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Abstract

TCP has well-known problems over multi-hop wireless
networks as it conflates congestion and loss, performs
poorly over time-varying and lossy links, and is fragile
in the presence of route changes and disconnections.
Our contribution is a clean-slate design and implemen-
tation of a wireless transport protocol, Hop, that uses re-
liable per-hop block transfer as a building block. Hop is
1) fast, because it eliminates many sources of overhead
as well as noisy end-to-end rate control, 2) robust to par-
titions and route changes because of hop-by-hop control
as well as in-network caching, and 3) simple, because it
obviates complex end-to-end rate control as well as com-
plex interactions between the transport and link layers.
Our experiments over a 20-node multi-hop mesh network
show that Hop is dramatically more efficient, achieving
better fairness, throughput, delay, and robustness to par-
titions over several alternate protocols, including gains of
more than an order of magnitude in median throughput.

1 Introduction

Wireless networks are ubiquitous, but traditional trans-
port protocols perform poorly in wireless environments,
especially in multi-hop scenarios. Many studies have
shown that TCP, the universal transport protocol for re-
liable transport, is ill-suited for multi-hop 802.11 net-
works. There are three key reasons for this mismatch.
First, multi-hop wireless networks exhibit a range of
loss characteristics depending on node separation, chan-
nel characteristics, external interference, and traffic load,
whereas TCP performs well only under low loss condi-
tions. Second, many emerging multi-hop wireless net-
works such as long-distance wireless mesh networks, and
delay-tolerant networks exhibit intermittent disconnec-
tions or persistent partitions. TCP assumes a contem-
poraneous end-to-end route to be available and breaks
down in partitioned environments [13]. Third, TCP has
well-known fairness issues due to interactions between
its rate control mechanism and CSMA in 802.11, e.g.,

it is common for some flows to get completely shut out
when many TCP/802.11 flows contend simultaneously
[37]. Although many solutions (e.g. [16, 32, 38]) have
been proposed to address parts of these problems, these
have not gained much traction and TCP remains the dom-
inant available alternative today.

Our position is that a clean slate re-design of wireless
transport necessitates re-thinking three fundamental de-
sign assumptions in legacy transport protocols, namely
that 1) a packet is the unit of reliable wireless transport,
2) end-to-end rate control is the mechanism for dealing
with congestion, and 3) a contemporaneous end-to-end
route is available. The use of a small packet as the gran-
ularity of data transfer results in increased overhead for
acknowledgements, timeouts and retransmissions, espe-
cially in high contention and loss conditions. End-to-end
rate control severely hurts utilization as end-to-end loss
and delay feedback is highly unpredictable in multi-hop
wireless networks. The assumption of end-to-end route
availability stalls TCP during periods of high contention
and loss, as well as during intermittent disconnections.

Our transport protocol, Hop, uses reliable per-hop
block transfer as a building block, in direct contrast to
the above assumptions. Hop makes three fundamen-
tal changes to wireless transport. First, Hop replaces
packets with blocks, i.e., large segments of contiguous
data. Blocks amortize many sources of overhead includ-
ing retransmissions, timeouts, and control packets over
a larger unit of transfer, thereby increasing overall uti-
lization. Second, Hop does not slow down in response
to erroneous end-to-end feedback. Instead, it uses hop-
by-hop backpressure, which provides more explicit and
simple feedback that is robust to fluctuating loss and de-
lay. Third, Hop uses hop-by-hop reliability in addition to
end-to-end reliability. Thus, Hop is tolerant to intermit-
tent disconnections and can make progress even when
a contemporaneous end-to-end route is never available,
i.e., the network is always partitioned [3].

Large blocks introduce two challenges that Hop con-
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verts into opportunities. First, end-to-end block retrans-
missions are considerably more expensive than packet
retransmissions. Hop ensures end-to-end reliability
through a novel retransmission scheme called virtual re-
transmissions. Hop routers cache large in-transit blocks.
Upon an end-to-end timeout triggered by an outstand-
ing block, a Hop sender sends a token corresponding to
the block along portions of the route where the block is
already cached, and only physically retransmits blocks
along non-overlapping portions of the route where it is
not cached. Second, large blocks as the unit of transmis-
sion exacerbates hidden terminal situations. Hop uses a
novel ack withholding mechanism that sequences block
transfer across multiple senders transmitting to a single
receiver. This lightweight scheme reduces collisions in
hidden terminal scenarios while incurring no additional
control overhead.

In summary, our main contribution is to show that
reliable per-hop block transfer is fundamentally better
than the traditional end-to-end packet stream abstraction
through the design, implementation, and evaluation of
Hop. The individual components of Hop’s design are
simple and perhaps right out of an undergraduate net-
working textbook, but they provide dramatic improve-
ments in combination. In comparison to the best variant
of 1) TCP, 2) Hop-by-hop TCP, and 3) DTN 2.5, a delay
tolerant transport protocol [8],

» Hop achieves a median goodput benefit of 1.6x and

2.3x over single- and multi-hop paths respectively.
The corresponding lower quartile gains are 28 x and
2.7x showing that Hop degrades gracefully.

» Under high load, Hop achieves over an order of
magnitude benefit in median goodput (e.g., 90x
over TCP with 30 concurrent large flows), while
achieving comparable or better aggregate goodput
and transfer delay for large as well as small files.

» Hop is robust to partitions, and maintains its perfor-
mance gains in well-connected WLANSs and mesh
networks as well as disruption-prone networks. Hop
also co-exists well with delay-sensitive VoIP traffic.

2  Why reliable per-hop block transfer?

In this section, we give some elementary arguments
for why reliable per-hop block transfer with hop-by-
hop flow control is better than TCP’s end-to-end packet
stream with end-to-end rate control in wireless networks.

Block vs. packet: A major source of inefficiency
is transport layer per-packet overhead for timeouts, ac-
knowledgements and retransmissions. These overheads
are low in networks with low contention and loss but in-
crease significantly as wireless contention and loss rates
increase. Transferring data in blocks as opposed to pack-
ets provides two key benefits. First, it amortizes the over-
head of each control packet over larger number of data

packets. This allows us to use additional control packets,
for example, to exploit in-network caching, which would
be prohibitively expensive at the granularity of a packet.
Second, it enables transport to leverage link-layer tech-
niques such as 802.11 burst transfer capability [1], whose
benefits increase with large blocks.

Transport vs. link-layer reliability: Wireless chan-
nels can be lossy with extremely high raw channel loss
rates in high interference conditions. In such networks,
the end-to-end delivery rate decreases exponentially with
the number of hops along the path, severely degrading
TCP throughput. The state-of-the-art response today is
to use a sufficiently large number of 802.11 link-layer
acknowledgements (ARQ) to provide a reliable channel
abstraction to TCP. However, 802.11 ARQ 1) interacts
poorly with TCP end-to-end rate control as it increases
RTT variance, 2) increases per-packet overhead due to
more carrier sensing, backoffs, and acknowledgments,
especially under high contention and loss (in §5.1.1,
we show that 802.11b ARQ has 35% overhead). Note
that TCP’s woes cannot be addressed by just setting the
802.11 ARQ limit to a large value as it would reduce the
overall throughput by disproportionately using the chan-
nel for transmitting packets over bad links. Unlike TCP,
Hop relies solely on transport-layer reliability and avoids
link-layer retransmissions for data, thereby avoiding neg-
ative interactions between the link and transport layers.

Hop-by-hop vs. end-to-end congestion control: Rate
control in TCP occurs in response to end-to-end loss and
delay feedback reported by each packet. However, end-
to-end feedback is error-prone and has high variance in
multi-hop wireless networks as each packet observes sig-
nificantly different wireless interference across different
contention domains along the route. This variance hurts
TCP’s utilization as: 1) its window size shrinks conserva-
tively in response to loss, and 2) it experiences frequent
retransmission timeouts when no data is sent.

Our position is that fixing TCP’s rate control algorithm
in environments with high variability is fundamentally
difficult. Instead, we circumvent end-to-end rate control,
and replace it with hop-by-hop backpressure. Our ap-
proach has two key benefits: 1) hop-by-hop feedback is
more robust than end-to-end feedback as it involves only
a single contention domain, and 2) block-level feedback
provides an aggregated link quality estimate that has less
variability than packet-level feedback.

In-network caching: The use of reliable per-hop
block transfer enables us to exploit caching at interme-
diate hops for two benefits. First, caching obviates re-
dundant retransmissions along previously traversed seg-
ments of a route. Second, caching is more robust to inter-
mittent disconnections as it enables progress even when
a contemporaneous end-to-end route is unavailable. Hop
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Figure 1: Structure of a block.

can also use secondary storage if needed in partitionable
networks with long disconnections and reconnections.

3 Design

This section describes the Hop protocol in detail. Hop’s
design consists of six main components: 1) reliable per-
hop block transfer, 2) virtual retransmissions for end-
to-end reliability, 3) backpressure congestion control, 4)
handling routing partitions, 5) ack withholding to handle
hidden terminals, and 6) a per-node packet scheduler.

3.1 Reliable per-hop block transfer

The unit of reliable transmission in Hop is a block, i.e.,
a large segment of contiguous data. A block comprises
a number of txops (the unit of a link layer burst), which
in turn consists of a number of frames (Figure 1). The
protocol proceeds in rounds until a block B is success-
fully transmitted. In round 7, the transport layer sends
a BSYN packet to the next-hop requesting an acknowl-
edgment for B. Upon receipt of the BSYN, the receiver
transmits a bitmap acknowledgement, BACK, with bits
set for packets in B that have been correctly received. In
response to the BACK, the sender transmits packets from
B that are missing at the receiver. This procedure repeats
until the block is correctly received at the receiver.

Control Overhead: Hop requires minimal control
overhead to transmit a block. At the link layer, Hop dis-
ables acknowledgements for all data frames, and only en-
ables them to send control packets: BSYN and BACK.
At the transport layer, a BACK acknowledges data in
large chunks rather than in single packets. The reduced
number of acknowledgement packets is shown in Fig-
ure 2, which contrasts the timeline for a TCP packet
transmission alongside a block transfer in Hop. For large
blocks (e.g. 1 MB), Hop requires orders of magnitude
fewer acknowledgements than for an equivalent number
of packets using TCP with link-layer acknowledgements.
In addition, Hop reduces idle time by ensuring that pack-
ets do not wait for link-layer ACKs, and at the transport
layer by disabling rate control. Thus, Hop nearly always
sends data at a rate close to the link capacity.

Spatial Pipelining: The use of large blocks and hop-
by-hop reliability can hurt spatial pipelining since each
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Figure 2: Timeline of TCP/802.11 vs. Hop

node waits for the successful reception of a block be-
fore forwarding it. To improve pipelining, an intermedi-
ate hop forwards packets as soon as it receives at least a
txop worth of new packets instead of waiting for an en-
tire block. Thus, Hop leverages spatial pipelining as well
as the benefits of burst transfer at the link layer.

3.2 Ensuring end-to-end reliability

Hop-by-hop reliability is insufficient to ensure reliable
end-to-end transmission. A block may be dropped if 1)
an intermediate node fails in the middle of transmitting
the block to the next-hop, or 2) the block exceeds its TTL
limit, or 3) a cached block eventually expires because no
next-hop node is available for a long duration.

Hop uses virtual retransmissions together with in-
network caching to limit the overhead of retransmitting
large blocks. Hop routers store all packets that they over-
hear. Thus, a re-transmitted block is likely cached at
nodes along the original route until the point of failure or
drop, and might be partially cached at a node that is along
a new path to the destination but overheard packets trans-
mitted on the old path. Hence, instead of retransmitting
the entire block, the sender sends a virtual retransmis-
sion, i.e., a special BSYN packet, using the same hop-by-
hop reliable transfer mechanism as for a block. Virtual
retransmissions exploit caching at intermediate nodes by
only transmitting the block (or parts of the block) when
the next hop along the route does not already have the
block cached as shown in Figure 3.

A premature timeout in TCP incurs a high cost both
due to redundant transmission as well as its detrimental
rate control consequence, so a careful estimation of time-
out is necessary. In contrast, virtual retransmissions due
to premature timeouts do little harm, so Hop simply uses
the most recent round-trip time as its timeout estimate.
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Figure 4: Example showing need for backpressure. Without
backpressure, Node A would allocate 1/5th of out-going ca-
pacity to each flow, resulting in queues increasing unbounded
at nodes B through E. With backpressure, most data is sent to
node F, thereby increasing utilization.

3.3 Backpressure congestion control

Rate control in response to congestion is critical in TCP
to prevent congestion collapse and improve utilization.
In wireless networks, congestion collapse can occur both
due to increased packet loss due to contention [11], and
increased loss due to buffer drops [9]. Both cases result
in wasted work, where a packet traverses several hops
only to be dropped before reaching the destination. Prior
work has observed that end-to-end loss and delay feed-
back has high variance and is difficult to interpret unam-
biguously in wireless networks, which complicates the
design of congestion control [2, 32].

Hop relies only on hop-by-hop backpressure to avoid
congestion. For each flow, a Hop node monitors the dif-
ference between the number of blocks received and the
number reliably transmitted to its next-hop as shown in
Figure 4. Hop limits this difference to a small fixed
value, H, and implements it with no additional over-
head to the BSYN/BACK exchange. After receiving H
complete blocks, a Hop node does not respond to fur-
ther BSYN requests from an upstream node until it has
moved at least one more block to its downstream node.
The default value of H is set to 1 block.

Backpressure in Hop significantly improves utiliza-
tion. To appreciate why, consider the following scenario
where flows 1, ...,k all share the first link with a low
loss rate. Assume that the rest of flow I’s route has
a similar low loss rate, while flows 2,...,(k — 1) tra-
verse a poor route or are partitioned from their destina-
tions. Let C be the link capacity, p; be the end-to-end

loss observed by the first flow, and p, be the end-to-
end loss rate observed by other flows (p; < p2). With-
out backpressure, Hop would allocate a 1/k fraction of
link capacity to each flow, yielding a total goodput of
C((17p1)+(1];p2)'(k71)). And the number of buffered
blocks at the next-hops of the latter £ — 1 flows grows
unbounded. On the other hand, limiting the number of
buffered blocks for each flow yields a goodput close to
C - (1 — py) in this example.

Why does Hop limit the number of buffered blocks, H,
to a small default value? Note that the example above can
be addressed simply by choosing the block correspond-
ing to the flow with the largest differential backlog (along
A-F). Indeed, classical backpressure algorithms known
to achieve optimal throughput [33] work similarly. Hop
limits the number of buffered blocks to a small value in
order to ensure small transfer delay for finite-sized files,
as well as to limit intra-path contention.

3.4 Robustness to partitions

A fundamental benefit of Hop is that it continues to make
progress even when the network is intermittently parti-
tioned. Hop transfers a blocks in a hop-by-hop manner
without waiting for end-to-end feedback. Thus, even if
an end-to-end route is currently unavailable, Hop contin-
ues to make progress along other hops.

The ability to make progress during partitions relies
on knowing which next-hop to use. Unlike typical mesh
routing protocols [23, 4], routing protocols designed for
disruption-tolerance expose next-hop information even
if an end-to-end route is unavailable (e.g. RAPID [3],
DTLSR [7]). In conjunction with such a disruption-
tolerant routing protocol, Hop can accomplish data trans-
fer even if a contemporaneous end-to-end route is never
available, i.e., the network is always partitioned.

In disruption-prone networks, a Hop node may need
to cache blocks for a longer duration in order to make
progress upon reconnection. In this case, the backpres-
sure limit needs to be set taking into account the fraction
of time a node is partitioned and the expected length of
a connection opportunity with a next-hop node along a
route to the destination (see §5.7 for an example).

3.5 Handling hidden terminals

The elimination of control overhead for block transfer
improves efficiency but has an undesirable side-effect —
it exacerbates loss in hidden terminal situations. Hop
transmits blocks without rate control or link-layer re-
transmissions, which can result in a continuous stream
of collisions at a receiver if the senders are hidden from
each other. While hidden terminals are a problem even
for TCP, rate control mitigates its impact on overall
throughput. Flows that collide at a receiver observe in-
creased loss and throttle their rate. Since different flows
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get different perceptions of loss, some reduce their rate
more aggressively than others, resulting in most flows
being completely shut out and bandwidth being devoted
to one or few flows [37]. Thus, TCP is highly unfair but
has good aggregate throughput.

Hop uses a novel ack withholding technique to mit-
igate the impact of hidden terminals. Here, a receiver
acknowledges only one BSYN packet at any time, and
withholds acknowledgement to other concurrent BSYN
packets until the outstanding block has completed. In this
manner, the receiver ensures that it is only receiving one
block from any sender at a given time, and other senders
wait their turn. Once the block has completed, the re-
ceiver transmits the BACK to one of the other transmit-
ters, which starts transmitting its block.

Although ack withholding does not address hidden
terminals caused by flows to different receivers, it of-
fers a lightweight alternative to expensive and conser-
vative techniques like RTS/CTS for the common single-
terminal hidden terminal case. The high overhead of
RTS/CTS arises from the additional control packets, es-
pecially since these are broadcast packets that are trans-
mitted at the lowest bit-rate. The use of broadcast also
makes RTS/CTS more conservative since a larger con-
tention region is cleared than typically required [39]. In
contrast, ack withholding requires no additional control
packets (as BSYNs and BACKSs are already in place for
block transfer).

3.6 Packet scheduling

Hop’s unit of link layer transmission is a txop, which is
the maximum duration for which the network interface
card (NIC) is permitted to send packets in a burst without
contending for access [1]. Hop’s scheduler leverages the
burst mode and sends a txop’s worth of data from each
concurrent flow at a time in a round-robin manner.

Hop traffic is isolated from delay-sensitive traffic
such as VoIP or video by using link-layer prioritiza-
tion. 802.11 chipsets support four priority queues—
voice, video, best-effort, and background in decreasing
order of priority—with the higher priority queues also
having smaller contention windows [1]. Hop traffic is
sent using the lowest priority background queue to mini-
mize impact on delay-sensitive datagrams.

The design choices that we have presented so far can
be detrimental to delay for small files (referred to as
micro-blocks) in three ways: 1) the initial BSYN/BACK
exchange increases delay for micro-blocks, 2) a sender
may be servicing multiple flows, in which case a micro-
block may need to wait for multiple txops, and 3) ack-
withholding can result in micro-blocks being delayed by
one or more large blocks that are acknowledged before
its turn. Hop employs three techniques to optimize delay
for micro-blocks. First, micro-blocks of size less than a

fixed BSYN batch threshold (few tens of KB) are sent
piggybacked with the BSYN with link-layer ARQ via
the voice queue. This optimization eliminates the ini-
tial BSYN/BACK delay, and avoids having to wait for
a BACK before proceeding, thereby circumventing ack-
withholding delay. Second, the packet scheduler at the
sender prioritizes micro-blocks over larger blocks. Fi-
nally, Hop use a block-size based ack-withholding policy
that prioritizes micro-blocks over larger blocks.

4 Implementation

We have implemented a prototype of Hop with all the
features described in §3. Hop is implemented in Linux
2.6 as an event-based user-space daemon in roughly 5100
lines of C code. Hop is currently implemented on top
of UDP (i.e., there is a UDP header in between the IP
and Hop headers in each frame in Figure 1). Below, we
describe important aspects of Hop’s implementation.

4.1 MAC parameters

Our implementation uses the Atheros-based wireless
chipset and the Madwifi open source 802.11 device
driver [18], a popular commodity implementation. By
default, the MadWifi driver (as well as other commodity
implementations) supports the 802.11e QoS extension.
However, MadWiFi supports the extension only in the
access point mode, so we modify the driver to enable it
in the ad-hoc mode as well. Hop uses default 802.11
settings, except for the following. The transmission op-
portunity (txop) for the background queue is set to the
maximum value permitted by the MadWifi driver (8160
s or roughly 8KB of data). Link-layer ARQ is disabled
for all data frames sent via Hop but enabled for control
packets (BSYN, BACK, etc).

4.2 Hop implementation

Parameters A large block size increases batching ben-
efits [15], so we set the default maximum block size to
1MB. Note that this means that a Hop block is allowed to
be up to 1MB in size, but may be any smaller size. Hop
never waits idly in anticipation of more application data
in order to obtain batching benefits. The BSYN batch
threshold for micro-blocks is set to a default value of
16KB, and the backpressure limit, H, is set to 1. The
virtual retransmission timeout is set to an initial value of
60 seconds and simply reset to the round-trip block delay
reported by the most recent block. The TTL limit for a
virtual retransmissions is set to 50 hops. In the current
implementation, an intermediate Hop node keeps all the
blocks that it has received in memory.

Header format: The Hop header consists of the fol-
lowing fields. All frames contain the msg_type that
identifies if the frame is a data, BSYN, BACK, virtual
retransmission BSYN, or an end-to-end BACK frame;
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the £1ow_id that uniquely identifies an end-to-end Hop
connection; and the block_num identifies the current
block. Data frames also contain the packet_num that
is the offset of the packet in the current block. The
packet_num is also used to index into the bitmap re-
turned in a BACK frame.

End-to-end connection management: Because Hop
is designed to work in partitionable networks, it does not
use a three-way handshake like TCP to initiate a connec-
tion. A destination node sets up connection state upon
receiving the first block. The loss of the first block due
to a node failure or expiry or the loss of the first end-
to-end BACK is handled naturally by virtual retransmis-
sions. In our current implementation, a Hop node tears
down a connection simply by sending a FIN message and
recovering state; we have not yet implemented optimiza-
tions to handle complex failure scenarios.

5 Evaluation

We evaluate the performance of Hop in a 20-node wire-
less mesh testbed. Each node is an Apple Mac Mini
computer running Linux 2.6 with a 1.6 Ghz CPU, 2 GB
RAM and a built-in 802.11a/b/g Atheros/MadWiFi wire-
less card. Each node is also connected via an Ethernet
port to a wired backplane for debugging, testing, and data
collection. The nodes are spread across a single floor of
the UMass CS building as shown in Figure 5.

All experiments, except those in §5.9 and §5.10, were
run in 802.11b mode with bit-rate locked at 11 Mbps.
There is significant inherent variability in wireless con-
ditions, so in order to perform a meaningful comparison,
a single graph is generated by running the corresponding
experiments back-to-back interspersed with a short ran-
dom delay. The compared protocols are run in sequence,
and each sequence is repeated many times to obtain con-
fidence bounds.

We compare Hop against two classes of protocols:
end-to-end and hop-by-hop. The former consists of 1)
UDP, and 2) the default TCP implementation in Linux
2.6 with CUBIC congestion control [10]; we did not use
the Westwood+ congestion control algorithm since it per-
formed roughly 10% worse. The latter consists of 3)
Hop-by-Hop TCP, and 4) DTN2.5 [8]. Hop-by-Hop TCP
is our implementation of TCP with backpressure. It splits
a multi-hop TCP connection into multiple one-hop TCP
connections, and leverages TCP flow control to achieve
hop-by-hop backpressure. Each node maintains one out-
going TCP socket and one incoming TCP socket for each
flow. When the outgoing socket is full, Hop-by-Hop TCP
stops reading from the incoming socket, thereby forcing
TCP’s flow control to pause the previous hop’s outgoing
socket. This “backpressure” propagates up to the source
and forces the source to slow down. DTN2.5 is a ref-
erence implementation of the IEEE RFC 4838 and 5050

Figure 5: Experimental testbed with dots representing nodes.

from the Delay Tolerant Networking Research Group [8]
that reliably transfers a bundle using TCP at each hop.
Hop and UDP were set to use the same default packet
size as TCP (1.5KB). In all our experiments, the delay
and goodput of TCP are measured after subtracting con-
nection setup time.

5.1 Single-hop microbenchmarks

In this section, we answer two questions: 1) What are
the best 802.11 settings for link layer acknowledgments
(ARQ) and burst mode (txop) for TCP and UDP?, 2)
How does Hop’s performance compare to that of TCP
and UDP given the benefit of these best-case settings?
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Figure 6: Experiment with one-hop flows. Hop improves lower
quartile goodput by 28 x, median goodput by 1.6, and mean
goodput by 1.6x over TCP with the best link layer settings.
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Figure 7: Experiment with one-hop flows. Box shows
lower/median/upper quartile, lines show max/min, and dot
shows mean. Increasing 802.11 ARQ limit and using txops
helps TCP but Hop is still considerably better. UDP results
show that ARQs incur significant performance overhead (35%).
Hop is within 24% of UDP without ARQ (achievable goodput).
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Sec. Experiment setup Experiment Result: Median (Mean)
85.1 One single-hop flow Hop vs. TCP 1.6x (1.6x)
85.2 One multi-hop flow Hop vs. TCP 2.3x (2x)
Hop vs. Hop-by-Hop TCP 2.5% (2x)
Hop vs. DTN2.5 2.9x% (3.9%)
§5.3 Many multi-hop flows Hop vs. TCP 90x (1.25x%)
Hop vs. Hop-by-Hop TCP 20 x (1.4%)
85.4 Performance breakdown Base Hop (1x)
+ ack withholding (2.5%)
+ backpressure (3.7x%)
+ ack withholding + backpressure (4.8%)
§5.5 WLAN AP mode Hop vs. TCP 2.7x (1.12x)
Hop vs. TCP + RTS/CTS 2% (1.4x)
85.6 Single small file Hop vs. TCP 3% to 15x lower delay
Concurrent small files Hop vs. TCP Comparable or lower delay
85.7 Disruption-tolerance Hop vs. DTN2.5 2.8x (2.9x%)
85.8 Impact on VoIP traffic Hop vs. TCP Slightly lower MOS score but sig-
nificantly higher throughput
85.9 Network and link-layer dynamics | Hop vs. TCP + OLSR 4x (1x)
Hop vs. TCP + auto-rate 95x (2.4x)
Hop vs. TCP + OLSR + auto-rate 5x (1.8x%)
§5.10 | Under 802.11g Hop vs. TCP 22x (1x)
Hop vs. TCP + auto-rate 6x (3%)

Table 1: Summary of evaluation results. All protocols above are given the benefit of burst-mode (txop) and the maximum number
of link-layer retransmissions (max-ARQ) supported by the hardware.

5.1.1 Randomly picked links

In this experiment, we evaluate the single-hop perfor-
mance of TCP, UDP, and Hop over 802.11 across links
in our mesh testbed. The testbed has total of 56 unique
links from which a random sequence of 100 links was
sampled with repetition for this experiment. The average
and median loss rates were 25% and 1% respectively. For
each sampled link, a 10MB file is transferred using each
protocol; for bad links, flows were cut off at 10 minutes,
and goodput measured until the last received packet. The
metric for comparison is the goodput that is measured as
the total number of unique packets received at the re-
ceiver divided by the time until the last byte is received.

We compare Hop against TCP for three 802.11 set-
tings: 1) 11 link layer retries (ARQ) with no txop, the
default settings of the MadWifi driver, 2) 11 ARQ +
txop, and 3) maximum permitted ARQ setting (18 for
the Atheros card) + txop. We do not consider TCP with
no ARQ since it (expectedly) performs poorly without
802.11 retransmissions on lossy links. We also compare
against UDP under different 802.11 settings. Since UDP
has no transport-layer control overhead, and transmits as
fast as the card can transmit packets, it provides an up-
per bound on the achievable capacity on the link. For
clarity of presentation, we show cumulative distributions
(CDFs) for Hop and the best TCP combination and sum-
mary statistics for the other combinations (for which full
distributions are available in [15]).

Figure 6 shows that Hop significantly outperforms

TCP/max-ARQ/txop, the best TCP combination. The
Ql, Q2, and Q3 gains over TCP/max-ARQ/txop TCP
combination are 28, 1.6, and 1.2 x respectively. The
QI gain is notable and shows Hop’s robust performance
on poor links compared to TCP.

Figure 7 shows the summary statistics for Hop and two
best TCP and UDP schemes using a box plot represen-
tation. The “box” shows the upper quartile (Q3), me-
dian (Q2) and lower quartile (Q1), and the “whiskers”
show the maximum and minimum goodput. UDP/no-
ARQ/txop is the best UDP combination and provides an
upper bound on the achievable rate. The median Hop
is about 24% lower than the achievable rate. Interest-
ingly, turning on ARQ degrades UDP by 35% showing
that ARQ in 802.11 comes at a high overhead and ARQ
alone is not sufficient to fix TCP’s problems.

As we find that TCP performance consistently im-
proves by using txops and ARQ with the maximum
possible limit, we give TCP and its variants the ben-
efit of txop/max-ARQ in the rest of our evaluation.

5.1.2 Graceful performance degradation

A key benefit of Hop is robustness, i.e., its performance
gracefully degrades with increasing link losses and in-
terference. To confirm this, we further analyze the data
from the experiment in §5.1.1. Figure 8(a) shows the per-
link throughput across the 56 links in the testbed (with
multiple runs over the same link averaged) sorted by TCP
goodput. Hop degrades gracefully to some of the poorest
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Figure 8: Graceful degradation to adverse channel conditions.
First plot shows per-link goodputs from one-hop experiment
sorted in TCP order. Second plot shows controlled experiments
demonstrating impact of loss. In both cases, Hop is more ro-
bust and degrades far more gracefully than TCP.

links in the testbed where TCP’s throughput is near-zero.
The average goodput for the worst 20 TCP flows is 334
Kbps, whereas Hop’s goodput for the same flows is 2.37
Mbps, a difference of 7x.

To understand the cause of TCP’s fragile behavior,
we evaluate the impact of loss perceived at the trans-
port layer on the performance of Hop and TCP. We start
with a perfect link that has a near-zero loss rate and in-
troduce loss by modifying the MadWifi device driver to
randomly drop a specified fraction of incoming pack-
ets. Figure 8(b) shows that, unsurprisingly, TCP goodput
drops to near-zero when loss rate is roughly 20%. Hop
shows graceful near-linear degradation and is operational
until the loss rate is about 80%.

5.2 Multi-hop microbenchmarks

How does Hop perform on multi-hop paths compared to
existing alternatives? To study this question, we pick
a sequence of 100 node pairs randomly with repetition
from the testbed. Static routes are set up a priori between
all node pairs to isolate the impact of route flux (consid-
ered in §5.3). The static routes were obtained by run-
ning OLSR with the default ETX metric until the routing
topology stabilized at the beginning of the experiment.
Among the 100 randomly chosen flows, 30% are two-
hop, 30% are three-hop, 10% are four-hop, 20% are five-
hop, and the remaining 10% are seven-hop flows. We
compare the multi-hop goodput of Hop to TCP, Hop-by-

Q3

Median

Q1

Cumulative Probability

Goodput (Mbps)
Figure 9: Experiment with multi-hop flows. Hop improves
lower quartile goodput by 2.7 x, median goodput by 2.3x, and
mean goodput by 2x.
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Figure 10: Boxplot of multi-hop single-flow benchmarks. Hop
has 2-3x median, and 2-4Xx mean improvements over other
reliable transport protocols. Hop is comparable to UDP/no-
ARQ/txop in terms of median/mean — the latter is extremely
fast since it has no overhead, but experiences more loss.
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Figure 9 shows the CDF of goodput for just Hop and
TCP, while Figure 10 shows the summary statistics for
all the protocols. Hop consistently outperforms all other
protocols. The Q1, Q2, and Q3 gains over TCP are
2.7x, 2.3x and 1.9x respectively. The Q1 gain over
TCP is lower than for the single-hop experiment be-
cause only good links selected by OLSR are used in this
experiment (as evidenced by the better performance of
UDP/no-ARQ/txop compared to UDP/max-ARQ/txop).
Over lossier paths, Hop’s gains are much higher. We
also find that the gains also grow with increasing num-
ber of hops (refer technical report [15]). For example,
the lower quartile gains grow from about 2.7x for two
hops to more than 4 x for five and six hops.

5.3 Hop under high load

The experiments so far considered one flow in isolation.
Next, we evaluate Hop in a heavily loaded network to un-
derstand the effect of increased contention and collisions
on Hop’s performance and fairness. We compare Hop,
TCP, and Hop-by-Hop TCP. The experiment consists of
thirty concurrent flows that transfer data continually be-
tween randomly chosen node pairs in the testbed. All
protocols are run over a static mesh topology identical to
§5.2. To focus on multihop benefits, we pick src-dst pairs
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Figure 11: Hop for 30 concurrent flows. Dots on each line

shows mean goodput. Median gains of Hop over Hop-by-Hop
TCP and regular TCP are huge (20x and 90x respectively)
while mean gains are modest (roughly 25% improvement).

that are not immediate neighbors of each other. We run
the experiment five times, and for each run, we measure
the goodputs of flows half an hour into the experiment,
since the network reaches a steady state at this time.

5.3.1 Goodput

Figure 11 shows that Hop achieves a huge improvement
in median goodput over TCP and Hop-by-Hop TCP. Hop
achieves a median goodput of 54.9 Kbps whereas all the
other protocols achieve less than 2.8 Kbps—an improve-
ment of over an order of magnitude! Hop also improves
the Q1 goodput by more than two orders of magnitude
and upper quartile goodput by 2x over the other proto-
cols. The exact numbers of Hop’s median and Q1 gains
over other protocols are sensitive to environmental con-
ditions, but we consistently observe them to be large un-
der different conditions. The figure also shows that Hop-
by-Hop TCP achieves more than 4x improvement over
TCP’s median goodput. This shows that end-to-end rate
control hurts TCP utilization and using hop-by-hop back-
pressure with TCP improves its performance. We also
run UDP (not shown for clarity), but due to lack of con-
gestion control, around 67% flows get zero goodput (i.e.,
the median is zero) and the mean goodput is 0.32Kbps.
Hop’s mean gain over TCP is just 25%, which is not
as impressive as the quartile gains. This is to be expected
as TCP is highly unfair and starves a large number of
flows to acquire the channel for only a few flows. In
many cases, the top three TCP flows get around 90% of
the total goodput. In contrast, Hop is significantly fairer
and has higher throughput than most of the TCP flows.

Fairness index
Hop 0.78 (0.09)
TCP 0.12 (0.04)
Hop-by-Hop TCP 0.21 (0.05)

Table 2: Fairness indexes for the 30 flow experiment. Paren-
theses show 95% confidence intervals.

5.3.2 Fairness

Table 2 shows the fairness index for different protocols.
The fairness metric that we use is hop-weighted Jain’s
fairness index (JFI [28]). When there are n flows, with
throughput x; through z,, and hop lengths h; through
(i zihi)?

ny iy (wihi)?”

Hop is significantly fairer than both TCP-based proto-

cols. It is noteworthy that while TCP sacrifices fairness
for goodput, Hop is superior on both metrics.

hy, it is computed as follows: JFI =

5.4 Hop performance breakdown

How much do components of Hop individually con-
tribute to its overall performance? To answer this ques-
tion, we compare four versions of Hop: 1) the basic Hop
protocol that only uses hop-by-hop block transfer, 2) Hop
with ack withholding turned on, 3) Hop with backpres-
sure turned on, and 4) Hop with both ack withholding
and backpressure turned on. Since the impact of these
mechanisms depends on the load in the network, we con-
sider 10, 20 and 30 concurrent flows between randomly
picked sender-receiver node pairs. A static mesh topol-
ogy identical to §5.2 was used. The length of the ran-
domly picked paths are between three and seven hops.
The average path length is 3.9 hops in the 10 flow case,
4 hops in the 20 flow case, and 3.9 hops in the 30 flow
case. Each flow transmits a large amount of data, and we
take a snapshot of the measurements after half an hour.

350
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Figure 12: Hop performance breakdown showing contribution
of ack withholding and backpressure. Ack withholding and
backpressure improve Hop’s performance by more than 4.8x
under high load.

Figure 12 shows the performance of the different
schemes. The benefit of ack withholding and backpres-
sure increases with network load. In the 10 flow case,
both ack withholding and backpressure increase goodput
by around 20%. With greater network load, congestion
increases dramatically, hence the gains due to backpres-
sure is more than due to ack withholding. For exam-
ple, in the 30 flow case, Hop with backpressure yields
3.7x improvement over basic Hop, whereas Hop with
ack withholding yields 2.5 x improvement. Furthermore,
the benefits of using both backpressure and ack withhold-
ing are considerably more than using either one of them.
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For instance, the full-fledged Hop yields 4.8 x improve-
ment over basic Hop for the 30 flow case.

5.5 Hop with WLAN access points

Next, we evaluate how ack withholding in Hop compares
to the 802.11 RTS/CTS mechanism for dealing with hid-
den terminals. We emulate a typical one-hop WiFi net-
work where a number of terminals connect to a single
access point. We setup a 7-to-1 topology for this experi-
ment, by selecting a node in the center of our testbed to
act as the “AP node”, and transmitting data to this node
from all its seven neighbors. Among the seven transmit-
ters, six pairs were hidden terminals (i.e. they could not
reach each other but could reach the AP). We verified
this by checking to see if they could transmit simultane-
ously without degradation of throughput. In each run, the
nodes transmit data continually, and we measure goodput
after 30 minutes when the flow rates have stabilized.

Mean Median Fairness
Hop 663 (24) | 652 (33) | 0.93(0.01)
TCP 587 (88) | 244 (142) | 0.35(0.06)
TCP + RTS/CTS | 463 (20) | 333 (87) 0.4 (0.05)

Table 3: Mean/median goodput and Fairness for a many-to-one
“AP” setting. 95% confidence intervals shown in parenthesis

We compare Hop against TCP both with and without
802.11 RTS/CTS enabled. The results are presented in
Table 3, and show that Hop beats TCP with or with-
out RTS/CTS both in throughput and fairness. While
the mean gains over TCP without RTS/CTS are only
12%, the median improvement is about 2.7x. TCP
has a crafty way of maintaining high aggregate good-
put amidst hidden terminals by squelching all but one
of the flows and in effect serializing them. In contrast,
Hop achieves almost perfectly fair allocation across the
different flows. The addition of RTS/CTS to TCP hurts
aggregate throughput but improves median throughput
and fairness. However, Hop achieves 1.4 x the aggregate
throughput, 1.96x the median throughput, in addition to
hugely improving fairness over TCP with RTS/CTS.

5.6 Hop delay for small file transfers

How does Hop impact the delay incurred by micro-
blocks (small files)? Recall that Hop uses two mecha-
nisms to speed micro-block transfers: 1) It piggybacks
micro-blocks less than 16KB in size with the initial
BSYN to reduce connection setup overhead, 2) It’s ack
withholding mechanism prioritizes micro-blocks.

5.6.1 Single-hop transfer delay for small files

First, we evaluate the benefits of Hop’s size-aware ack
withholding policy. To evaluate this, we pick a one-hop
Wifi network where five nodes are connected to an AP
(similar setup as our WLAN experiments). In each ex-

periment, one of the five nodes (randomly chosen), trans-
mits a micro-block to the AP at a random time, whereas
the other four nodes continually transfer large amounts
of data. Each experiment runs until the micro-block
completes, at which point we compute the delay for the
transfer. We compare against TCP with and without
RTS/CTS, and report aggregate numbers over five runs.
Figure 13 shows that the transfer delay of the micro-
block with Hop is always lower than for TCP (with or
without RTS/CTS). In many cases, the delay gains are
significant, e.g., for file sizes less than 16KB, the gains
range from 3x to 15x. This experiment shows that Hop
can be used for delay-sensitive transfers like web trans-
fers, ssh, and SMS in many-to-one AP settings.

100 . . : ;
Hop s
TCP s
10 | TCP + RTS/CTS :
0 1 1 L t
3 1
& o1
0.01
0.001 : : : : : : : )
1 2 4 8 16 32 64 128
File size bin

Figure 13: Hop for WLAN: Hop improves delay for all file
sizes with improvements between 3-15x

5.6.2 Multi-hop transfer delay for Web file sizes

Next, we evaluate Hop and TCP over a larger workload
that comprises predominantly of micro-blocks. (We do
not consider TCP with RTS/CTS enabled, since it con-
sistently introduces more delay.) In particular, we con-
sider a Web traffic pattern where most files are small web
pages [5]. The flow sizes used in this experiment were
obtained from a HTTP proxy server trace obtained from
the IRCache project [12]. The CDF obtained was sam-
pled to obtain the representative flow sizes used in this
experiment. The distribution of file sizes is as follows:
roughly 63% of the files are less than 10KB, 25% are
between 10KB-100KB, and remaining are greater than
100KB. To stress multi-hop performance, the sender and
receiver for each flow are chosen randomly among the
node-pairs that were multiple hops away in our mesh
network. Flows followed a Poisson arrival pattern with
A = 2 flows per second. We present results from 100
flows aggregated in bins of size [2" !, 2"] except the
bins at the edge, i.e. <2KB, and >512.

Figure 14 shows that Hop has less or comparable de-
lay to TCP for almost all file sizes except those between
16K-32K. This dip occurs because 16KB is our thresh-
old for piggybacking data with BSYNs. This suggests
that a slightly larger threshold might be more effective,
but we leave the optimization for future work. For other
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Figure 14: Performance for web traffic: Except the 32KB bin,
Hop has comparable or better delay, with gains upto 6x

bins, delay with Hop is mostly lower than TCP (be-
tween 19% higher to 6 x lower than TCP), demonstrating
its benefits for micro-block transfer. Detailed file size
microbenchmarks in isolation (i.e., without concurrent
transfers) show a similar behavior (detailed in [15]).

5.7 Robustness to partitions

A key strength of Hop is its ability to operate even under
disruptions unlike end-to-end protocols such as TCP. We
now evaluate how, in a partitioned scenario, Hop com-
pares to hop-by-hop schemes such as DTN2.5 that are
designed primarily for disruption-tolerance. In this ex-
periment, we pick a seven hop path and simulate a par-
tition scenario by bringing down the third node and fifth
node in succession along the path for one minute each
in an alternating manner. Table 4 shows the goodput ob-
tained by Hop averaged over five runs under two differ-
ent backpressure settings: 1) backpressure limit (H) is
set to 1 and 2) backpressure limit is set to 100. Hop out-
performs DTN2.5, a protocol specifically designed for
partitioned settings, by 2x when H = 1, and 3x when
H = 100. The results show that Hop achieves excellent
throughput under partitioned settings, and a large back-
pressure limit improves throughput by about 15%. This
result is intuitive as having a larger threshold enables
maximal use of periods of connectivity between nodes.
In contrast to Hop, TCP achieves zero throughput since
a contemporaneous end-to-end path is never available.

Goodput (Kbps)
Hop w/ H=1 320 (29)
Hop w/ H=100 457 (18)
DTN2. 159 (15)

Table 4: Goodput achieved by Hop and DTN2.5 in a partitioned
network without an end-to-end path.

5.8 Hop with VoIP

In this experiment, we quantify the impact of Hop and
TCP on Voice-over-IP (VoIP) traffic. We use two met-
rics: 1) the mean opinion score (MoS) to evaluate the

quality of a voice call, and 2) the conditional loss proba-
bility (CLP) to measure loss burstiness. The MoS value
can range from 1-5, where above 4 is considered good,
and below 3 is considered bad. The MOS score for a
VoIP call is estimated as in [6]. The CLP is calculated as
the conditional probability that a packet is lost given that
the previous packet was also lost.

The experiment consists of a single VoIP flow and
multiple Hop/TCP flows that transmit data continually
over randomly picked 3-hop paths in the testbed. We em-
ulate the VoIP flow as a stream of 20 byte packets with
data rate at 8 Kbps. We evaluate two cases: one VoIP
flow with five Hop/TCP flows, and one VoIP flow with
ten Hop/TCP flows.

Table 5 shows that Hop achieves significantly better
throughput than TCP (in terms of median/mean) but has
more impact on the quality of VoIP calls. This is to be ex-
pected as TCP starves most of its flows as evidenced by
the abysmal median throughput (1-2 Kbps), and there-
fore has lower impact on the VoIP flow. In contrast,
Hop obtains median throughput of a few hundreds of
Kbps, while sacrificing a little VoIP quality. We believe
that even this discrepancy can be reduced by exploiting
802.11e to set larger contention window parameters to
the background queue (e.g. higher backoff), but have not
experimented with this so far.

Load Goodput (Kbps) CLP | MOS
5 flows Hop | Median: 468.5 0.37 | 4.12
Mean: 1474 (51)
TCP | Median: 2 048 | 4.19
Mean: 1372 (14)
10 flows | Hop | Median: 184 0.57 | 3.92
Mean: 336 (24.8)
TCP | Median: 1.7 0.31 | 4.16
Mean: 260 (8.5)

Table 5: Tmpact of Hop and TCP on VoIP flows. Result shows
the median/mean goodput, conditional loss probability, and
MOS for VoIP with 95% confidence intervals in parentheses.

5.9 Network and link layer dynamics

Our experiments so far were run with static routes and
with a fixed wireless bit-rate. Now, we evaluate the im-
pact of dynamic routing using OLSR and auto bit-rate
control using the default Madwifi Sample algorithm. We
run TCP under all four combinations of static/dynamic
routes and fixed/auto bit-rate selection. We compare
these to Hop with a fixed bit-rate and static/dynamic
routes. We are unable to evaluate Hop with auto-rate
control as the current implementation of Hop disables
link-layer ARQs that auto-rate control requires to esti-
mates link quality. As in §5.3, we consider thirty con-
current long-lived flows between randomly chosen node
pairs, and run the experiment five times.
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Figure 15: Hop for 30 concurrent flows under dynamic routing
and auto bit-rate. Dots on each line shows mean goodput. Me-
dian gains by Hop with fixed bit-rate are around 4 x over TCP
with OLSR and more than 90x over TCP with static routing.

Figure 15 shows that Hop is better than TCP across
all combinations, with median gains of 4 x over the best
of them. (Hop behaves almost identically with dynamic
or static routes, therefore we only show the static case in
the figure.) Surprisingly, we see that the best combina-
tion for TCP is with OLSR and fixed bit-rate. OLSR
significantly improves TCP’s median goodput or fair-
ness, thereby reducing Hop’s gain over TCP in com-
parison to the static case (§5.3). OLSR benefits TCP
as it constantly changes the routing topology with con-
current TCP flows, which makes high goodput flows
backoff and yield transmission opportunities to the previ-
ously low goodput flows. While the constant shuffling of
flows increases TCP’s median goodput, OLSR’s impact
on TCP’s mean goodput is small (25%) because the links
in the network are already heavily loaded. Auto-rate
control makes almost no improvement to TCP since the
testbed remains well-connected at 11 Mbps, and hence
OLSR choses good links at this bit-rate.

5.10 Hop under 802.11g
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Figure 16: Hop for 30 concurrent flows under 802.11g. Dots

on each line shows mean goodput. Hop’s median gain is 22x

over TCP with bit-rate fixed at 24Mbps, and is 6x over TCP

with auto-rate control. Hop’s mean gain is 3x over TCP with

auto-rate control.

All of our experiments so far were done with 802.11b.
How does Hop perform under higher bit-rates obtained
using 802.11g? To answer this question, we consider an
experiment similar to that in §5.3 with thirty long-lived

concurrent flows between randomly chosen node pairs.
We use a subset of our testbed (15 nodes) for this exper-
iment as many nodes get disconnected under 802.11g.
We ran this experiment with a static routing topology
obtained by running OLSR under 802.11g. We consider
Hop and TCP with a fixed 802.11g bit-rate of 24 Mbps
that yields a reasonably connected topology, as well as
TCP with auto-rate control.

Figure 16 shows that Hop improves median goodput
by 6x over TCP with auto-rate control and by 22x over
TCP with fixed bit-rate. The gains over TCP with auto-
rate are lower than in the case of our 802.11b experi-
ments in §5.3 because the maximum bit-rate in 802.11g
is higher than the selected fixed bit-rate of 24 Mbps.
Thus, TCP with auto-rate control can take advantage of
the fact that the maximum bit-rate on 802.11g links is 54
Mbps, whereas Hop’s bit-rate is fixed at 24 Mbps. As a
result, the highest goodput achieved by a flow that uses
TCP with auto-rate control is 23 Mbps, which is higher
than Hop’s maximum goodput of 16 Mbps. The fact that
Hop shows considerable benefits despite using a static
best bit-rate suggests that Hop with a good bit-rate selec-
tion scheme can benefit even more.

Figure 16 also shows that auto-rate control improves
TCP’s fairness (median goodput increases by 3.2x) but
hurts network utilization (mean goodput decreases by
65%). This is because auto-rate improves the low good-
put flows over lossy links by reducing the bit-rate (and
thereby the loss rate), but impacts high goodput flows
as flows over low bit-rate links are slow and consume a
large portion of transmission opportunities.

5.11 Discussion: Hop vs. TCP

Although the above results show Hop’s benefits across a
wide range of scenarios, our evaluation has some limi-
tations. First, our results are based on a 20-node indoor
testbed, so we can not claim that they will hold in other
wireless mesh networks. For example, it is conceivable
that the benefits due to ack withholding are because of
hidden terminals specific to our testbed’s topology. Nev-
ertheless, our experience with Hop has been encourag-
ing. Over the last few months, we have experimented
with different node placements, static topology configu-
rations, and diurnal as well as seasonal variations in cross
traffic and channel conditions, and have seen results con-
sistent with those described in this paper. Second, we
have not compared Hop to a large number of proposed
TCP modifications for multi-hop wireless networks for
which implementations are not available (refer §6.1). We
present Hop as a simple and robust alternative to end-to-
end rate control schemes, but do not claim that end-to-
end rate control can not be fixed to obtain comparable
benefits at least in well-connected environments.

TCP’s strengths are undeniable. Under high load, it is
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difficult to outperform TCP significantly in terms of ag-
gregate throughput (refer Figures 11 and 16). TCP backs
off aggressively on bad paths reducing contention for
flows on good paths resulting in an efficient but unfair al-
location. TCP has a similar effect on hidden terminals—
by squelching most of the colliding flows, TCP in effect
unfairly serializes them but ensures high throughput. Fi-
nally, despite its many woes in wireless environments,
TCP enjoys the luxury of experience through widespread
deployment, setting a high bar for alternate proposals.

Hop is not designed to be TCP-friendly. For exam-
ple, in the 30 flow scenario, if we convert just 7 of the
30 TCP flows to use Hop instead of TCP, the median
goodput of the remaining 23 drops by an order of mag-
nitude [15]. This is unsurprising as Hop’s bursty traffic
increases the loss and contention perceived by TCP flows
causing them to aggressively back off.

6 Related work

Wireless transport, especially the performance and fair-
ness of TCP over 802.11, has seen large body of prior
work. Our primary contribution is to draw upon this
work and show that reliable per-hop block transfer is a
better building block for wireless transport through the
design, implementation, and evaluation of Hop.

6.1 Proposed alternatives to TCP

TCP performance: TCP’s drawbacks in wireless net-
works include its inability to disambiguate between con-
gestion and loss [2], and its negative interactions with
the CSMA link layer. Proposed solutions include: 1)
end-to-end approaches that try to distinguish between
the different loss events [25], attempt to estimate the
rate to recover quickly after a loss event [19], or re-
duce TCP congestion window increments to be fractional
[21], 2) network-assisted approaches that utilize feed-
back from intermediate nodes, either for ECN notifica-
tion [38], failure notification [17] or for rate estimation
[32], and 3) link-layer solutions that use a fixed win-
dow TCP in conjunction with link-layer techniques such
as neighborhood-based Random Early Detection ([9]) or
backpressure flow control (RAIN [16]) to prevent losses
due to link queues filling up.

TCP fairness: TCP unfairness over 802.11 stems pri-
marily from: 1) excess time spent in TCP slow-start,
which is addressed in [32] by use of better rate esti-
mation, and 2) interactions between spatially proximate
interfering flows [37, 29] by using neighborhood-based
random early detection and rate control techniques.

In comparison to the above schemes, Hop does not
rely on end-to-end rate control, and thereby eliminates
the complex interaction between TCP and 802.11 that is
the root of its performance and fairness problems. In-
stead, Hop uses simple mechanisms—batching, hop-by-

hop backpressure and ack withholding—to improve per-
formance as well as fairness. Hop requires no modifica-
tions to the 802.11 MAC protocol.

6.2 Implemented alternatives to TCP

Few implemented alternatives to TCP are available for
reliable transport in 802.11 networks today. At the time
of writing, we found only two such implementations—
TCP Westwood+ and DTN2.5—both of which we com-
pare against Hop. Hop’s use of hop-by-hop reliability
and backpressure is similar to a recent proposal, CXCC
[31], but differs in its use of burst-mode, ack withhold-
ing, virtual retransmissions, etc. We could not compare
Hop against CXCC as it is not implemented for 802.11.

Two recent systems, WCP [30] and Horizon [27],
also address TCP’s performance and fairness problems
over 802.11. WCP, similar in spirit to NRED [37],
augments TCP’s end-to-end rate control with network-
assisted feedback about contention along the path. WCP
shows significant gains in median throughput (or fair-
ness) under load, but often reduces the mean through-
put considerably. Horizon uses backpressure scheduling
with multi-path routing as a shim between unmodified
TCP and 802.11 layers, and shows improved fairness un-
der load in a majority of experimental runs at the cost
of mean throughput. In comparison, Hop consistently
shows significant improvement in fairness and mild im-
provement in mean throughput under load. Although we
have not performed a head-to-head comparison to Hop,
we note that both WCP and Horizon rely on link-layer
ARQ per frame that our experiments (Figures 7 and 10)
suggest are inefficient for lossy wireless links.

6.3 Other related work

Backpressure: Backpressure was first investigated in
ATM [24] and high-speed networks [20] to handle data
bursts. A seminal paper by Tassiulas and Ephremides
[33] showed that backpressure scheduling can achieve
the stable capacity region of a wireless network. This
paper sparked off a large body of theoretical work [34]
on optimal scheduling, routing, and flow control in wire-
less networks. However, backpressure scheduling is NP-
hard, incurs a high signaling overhead per transmission,
and is difficult to implement with the 802.11 MAC layer,
so few practical implementations exist.

In recent times, backpressure-like ideas have been
adapted for congestion control as an alternative to TCP
[31] or underneath TCP [16, 27]; for unreliable hierar-
chical data aggregation in sensor networks [11]; for reli-
able bulk transport in linear sensor networks and a single
flow [14], etc. In comparison, Hop performs backpres-
sure over blocks to amortize the signaling overhead, uses
ack withholding to to alleviate hidden terminal losses,
and uses per-hop reliability with virtual retransmissions
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to efficiently deal with in-network losses.

Batching: Ng et al. [22] show that adapting the burst
size of txop’s in 802.11e to the load can improve TCP
fairness in WLAN settings. WildNet [26] leverages
batching with FEC and bulk acknowledgments at the
link layer over long-distance unidirectional 802.11 links.
Kim et al. [35] aggregate TCP frames using the 8§02.11n
burst mode to amortize the MAC protocol overhead. In
comparison, Hop jointly leverages batching both at the
link and transport layers.

7 Conclusions

The last decade has seen a huge body of research on
TCP’s problems over wireless networks, but TCP for
good reasons continues to to be the dominant real-world
alternative today. One reason may be that TCP is good
enough in the common case of wireless LANs, and so-
lutions proposed for more challenged environments do
not perform well in the common case. A natural ques-
tion is if we can have one simple transport protocol that
yields robust performance across diverse networks such
as WLANSs, meshes, MANETS, sensornets, and DTNs.
Our work on Hop suggests that this goal is achievable.
Hop achieves significant throughput, fairness, and de-
lay gains both in well-connected WLANs and mesh net-
works as well as disruption-prone networks.
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