skip to main content
10.1145/3383313.3411524acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
demonstration

BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems

Published: 22 September 2020 Publication History

Abstract

The field of recommender systems has rapidly evolved over the last few years, with significant advances made due to the in-flux of deep learning techniques. However, as a result of this rapid progress, escalating barriers-to-entry for new researchers is emerging. In particular, state-of-the-art approaches have fragmented into a large number of code-bases, often requiring different input formats, pre-processing stages and evaluating with different metric packages. Hence, it is time-consuming for new researchers to reach the point of having both an effective baseline set and a sound comparative environment. As a step towards elevating this problem, we have developed BETA-Rec, an open source project for Building, Evaluating and Tuning Automated Recommender Systems. BETA-Rec aims to provide a practical data toolkit for building end-to-end recommendation systems in a standardized way. It provides means for dataset preparation and splitting using common strategies, a generalized model engine for implementing recommender models using Pytorch with 9 models available out-of-the-box, as well as a unified training, validation, tuning and testing pipeline. Furthermore, BETA-Rec is designed to be both modular and extensible, enabling new models to be quickly added to the framework. It is deployable in a wide range of environments via pre-built docker containers and supports distributed parameter tuning using Ray. In this demo, we will illustrate the deployment and use of BETA-Rec for researchers and practitioners on a number of standard recommendation datasets. The source code of the project is available at github: https://github.com/beta-team/beta-recsys.

References

[1]
Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In RecSys. 101–109.
[2]
Asela Gunawardana and Guy Shani. 2009. A survey of accuracy evaluation metrics of recommendation tasks. Journal of Machine Learning Research 10, Dec (2009), 2935–2962.
[3]
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173–182.
[4]
Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-aware recommender systems. Comput. Surveys 51, 4 (2018), 66.
[5]
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–461.
[6]
Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural Collaborative Filtering vs. Matrix Factorization Revisited. arXiv:2005.09683 (2020).
[7]
Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the difficulty of evaluating baselines: A study on recommender systems. arXiv preprint arXiv:1905.01395(2019).
[8]
Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Representing and Recommending Shopping Baskets with Complementarity, Compatibility and Loyalty. In CIKM. 1133–1142.
[9]
Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering. In SIGIR. 165–174.
[10]
Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and Deborah Estrin. 2018. Openrec: A modular framework for extensible and adaptable recommendation algorithms. In WSDM. 664–672.
[11]
Shuai Zhang, Yi Tay, Lina Yao, Bin Wu, and Aixin Sun. 2019. Deeprec: An open-source toolkit for deep learning based recommendation. IJCAI Demonstrations Track(2019).
[12]
Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recommender system: A survey and new perspectives. Comput. Surveys 52, 1 (2019), 1–38.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
RecSys '20: Proceedings of the 14th ACM Conference on Recommender Systems
September 2020
796 pages
ISBN:9781450375832
DOI:10.1145/3383313
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 September 2020

Check for updates

Author Tags

  1. Framework
  2. Open-source
  3. Recommender Systems
  4. Toolkit

Qualifiers

  • Demonstration
  • Research
  • Refereed limited

Funding Sources

  • the European Community's Horizon 2020 research and innovation programme

Conference

RecSys '20: Fourteenth ACM Conference on Recommender Systems
September 22 - 26, 2020
Virtual Event, Brazil

Acceptance Rates

Overall Acceptance Rate 254 of 1,295 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)35
  • Downloads (Last 6 weeks)3
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media