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Abstract—Automated Self-optimizing Networks (SON) algo-
rithms have been proposed to address and solve the issues
related to optimization in small cell networks. However, auto-
matic optimization approaches require precise knowledge of the
deployment environment and users behaviors. This information
is generally difficult, expensive to obtain and presents significant
computational requirements. In this paper we introduce a method
that, based on available measurements, enables the automatic
generation of an abstract equivalent model and its adaptation to
the environment in which the network is deployed. This model
can be a key component to mitigate the computational burden
and to speed up the convergence of self-learning and self-evolving
coverage optimization algorithms.
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I. INTRODUCTION

Microcell, picocell, femtocell and lately attocell. There is a
current trend in mobile operators to extend the existing cellular
systems with targeted cellular deployments commonly referred
to as small cell networks. Recently, significant research efforts
have focused on the area of Self-optimizing Networks (SON)
to resolve issues of traditional manual optimization in small
cell networks [1][2] [3].

Manual optimization, in fact, is time and cost expensive
and it is not compatible with the “plug-and-play” business
model used in small cell networks. As mentioned a possible
solution is to use pre-defined SON algorithms designed for
general cases. However these approaches may produce sub-
optimal solutions due to the high variability of the scenarios,
particularly if implemented in a distributed fashion. Automated
algorithm design approaches, where the self-management al-
gorithm itself is adapted to the actual environment, can solve
these issues. One approach for automatic algorithm design is
genetic programming (GP). For instance, GP has been proven
to be an effective method to automatically create algorithms
for distributed coverage optimization [4].

A schematic representation of such process is presented in
Figure 1.

Generally, GP evolution steps can be summarized as fol-
lows:

1) Initialize the population with random algorithms.
2)  Evaluate the performance of each program in the
population using a given fitness function.
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Fig. 1: Overview of application of GP process
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3)  Populate the next generation with offspring by apply-
ing mutation and crossover operators on individuals
with high fitness.

4)  Repeat steps 2 and 3 until stop conditions are met.

The evaluation of point 2 implies the simulation of the
scenario over an important period, in order to take into account
the impact of the moving users and varying traffic demands. A
major limitation of this approach is the environment model: in
order to obtain optimal results for a specific deployment sce-
nario, a high accuracy degree of the environment is required.
Such information is difficult and time expensive to collect.
For instance, in order to obtain an estimate of the coverage
overlap of neighboring cells, in addition to the base station
configuration, one needs:

e  a precise map of the area;

e the knowledge of all the construction materials and
relative propagation behavior;

e the accurate wave propagation model.

Furthermore, user mobility is another determining factor
to be taken into account during the modeling process: the
same geographical scenario (for instance, a building) can have
different optimal solutions depending on the number of users
and of their mobility patterns.

Anyway, GP has a peculiarity: at each evolution step the
approach is not really interested at the absolute value of the
fitness function F', but rather at its gradient, i.e. the difference
between different fitness values. Among the mutation set M,
the individual x,,¢,, with the highest fitness value is chosen as
the new candidate::

Tnew = {x; € M : F(z;) = ?é%([F(Il)’F(IQ)’ e

This observation is the key motivator for this paper: we
propose an abstract model that has no pretension to give a



precise estimation for the absolute value of the fitness, but only
focuses on modeling the fitness gradient in order to guide the
GP evolution in the right direction with minimal computational
requirements.

II. STATE OF THE ART

The common scheme used in all adaptive approaches
(e.g., incremental, heuristic, evolutionary, machine learning)
is to compute the value of a given objective function, which
estimates the goodness of a provided solution in terms of ef-
fectiveness of the new adaptation step. The objective functions
are usually computed by an analysis of the scenario, both the
physical and mobility aspects are taken into account, so the
precision of the model is of paramount importance. The usual
adopted solution is to develop accurate models of environment
and users behaviors, which can reliably replicate reality [5][6].
This is generally done through two main elements:

e  physical model;

e  mobility model.

The physical model involves analysis and tracking of wave
propagation in the environment in order to understand signal
characteristics (e.g., integrity, interference, Signal-to-Noise Ra-
tio). This requires the understanding of the physics involved,
of the radio signaling protocol and of the RF equipment.
Moreover, and most importantly, a deep knowledge of the
environment is required: the exact position of all obstacles
(e.g., walls, trees, cars), their electromagnetic characteristics
(e.g., interference, reflection, attenuation, dielectric constants),
the exact position of all signal sources, an so on and so
forth. Similarly, the mobility model concerns modeling and
tracking users moving into the environment and interacting
with the base stations. It requires the knowledge of the exact
position and behavior of each user, which can rise up to
hundreds or thousands in an outdoor scenario. All this wealth
of information is the main problem of such approach:

1) it is really difficult to obtain;

2) it is time and economically expensive to realize;
3) it makes simulation complexity huge;

4) it is intrinsically centralized.

Point 1 and 2 are especially problematic for the small cell
deployments business model, which is based on “plug-and-
play” of off-the-shelf components by the final customer, with
little or no intervention from the operator. Moreover, Points
3 and 4 go against the solution given to the previous two
points (1 and 2), which is based on autonomous adaptation
of the cells after their deployment. This is not feasible if the
required computational resources are too big (it would have
too big an impact on the final cost), and if centralization
requires specific additions to the infrastructure, once more with
a negative impact on costs.

ITI. ABSTRACT GRAPH REPRESENTATION

The key point of the adaptive approaches presented in the
previous section is to compare the performances (i.e. fitness)
of different solutions in order to identify the best one. To reach
this goal, precise simulations are done to obtain a reliable

estimation of the absolute value of fitness of each solution,
which is then used as the comparison metric.

In the present paper we propose a radically different
approach: to reduce the overall complexity of the problem by
developing an abstract equivalent model based on the concept
of equivalent distance. This concept, explained in details in
the following section, estimates the distance two base stations
should be at in an ideal free-space propagation environment
to observe the same signal attenuation they have in reality.
This value can be easily calculated from direct measurements
obtained during the normal operations of small cells in a real
environment. Free-space propagation is extremely simple, and
most problems are reduced to simple Euclidean geometry.
More formally, the use of an equivalent distance allows the
representation of the real scenario by mean of a directed graph
G(N, A) composed of N nodes and A arcs.

Each node 7 € N represents a small cell and is defined by one
or more of its global attributes, such as:

e name ID;
e real space coordinates;
e equivalent space coordinates;

e forward and backward stars;

and by the combination of one or more problem related
(local context) attributes, like for example:

e number of connected users;

e number of arriving/leaving users;
e  transmission power;

e number of detected drop calls;

e traffic characteristics (e.g., number of handled calls,
amount of traffic).

One or more directed arcs, or links, can connect the nodes.
Each arc (7, ) € A is defined by its global attributes, such as:

e name ID;

e tail end node 7 ;

head end node j ;

equivalent distance d. ;

neighbors list;
and by mean of local context attributes, like for example:

e real distance d (if available);
e number of users “moving” along the arc;

e overlapping area along the direction defined by the
arc.

The flexibility of such simple graph representation further
allows the definition of additional customized global and local
context attributes for the nodes and the arcs depending on the
problem at hand.



IV. CREATING THE EQUIVALENT MODEL

The graph representation described above can be used to
model a variety of parameters such as cells area overlap or user
mobility characteristics as required for the automatic evolution
of self-X algorithms. This allows on the one hand a bigger
number of iterations (therefore the error introduced by the
simplification can be reduced) and on the other hand leaves
enough computational resources to evolve the model itself, so
that over time it becomes more precise.

A. The Equivalent Distance

We propose the following technique to generate the equiva-
lent distance: during the start-up process a small cell, identified
by mean of a particular identifier (e.g., the cell ID), emits
a pulse at maximum transmission power for a predefined
time t;,;:. A neighbor cell sensing the pulse measures the
received power and, using the free-space path loss equation,
calculates the distance that would be between the two base
stations to have the same attenuation in an ideal free space
propagation scenario (i.e., the equivalent distance), as detailed
in the example of paragraph IV-B.

Such value can be internally stored, exchanged within
the small cell network, or reported back to a given central
optimization system. The same procedure can be applied to
calculate the equivalent distance between a small cell and a
mobile phone or the one existing for a pair of mobile phones.
In general the value of the equivalent distance can be evaluated
when a pair of transmitting/receiving entities exists.

B. Overlap Estimation

In this paragraph the equivalent model is used to es-
timate the overlapping area of two neighboring cells. The
overlapping area (or overlap) is a term used to evaluate the
objective function in the coverage optimization process [4].
However, the estimated coverage overlap requires burdensome
computation over a highly precise model. In a traditional
simulation scenario, in fact, the simulator must model the
propagation patterns of each cell, and identify the areas where
signal interference is higher than a given threshold. With
our equivalent model approach, cell interference on a real
deployment is modeled using the free space propagation laws.
In such an ideal scenario, as depicted in Figure 2, for a given
cell A transmitting a pulse of power P4 at frequency f, the
power P4 p received at a given point B is inversely proportional
to the square of the distance d [7]:

Pap = k22 2

where k = ¢o/(4n f), with ¢y being the speed of light in
vacuum.
Once the minimum power threshold Prpg to achieve coverage
is defined, the points where interference with A is possible are
therefore contained in a circle of ray r and centered in A, as
depicted in Figure 2. The ray r is defined as:
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Fig. 3: Overlap in free space propagation

The computation of overlap between two cells is therefore
reduced to a mere geometrical problem, as depicted in Figure
3.1f d < (rq +rp), the overlap area (shaded in Figure 3 can
be computed based only on the transmit powers Pa, Pp, the
threshold Prpg and the distance d. [8]

It also means that for a given cell A transmitting at power
P4 and for every point B closer than r, it is possible to compute
their mutual distance d(A, B) just from the received power
Pyp. Of course, the real interference area is not a perfect
circle due to the presence of obstacles, multi-path effects, etc.
Figure 4 roughly represents such scenario: the wall between
A and B modifies the attenuation factor, and the overlap area
(shaded) is smaller than it would be in free space. As said,
the propagation pattern of Figure 4 is only indicative and in
reality it is much more complicated. The equivalent model
can be built by computing the equivalent distance d, for each
couple of cell. Its formal definition can be the following:

e let A be a cell transmitting at power Py;

e let B be a second cell, receiving a signal with power
Pap from A;

e let d(A, B) be the real distance between cells A and
B;

then the equivalent distance d.(A, B) can be defined as the
distance A and B would be in free space, so that the transmitted
power P, gets attenuated to Pyp:

Py
do(A, B) = ky/ =2 4
(4.8) = by 2 @

Figure 5 shows a graphical representation of d.(A, B).
When the equivalent distance is computed for both transmitting
cells, the equivalent overlapping area can be defined, as shown
in Figure 6. This area can be easily obtained through Euclidean
geometry [8], making the computation much lighter.
Moreover, the computation of equivalent distance only requires
the knowledge of transmitted and received powers, two values



Fig. 6: Definition of equivalent overlap area
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Fig. 7: Equivalent model generation
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easily obtained through direct measurements. The equivalent
model has two important properties:

e it may be NOT symmetric because the propagation is
not always symmetrical, i.e. d.(A, B) can be different
from d.(B, A);

e it does NOT conserve topology.

For instance, if nodes A, B and C form a triangle with sides

AB,BC,CA, then the three equivalent distances d.(4, B),
d.(B,C) and d.(C, A) may not form a triangle.

The resulting equivalent model is therefore a weighted
directed graph roughly representing the system, where one of
the metrics associated to the arcs is the equivalent distance,
as shown in Figure 7. Optimization algorithms can directly
be applied to this graph, and resulting solutions implemented
in the real system. Note that the values computed from the
equivalent model will generally have a high error margin and
their absolute value can arbitrarily be far from the real one.
Nevertheless, the important factor is that the equivalent model
and the real scenario show the same trend, in other words:

e  given two successive states of the system, S; and So;
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Fig. 8: Equivalent distance update

e let Obj(S1) and Obj(S2) be the corresponding real
system objective values (e.g., the overlap area);

e for adaptation, the difference between these two ob-

jectives can be calculated as A = Obje,(S2) —
Objeq(S1);

e if A > 0, the adaptation is kept, otherwise it is
discarded;

e similarly, the corresponding values Objeq(S1),
Objeg(S2) and A., can be calculated in the
equivalent model.

Most likely Obje,(S1) # Obj(S1) and Objey(S2) #
Obj(Sa2), but the sign of A., should be most of the time the
same as for A. As a result, the adaptation can be driven in the
same direction, but based on the much simpler computations
on the equivalent model. Early results of the goodness of such
statement are shown in Section V.

C. Model Adaptation

The accuracy of the model can be improved using infor-
mation derivable from feedback generated by end users. For
example, this feedback could be:

e  statistics indicating a large number of dropped calls in
a area supposedly well covered;

e users reporting high interference in areas with little
overlap.

The model can be adapted in many ways to take into
account this feedback. One particular case is where the re-
ceived power Prx on a given cell is smaller than a threshold
Prg. In such a case the equivalent distance d. can not be
calculated and the likely existing overlapping area can not be
“detected” by the equivalent model. However, when the user
walks in the actually existing overlapping area, he will be able
to communicate with both cells. Therefore the knowledge of
transmitted and received powers of both cells and of the mobile
handset, allows the calculation of d. as shown in Figure 8.



D. Model Extension

In the previous paragraphs the equivalent model was com-
puted based on a single parameter, that is the equivalent
distance. To further enrich the model and make the equivalent
objective function closer to the real objective function, some
additional parameters can be introduced, such as:

1) number of observed handovers from one cell to
another;

2) number of users registered in a cell;

3) degree of a cell (number of discovered neighbors).

In this case, (1) would be a weight on a connecting arc,
while (2) and (3) are scalar values on the node that could be
used in a varieties of ways in the objective function. Metric (1)
for instance, could help determine the mobility patterns of the
user, and identify potential bottlenecks, while metric (2) could
be used to adjust the coverage area of the cell, enlarging it
(transmitting at higher power) if the user count is low and
shrinking it if the cell is overloading. Finally, parameter (3)
could be used to identify the probability of handover of each
node in order to create a statistical mobility pattern. All these
extension metrics can be subject to adaptation and refinement
over time and additional parameters can also be derived from
the real system.

E. Mobility Modeling

A special case of model extension is the modeling of user
mobility. As aforementioned, the behavior of the users can be a
determining factor for reaching an optimal solution. Traditional
schemes use “a-priori” mobility models for the users, which
are made to move inside the physical scenario, and then used
to measure the parameters needed for the objective function.

In a real small cells deployment there is scanty knowledge
of the environment and so it can be difficult to determine which
a-priori mobility model matches the problem better. On the
other hand, the cells have the capability to measure a number
of parameters directly linked to users’ mobility, such as:

e the load of each cell (i.e., number of users in a certain
area)

e inbound handover events (users entering an area);

e  outbound handover events (users leaving an area);

e  ‘“directional handovers” (as correlation of the previous
two parameters: users leaving an area to enter another
one).

In the equivalent model, these parameters can be consid-
ered to build a mobility model adapted to the real scenario.
Many techniques can be used (e.g., statistical analysis, ma-
chine learning, pattern recognition) depending on the available
performances and on the required precision.

One example to build the parameter listed above is to es-
timate Pyo = (A, B, 1), the probability of having a handover
from cell A to cell B at a time ¢. In the simplest case, this
can be obtained by collecting handovers/drop calls history data
over a time measuring interval 7' and extracting the relative
probability distribution (occurrence, variance). This will create
very basic user behavioral patterns.

In addition the information on the degree of each cell
(number of incoming/outgoing arcs) can be used to calculate
the handover probability distribution of all possible next cells,
identifying the most probable one.

The combination of both the mobility model and the
coverage estimation allows the development of more accurate
handover prediction algorithms. In more advanced approaches,
in fact, Pyo can be obtained using a self learning process
based on the evolution of the model and on the combination
of location, direction, speed and node degree history data. An
accurate prediction model is extremely useful to optimize the
node power consumption, to minimize handover latency, and to
improve the QoE (Quality of Experience) preconfiguring the
resources needed for a given service. Therefore this second
use complements the coverage estimation and makes the
Equivalent Model rich enough to be used as benchmark within
an optimization process by estimating the goodness of new
mutations generated in a genetic approach, before applying
them to the real system. Finally, the mobility model extraction
process is not intrinsically centralized, so it could easily be
used in distributed approaches, where each cell estimates the
transition probability to/from its neighbors and uses it for its
independent evolution process.

V. PRELIMINARY RESULTS

In the first experiment, the equivalent model has been
used to estimate the overlap areas in the small cells office
simulation scenario in [4]. As part of the fitness function this
value is used to drive the genetic approach in the coverage
optimization process. The obtained solutions can be compared
with those resulting from available measured values of the real
scenario, in order to validate the effectiveness of the proposed
approach. In Figure 9 the evolution choice comparison between
the equivalent model and the real overlap is shown. At each
generation of the genetic process, the best individual (best
algorithms in this particular implementation) is chosen to
generate new children. As shown in Figure 9, the choices made
based on the equivalent model match by around 90% those
made based on the real scenario. For the same experiment,
in Figure 10 and Figure 11 the maximum and mean fitness
comparison over 100 generations are shown. Figure 10 reveals
that the trend of the maximum fitness related to the equivalent
model (solid line) follows that of the real scenario (dashed
line). Similarly, Figure 11 shows that for each generation, the
sign of the first derivative of the average fitness calculated
using the equivalent model largely matches that related to the
real scenario (i.e., the mean of the fitness function shows the
same behavior over time).

A. Future Work

More sophisticated approaches, which would be worth of
further investigation, involve a more radical modification of
the graph itself, like for instance:

e introduction of “discontinuity nodes”, which could be
used for example to model walls;

e additional parameters to balance the influence of cells
in the computation of the objective function, which
can be used in highly asymmetrical situations (i.e.,
when P4 > Ppg);
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Fig. 10: Maximum fitness comparison over 100 generations

e integration of users as elements of the graph (e.g., as
“mobile” nodes).

VI. CONCLUSIONS

This paper introduces the generation and the automatic
adaptation of a simplified Equivalent Model (EM) that can
be used to speed up the convergence of self-X optimization
algorithms. These methods, in fact, do not require a detailed
knowledge of the target environment, but only enough infor-
mation to compute and compare the fitness function values of
the different mutations. The Equivalent Model is tailored for
such needs because:

e it takes as input only values that can effectively
be read on the small cells: power levels (both in
transmission and reception) and network statistics (cell
load, handovers, dropped calls);

e it tracks and simulates only values used as inputs
for the fitness function: network statistics (cell load,
handovers, dropped calls).

The fitness functions computed from these values will suffer
from a lot of simplification errors, and their absolute value
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Fig. 11: Mean fitness comparison over 100 generations

will not be reliable. On the other hand, if GP is used then
the absolute value has no meaning: what is important is the
gradient of the function, i.e. which mutation has the highest
fitness value. All mutations should suffer from roughly the
same errors derived from the EM, so the gradient should be
respected. Unfortunately, the high variability of the scenarios
makes a formal demonstration almost impossible: an important
deliverable of this paper has been the validation of this
assumption, as detailed in section V.
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