@inproceedings{he-etal-2024-bp4er,
title = "{BP}4{ER}: Bootstrap Prompting for Explicit Reasoning in Medical Dialogue Generation",
author = "He, Yuhong and
Zhang, Yongqi and
He, Shizhu and
Wan, Jun",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.223/",
pages = "2480--2492",
abstract = "Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue context as sequential text with annotated medical entities. While these methods have been successful in generating fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER), which explicitly model MDG`s multi-step reasoning process and iteratively enhance this reasoning process. We employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally, we also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and facilitate the LLM`s explicit reasoning. This approach eliminates the need for entity annotation and increases the transparency of the MDG process by explicitly generating the intermediate reasoning chain. Experimental results on the two publicly datasets show that BP4ER outperforms state-of-the-art methods across both objective and subjective evaluation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="he-etal-2024-bp4er">
<titleInfo>
<title>BP4ER: Bootstrap Prompting for Explicit Reasoning in Medical Dialogue Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongqi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue context as sequential text with annotated medical entities. While these methods have been successful in generating fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER), which explicitly model MDG‘s multi-step reasoning process and iteratively enhance this reasoning process. We employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally, we also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and facilitate the LLM‘s explicit reasoning. This approach eliminates the need for entity annotation and increases the transparency of the MDG process by explicitly generating the intermediate reasoning chain. Experimental results on the two publicly datasets show that BP4ER outperforms state-of-the-art methods across both objective and subjective evaluation.</abstract>
<identifier type="citekey">he-etal-2024-bp4er</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.223/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>2480</start>
<end>2492</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BP4ER: Bootstrap Prompting for Explicit Reasoning in Medical Dialogue Generation
%A He, Yuhong
%A Zhang, Yongqi
%A He, Shizhu
%A Wan, Jun
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F he-etal-2024-bp4er
%X Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue context as sequential text with annotated medical entities. While these methods have been successful in generating fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER), which explicitly model MDG‘s multi-step reasoning process and iteratively enhance this reasoning process. We employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally, we also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and facilitate the LLM‘s explicit reasoning. This approach eliminates the need for entity annotation and increases the transparency of the MDG process by explicitly generating the intermediate reasoning chain. Experimental results on the two publicly datasets show that BP4ER outperforms state-of-the-art methods across both objective and subjective evaluation.
%U https://aclanthology.org/2024.lrec-main.223/
%P 2480-2492
Markdown (Informal)
[BP4ER: Bootstrap Prompting for Explicit Reasoning in Medical Dialogue Generation](https://aclanthology.org/2024.lrec-main.223/) (He et al., LREC-COLING 2024)
ACL