrics for recent trial runs. Accu-
racy and runtime metrics for different versions of the user’s
extraction program can be compared side-by-side.

2 A view showing OCR results, generated entities, target values,
and extracted values rendered directly on the document. This
section can also be used to annotate target values for a sample
document, which can in turn be used for automatic constraint
synthesis, and to compute extraction accuracy.

3 The high-level structure of the extraction tree. The rows in
this view correspond to Blueprint nodes. These nodes can
have user-defined names for readability during development,
with their node types visible alongside in muted text. (Some
primitives are named differently in the GUI compared to the
language version of Blueprint: a model is an extraction pro-
gram, a pattern node is an extract node, and a merge node is
a combine node.)

4 When inspecting a pattern/extract node, this region allows
the user to specify the fields they wish to extract, to specify
types (date, word, phrase, etc.) for each field, to inspect and
edit target values, and to inspect extracted values (“Model
results”) after running their extraction program.

5 The set of constraints in the current node. From here the user
may add, edit, and delete constraints. In addition, if target
values are available, here the user is shown how-well their
constraints are satisfied by the target values. This is very useful
for debugging synthesized programs, as discussed later.

6.1 Program Synthesis
Studio provides program synthesis functionality to make it easy
to create Blueprint programs. Users load their document samples,
label their target values by clicking in the graphical document view,
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Figure 5: Studio, a no-code IDE for interactive development of Blueprint extractions.

run synthesis from the GUI to generate a Blueprint program, and
then may immediately run their synthesized program against all of
their samples for testing, debugging, and further development.

Suppose that E is a target extraction – a field-to-entity
dictionary containing the user’s desired extraction results for
a particular document. The goal of the synthesis engine is to
generate a Blueprint program which will successfully produce
E as its extraction result for this document. The synthesis
engine we provide only generates extract nodes and has a
simple implementation. We begin by heuristically generating
a large set of candidate constraints, using the fields of E and
a subset of predicates which tend to be effective at capturing
document structure, for example left_aligned, right_aligned,
top_down, left_to_right, nothing_between_vertically,
nothing_between_horizontally. For every candidate constraint
C, we compute ConstraintScore(C, E), and include C in our syn-
thesized extract node if this score is above a threshold. We also
perform some additional heuristic checks, for example to attempt
to identify and prune constraints which hold only incidentally, or
are superfluous. These heuristics are specific to each constraint in
Blueprint; we skip their details due to the page limit.

A typical user workflow is to (1) create a pick_best node, (2)
identify the distinct formats in their collection of documents, (3)
for each format, label an example document, and (4) synthesize an
extract node for that format as a child of the pick_best node.
Users found this workflow intuitive and straightforward.

6.2 Debugging
If a Blueprint program is failing to produce the expected results on
a particular document, usually the cause is one of the following:

There is no entity in the entity pool corresponding to one of the
target values. To help debug this, Studio shows all of a document’s
entities visually overlaid on the document. In addition, if a user
has annotated their target values, Studio shows an alert if any
target value does not have a matching entity in the entity pool, in
which case there is no possible constraint logic that will result in a
successful extraction for that field.

Some constraint(s) are not satisfied by the target extraction. This
means that if we scored every constraint against the user’s tar-
get extraction, at least one of the constraints would fail. This can
happen if, for example, the tolerances on a constraint are set too
low. Another way this could happen is that synthesis could add a
constraint which happens to hold on the sample document used
for synthesis, but which does not hold in general. A typical exam-
ple would be two left-aligned text values being “accidentally” also
identified as being right-aligned, because the lengths of their texts
happen to be the same in the sample document.

This situation is very hard to debug without special tools, be-
cause Blueprint does not return partial extractions, and there is no
notion at inference time of “the constraint that failed” – all that
the inference engine tells us is that it failed to find an extraction
simultaneously satisfying all of the constraints.
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Studio makes this easy to debug. Given a target extraction and a
set of constraints, we can identify the constraint causing inference
failure by scoring each constraint against the target extraction. The
constraint(s) causing inference failure will score 0. The solution
is generally either to increase tolerances, or to otherwise modify
or delete the faulty constraints; deletion would be the appropriate
solution in the accidental-right-alignment example above.

The set of constraints has multiple solutions. It can happen that
there are multiple extractions for some document which satisfy all
of the constraints in an extract node. In this case, an incorrect ex-
traction could be returned because it scores higher than the desired
extraction. The solution in this case is usually to add additional con-
straints to rule out the undesired result while keeping the desired
one. Studio indicates when a node returned multiple extractions
for a document, and allows users to page through them.

7 DEPLOYMENT EXPERIENCE
Our test users for Blueprint and Studio were predominantly sales
and support engineers. These users write code as part of their job,
but generally do not design, build, and maintain complex software
systems. Our users generally had prior experience writing extrac-
tions using a GPPL (usually Python).

User 1 built Blueprint extractions for several customers. They
write: “Blueprint significantly lowers the technical barrier for entry
to writing document understanding solutions. Once you understand
how a Blueprint template gets constructed, writing your solution
becomes a problem of solving a logic puzzle rather than construct-
ing a piece of software from scratch. This reframing of document
understanding makes scaling and changing solutions much easier.”

User 2 is a sales engineer, is an expert in building document
understanding solutions, experimented with using Blueprint for
various customer trials during sales, and oversaw the development
of a large (1000-line), long-tail Blueprint solution, written by hand
without Studio. They write: “The mental model you need to solve
an extraction problem using raw Python required not only skill in
being able to articulate your intent as a developer in Python code,
but also the ability to hold the mental model in your head about all
of the steps and processes that you need to do... it was just such a
big barrier to entry. [...] Through Studio, with the ability to annotate
and auto-generate constraints, the Blueprint language then became
about tuning, like removing constraints, adding constraints, which
is a much easier thing to get your head around. And the experience
of going through and annotating the documents was way more
intuitive. [...] Starting from a blank slate and trying to write a
Blueprint program was very intimidating. The Blueprint language
was actually much harder to wrap your head around than writing
the raw Python, but Studio abstracted away a lot of that pain to
the point where you could just annotate and then refine, and for
some reason, once you click auto-generate, and you see all the rules
generated, you haven’t had to think about how to generate them,
but now that you see them it makes sense.”

User 2’s feedback is very representative of the general feedback
we got. Users often struggled initially to wrap their heads around
the main Blueprint abstractions, but found the Studio development
experience intuitive and productive, and ultimately it was the tech-
nical design of the Blueprint language (constraint matching, scoring,

etc.) that made it possible for us to build program synthesis and the
other interactive development functionality in Studio.

8 EVALUATION
In this section, we first compare synthesized Blueprint programs
with hand-written Blueprint programs, and then compare Blueprint
with a state-of-the-art deep-learning based document extraction
tool, LayoutLM [34]. All experiments are done on a server with an
Intel Xeon Gold 6330 processor and an Nvidia A40 GPU. Each exper-
iment is run serially, with no other workloads running concurrently
on the server. Execution time is “user time” and memory usage is
“maximum resident set size”, as reported by time -v. Blueprint does
not use the GPU.

Blueprint and LayoutLM both operate on Tesseract [33] OCR
output, and we used Tesseract as our OCR engine. When checking
extraction accuracy, we ignore errors stemming from OCR. For
example, in one sample, the true text value for a particular field is
"BUŞ", but OCR reads this as "BUS" – if either tool obtains "BUS",
we treat that as a correct extraction.

8.1 Comparing Synthesized and Hand-written
Blueprint Programs

Experimental setup. For this comparison, we used 100 Azerbai-
jani passport images from the MIDV-2020 [6] dataset. We develop
an extraction program for the fields 'first_name', 'surname',
'date_of_birth', 'date_of_issue', 'date_of_expiry',
'gender', and 'place_of_birth'.

Summary of results. Table 2 summarizes our findings. Writing a
Blueprint program for this dataset by hand is straightforward: the
program consists of only 18 constraints, and could be written by
an experienced Blueprint user in just a few minutes. The resource
usage is also very modest: extraction for a single document finishes
in just over a second and uses only 30 MB of memory.

We also created a synthesized Blueprint program for the same
dataset using Studio. This took just a couple of minutes. The syn-
thesized program had similar memory usage and ran in an average
of 3.2 seconds per document. In line with previous results [4, 17]
on fuzzy constraint program synthesis, our synthesized program
contained more constraints: 42 compared to 18 in the handwritten
program. The main reason for this is that a human author will
tend to include the minimal set of constraints required to capture
the documents’ structure, whereas the synthesis engine tends to
include many spatial constraints that a human may consider extra-
neous – these extra constraints do hold, and so they don’t interfere
with successful extraction, but they are not critical parts of the
structure of the document and could as well be left out. When the
synthesized program was run on the full 100-sample dataset, some
documents did not extract properly due to OCR errors, but after a
small amount of error tolerance tuning using Studio’s debugging
facilities, both the hand-written and synthesized programs were
able to extract all the fields correctly.

8.2 Comparing Blueprint with LayoutLM
Experimental setup. We have applied Blueprint and Studio in

commercial settings to build extractions for paystubs, bills of lading,
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Table 2: Running Blueprint and LayoutLM extractions
against the MIDV-2020 dataset. HBP = hand-written Blue-
print program, SBP = synthesized Blueprint program.

Approach Total
constraint
count

Average
runtime
per doc

Average
memory
usage

Field-
level
accuracy

Single-layout extraction (100 Azerbaijani passports)
HBP 18 1.1 s 30 MB 100%
SBP 42 3.2 s 28 MB 100%

Multi-layout extraction (500 ID cards from 5 different nations)
SBP 99 3.4 s 32 MB 94.4%
LayoutLM - 16.5 s 4.2 GB 83.1%

bank checks, etc. However, we did not find open datasets for these
use cases. On the receipt images in the SROIE [16] dataset used in
the original LayoutLM paper, we did not attain accuracy results
using Blueprint which were competitive with those of LayoutLM.
This is because receipts contain less structure and fewer labels and
anchors than the other document classes mentioned above, and
present with a very long tail of layouts. Blueprint works best for
datasets with fairly-consistent layout, where fields also tend to have
good labels or anchors. For these reasons, Blueprint also does not
work well on natural language use cases.

We perform our evaluation using five ID card types (Azerbaijani
passports, Albanian IDs, Spanish IDs, Estonian IDs, and Greek
passports) in the open MIDV-2020 [6] dataset. Both Blueprint and
LayoutLM are given the same OCR outputs. A few ID card types
have colorful backgrounds and labels, which can interfere with OCR.
To mitigate this, we preprocess some of our samples to remove a
color channel. In particular, for the alb_id samples we use only
the blue and green channels, and for the esp_id samples we use
only the blue and red channels. We trained a LayoutLM model
for performing extraction across the five ID card types using 20
training samples per card type, and built a Blueprint program to
do the same extraction. In both cases, a single model or program
is responsible for extracting all five document types or layouts –
there is no preliminary classification step. The Blueprint program
consists of a pick_best node with five child nodes, one per layout,
synthesized using Studio.

Summary of results. Our results are summarized in Table 2.
We first observe that predictably, the five-layout synthesized

Blueprint program is larger (has more constraints) than the single-
layout programs, but this does not significantly affect runtime or
memory usage in this case. This is because adding constraints to a
Blueprint program tends to improve rather than hurt its runtime,
because every extra constraint shrinks the search space the program
needs to examine.

Next, we examine accuracy. This experiment extracts 2900 fields
in total, from 500 images. The synthesized Blueprint program ex-
tracted 2738 fields correctly (94.4%), whereas LayoutLM extracted
2409 fields correctly (83.1%)1. We see that on this dataset, a syn-
thesized Blueprint program outperformed LayoutLM on extraction
accuracy. We do not make the claim that Blueprint is more accu-
rate than LayoutLM. For example, we would expect the LayoutLM

1We do not claim that LayoutLM accuracy could not be improved through model
tuning. Our LayoutLM experimental setup is based on the scripts described in [2].

Figure 6: OCR errors on esp_id/12.jpg from MIDV-2020
dataset. All OCR words and generated Blueprint entities are
outlined with a magenta box.

model to perform better on a document sample having an unseen-
but-similar layout, for example a French passport, where we would
expect the Blueprint program to return nothing at all, since Blue-
print generally does not return partial matches.

Training the LayoutLM model takes 75 seconds using the GPU,
and over 10 minutes on a CPU. Synthesizing the Blueprint program
does not take significant compute time. Developer time – train-
ing the LayoutLM model versus synthesizing and tweaking the
Blueprint program – is comparable on this use case, although for
long-tail use cases with many layouts, LayoutLM training could
require less developer effort.

Finally, we consider resource usage. As shown in Table 2, on
this dataset, Blueprint compares favorably to LayoutLM regarding
resource usage, taking 5x less runtime and using 150x less memory2.
We make the disclaimer that in general, LayoutLM is an ML model
and will at least have consistent, predictable runtime, whereas the
runtime of a Blueprint program will depend on how the program is
written, as well as on the input documents. Blueprint runtime can
be very high in bad cases and can be difficult for users to predict or
reason about, which was a problem we encountered in user testing.

Overall, this evaluation shows that for appropriately-chosen use
cases, a heuristic constraint-based approach such as Blueprint can
be comparably effective to a deep-learning approach in terms of
accuracy and development effort, and can have lighter resource
requirements. This is consistent with our experience running Blue-
print programs in a commercial setting.

Detailed failure-mode analysis. There are three main failure
modes for Blueprint on this data set.

First, the OCR engine sometimes completely fails to recognize
some text in the document sample. For example, in Figure 6, every
recognized OCR word and generated entity is shown outlined with
a magenta box. We see that here, the OCR engine completely failed
to recognize the letter "M" (representing gender), located in the
upper-left quadrant of the image.

Second, the OCR engine sometimes returns severely incorrect re-
sults: completely-wrong text, a bad bounding box, or both. Blueprint
constraints are fuzzy and have some error tolerance, but in some

2We also do not claim that LayoutLM resource requirements could not be reduced
through approaches such as distillation and quantization [27].
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cases the OCR errors are too severe. For example, in Figure 6, we
see that the bounding box around the surname "CORTEZ" extends
too far to the left, all the way to the Ñ in ESPAÑA. The synthesized
Blueprint node for this layout has a left_aligned('surname',
'first_name') constraint, which fails due to this bad bounding
box, causing extraction to fail on this sample.

Third, because of the above errors in OCR output, our heuristic
algorithm for generating multi-word cluster entities sometimes fails
to create the expected entities. For example, in some documents,
we observed that the day, month, and year portions of a date have
widely-varying bounding box heights as reported by OCR, even
though the word heights on the page are all the same. Our heuristic
clustering algorithm prefers words in a cluster to have the same
height (as a proxy for font size), so clustering could fail in such
cases. The only things that can appear as values in a Blueprint
extraction are entities, so if the clustering algorithm fails to cluster
a day-month-year triple into a single entity, there is no way that
the corresponding date field will be extracted correctly.

In many cases, LayoutLM is able to recover from such OCR errors
better than Blueprint, and successfully return a value. However,
this is sometimes of dubious utility. For example, for a certain date
in sample est_id/41.jpg, the correct value is "21.03.2020", but
OCR returns "21-0020!". The LayoutLM model was able to extract
this value, but it is hard to see how this could be useful downstream,
given how different the OCR output is from the true value on
the document. More examples of this scenario, where LayoutLM
extracted the value having the correct provenance despite bad OCR:

• (file_name, actual_text, extracted_text)
• alb_id/05.jpg, "14-11-2018", "AA2018"
• alb_id/07.jpg, "12-07-2016", "apie(2016"
• alb_id/12.jpg, "03-10-2015", "PeeAS-2015"
• est_id/99.jpg, "27.05.2022", "27:GEEEO2"

We observed failure modes in LayoutLM that Blueprint does not
have. LayoutLM treats extraction as a classification problem on the
words of a document: every field we are trying to extract is treated
as a class, and every word in a document is classified either as one of
the fields, or as “none”. Then the extracted value for a field is defined
to be the set of words in that field’s class. As a consequence, Lay-
outLM sometimes produces partial extractions, or extracts “multiple
values” for a given field. For instance, in grc_passport/87.jpg,
LayoutLM extracts the 'issue_date' as "03 15" instead of "03
Sep 15". Generally, in the grc_passport samples, LayoutLM
misses the month portion of an extracted date value in 30 out
of 100 images. LayoutLM also extracted multiple values for at least
one field in 182 out of the 500 document samples. Some of these
multi-value extractions can easily be fixed in post-processing: for
example, in alb_id/79.jpg both "Vlore,ALB" and "nr.no." are
extracted as the 'birth_place', and the correct value is clearly
"Vlore,ALB". However, in some cases, finding the one correct value
in a multi-value extraction for a given field may be non-trivial:
for example, in aze_passport/23.jpg, both "06.03.2013" and
"05.03.2023" are extracted as the 'expiry_date'. Also because
LayoutLM treats extraction as a classification task, it sometimes
provides extracted values for fields which are completely absent
in a sample: for example, in est_id/86.jpg, LayoutLM extracts
the 'issue_date' as "04.01.2005", but est_id samples do not

have any issue date. We count partial and multi-value extractions
as correct, because they may be fixable in post-processing.

9 FUTUREWORK
9.1 Better Synthesis for Long-tail Documents
Blueprint’s program synthesis functionality is simple and very
effective for working with document types which have a small-
to-medium number of fairly-fixed layouts. However, the synthesis
engine could be much better overall. For example, right now, if the
dataset consists of documents having five distinct layouts (such as
MIDV-2020), we require the user to recognize this fact, to create
a pick_best node, and to populate it with synthesized extract
nodes, one per layout. All of this could be automated to some degree.

Users have been successful building Blueprint programs for doc-
ument classes having as many as 200 layouts (US driver’s licenses,
for example). Each layout is quick to build and straightforward to
tune and debug, so this approach is not as onerous as it might sound.
However, with better synthesis, which could heuristically group
documents by layout and automatically generate constraints and
the extraction tree structure with a single click, the development
experience of this approach could become quite serviceable.

9.2 Integration with Deep Learning
As mentioned in Section 4, arbitrary parts of a Blueprint extrac-
tion tree could be replaced with deep-learning extraction models
generating extractions for various parts of a document – for exam-
ple, natural language text, for which we have not found Blueprint
particularly well-suited. Similarly, we could implement predicates
whose score functions invoke ML models, and we could use ML
models in the entity generation step for tasks such as identifying
person names or other semantic types.

10 CONCLUSION
We described the design and implementation of Blueprint, a declar-
ative domain-specific language for document extraction, which
provides building blocks for describing spatial, textual, semantic,
and numerical relationships in documents. We further described
Studio, a no-code IDE for Blueprint which provides helpful debug-
ging and automatic program synthesis functionality.

We also compared Blueprint with the state-of-the-art deep-
learning-based document extraction system LayoutLM [34] on an
open dataset MIDV-2020 [6]. The comparison shows that Blue-
print can achieve comparable extraction accuracy results with com-
parable development time requirements on appropriately-chosen
datasets, while remaining interpretable and debuggable.

We have applied Blueprint extensively in commercial settings
on various document types, such as bank checks, bills of lading,
paystubs, etc. We described some real-life user experiences of build-
ing document extraction solutions using Blueprint and Studio. The
source code of Blueprint and Studio is available at [1].
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