
AUTOMATED FIREWALL RULE SET

GENERATION THROUGH PASSIVE TRAFFIC

INSPECTION

Georg-Christian Pranschke1, Barry Irwin2 and Richard Barnett3

Security and Networks Research Group

Computer Science Department

Rhodes University

Grahamstown, South Africa

1g05p3292@campus.ru.ac.za, 2b.irwin@ru.ac.za,
3barnettrj@acm.org

ABSTRACT

Introducing �rewalls and other choke point controls in existing networks is
often problematic, because in the majority of cases there is already produc-
tion tra�c in place that cannot be interrupted. This often necessitates the
time consuming manual analysis of network tra�c in order to ensure that
when a new system is installed, there is no disruption to legitimate �ows.

To improve upon this situation it is proposed that a system facilitating net-
work tra�c analysis and �rewall rule set generation is developed. A high
level overview of the implementation of the components of such a system is
presented. The system makes use of a third party package, named Firewall
Builder which provides �rewall rule sets for a wide variety of �rewalling so-
lutions. Additions to the system are scoring metrics which may assist the
administrator to optimise the rule sets for the most e�cient matching of
�ows, based on tra�c volume, frequency or packet count.

KEY WORDS

�rewall, choke point control, automatic con�guration, network tra�c anal-
yser, pcap, net�ow



AUTOMATED FIREWALL RULE SET

GENERATION THROUGH PASSIVE TRAFFIC

INSPECTION

1 INTRODUCTION

In order for �rewalls to serve their intended purpose, it is imperitive that
they are correctly con�gured. This is because each individual network setup
is di�erent and if the �rewall is to become an integral part of a network's
infrastructure it has to cater for the individual properties of the network it
is deployed in. A miscon�gured �rewall will, almost certainly, only provide
the illusion of network security [15]. While con�guring host based �rewalls
and �rewalling solutions protecting small networks and correctly documented
networks may be a relatively straight forward task for an experienced network
administrator, it does become a very much harder task when dealing with
poorly documented legacy and organically developed networks.

This research is focused on the feasability of automatically generating the
con�guration for a rule set generator called Firewall Builder [5], to further
automate the process of con�guring and deploying �rewalling solutions.

The remainder of this paper is structured as follows. After a brief problem
statement in section 2, in which we describe in what situations and setups
the system is to be employed, we turn to a high level desgin overview of the
proposed system in section 3. Each component of the components that make
up the system is individually highlighted in sections 3.1, 3.2, 3.3 respectively.
Section 3.4 deals with Firewall Builder, a third party product upon which the
system relies. Section 4 describes possible future extensions to the system
and section 5 concludes the paper.

2 PROBLEM STATEMENT

A �rewall is rarely a single piece of hardware or software [12] and, therefore,
combining the various technologies involved into a well con�gured �rewalling
solution is often a non trivial task in itself. The process of con�guring and
deploying a �rewalling solution is further complicated when a �rewall is to be
introduced into a network segment that previously did not have any choke

1



point controls. This is often the case in growing network infrastructures
where it might be desirable to introduce choke point controls at a node
that previously had no such system. Because the �ows passing through the
node might not be known to their full extent and because an unintended
interruption of production tra�c is surely undesirable, it is often necessary
to inspect the tra�c �ows at the node manually and then to derive �rewall
policies for the particular �rewalling solution proposed at the node. While
there are many tra�c analysers available, ranging from propriety commercial
products, that cost up to 25,000 USD, to free and open source solutions [9];
that perform tra�c �ow analysis, there is no product that speci�cally caters
for the con�guration of �rewalls.

3 PROPOSED SOLUTION

To alleviate this situation the authors are currently developing a system,
which speci�cally aims to automate as much of the �rewall con�guration
process as possible. This shall be achieved by �rstly building upon automa-
tion solutions already available, speci�cally Firewall Builder [1], and secondly
by taking a �ow based tra�c analysis approach utilising portions of Cisco's
NetFlow format [9]. The system shall consist of two distinct modules, one
for analysing the tra�c at the proposed choke point and one for generating a
rule set to match the observed tra�c. The tra�c analyser should be capable
of analysing either live tra�c at the node or trace �les recorded at the node,
in pcap [4] or NetFlow format.

The output of the tra�c analysis shall be in a format similar to that of
NetFlow, as this has a high information density, which is desirable for all
consecutive steps in the con�guration process. The resulting �ows shall be
stored in a database upon which the GUI-based rule generator can act. The
rule generator shall then, in turn, propose a set of rules based on the observed
�ows and allow the administrator to review and re�ne these rules from within
a GUI. The re�ned rules shall then be exported to a format understood by
Firewall Builder, which is capable of deploying these rules to a wide variety
of �rewalling solutions. Thus Firewall Builder shall act as the backend of
the con�guration process. A graphical representation of how the components
interact is given in �gure 1. Because it is unusual for a dedicated �rewall
machine to have windowing capabilities, this modular approach enables the
tra�c analyser to run on these machines on the command line, whereas the
rule generator can be run on a remote desktop machine.

2



Figure 1: Overview of the high level design of the proposed system and its
position in the con�guration process.

It is expected that this solution will speed up the process of con�guring and
deploying �rewalls considerably because the administrator does not need to
concern himself with a tedious manual tra�c analysis, or the intrinsic details
of writing �rewall policies for a particular �rewalling solution.

As most network infrastructures are inherently heterogeneous, the project
puts a strong emphasis on cross platform portability and the use of free and
open source tools and libraries.

3.1 Tra�c Analyser

The tra�c analyser's primary task is to create or extract tra�c �ows from its
input data and to consequently store these �ows in a database. Working with

3



�ows is advantageous because of their high information density, and because
they contain stateful information about the prevalent network connections.
The three supported types of input data are NetFlow �ow records, live tra�c
and pcap dump �les.

3.1.1 NetFlow

NetFlow is both a format and a technology. Initially developed in-house at
Cisco, it has quickly become the de facto standard for network analysis and
is used for a variety of purposes including, but not limited to, billing, net-
work planning, tra�c engineering and the detection and analysis of security
incidents[8, 9]. NetFlow enabled devices can export �ow data via a UDP
based protocol to a NetFlow collector, which then �les, �lters and stores the
�ow data. Ideally the tra�c analyser should be capable of processing both
the UDP exported �ows and NetFlow collector �les.

Flows are created by continuously analysing IP packets and categorizing them
into IP �ows. A packet is either categorized into an existing �ow or creates
a new �ow. Finished or expired �ows are then exported to the NetFlow
collector via UDP. A �ow is de�ned by seven key �elds, namely, source IP,
destination IP, source port, destination port, protocol, type of service and
input interface. Any two packets sharing the same entries for all seven �elds
belong to the same �ow [7]. There are several versions of NetFlow, some of
which are more commonly used than others, namely versions 1, 5, 7, 8 and
9 that incrementally improve upon another and provide a richer feature set
with more detailed �ow records [8].

The tra�c analyser only requires a subset of the information provided by
NetFlow and shall extract the relevant bits for its operation into a custom
�ow format and discard the rest.

3.1.2 Live Tra�c and pcap Trace Files

The tra�c analyser uses libpcap [4, 11](WinPcap [6] on Windows) to handle
both, live tra�c and pcap dump �les. The processing of these two types
of input is nearly identical. The strategy to obtain the same custom �ows
that are extracted from NetFlow, is to screen the packet data for three way
handshakes and TCP FIN and RST packets.

4



The ACK packets involved in the three way handshake can be determined
through the packets' sequence numbers [14]. This establishes the sources and
destinations and hence the direction of the tra�c �ows. The di�erence in the
timestamps between these packets allows for an estimation of the duration of
any given connection. The packets that are neither SYN nor FIN are matched
to one of the existing �ows and their payloads added to the total volume of
tra�c in the �ow. Their occurrence is also recorded in the packet count of
the �ow. Because packets might arrive out of order, care must be taken when
reconstructing the �ows to not disregard valuable information, meaning that
non SYN or FIN packets without a corresponding �ow do create their own
�ow so that it is possible to reconstruct them later or at least take them into
consideration when generating the rules at a later stage.

The �ow information is then stored in a database for later analysis by the rule
generator. The database table that records the tra�c �ows should feature
�elds for a �ow identi�er number, the �ows type of service, the timestamp of
the SYN - ACK packet, the timestamp of the FIN - ACK packet, the total
packet count in the �ow, the total volume of tra�c transferred in the �ow so
far, the �ows source address and port and the �ows destination address and
port.

3.2 Database

Currently the project uses the embedded SQL database engine SQLite [3, 13]
to record the �ows, which has various advantages over other more sophisti-
cated database solutions. From a performance perspective, this in-process
library is simply much faster than any networked database solutions could
ever be. Because SQLite is serverless, self-contained and requires no con-
�guration it also increases the ease of use of the system. SQLite stores its
databases in a �le, in a format that is consistent across all platforms, thus its
database �les lend themselves as the perfect format for information exchange
between the tra�c analyser and the rule generator, especially across di�er-
ent platforms [13, 3]. An added advantage is that the database �les can be
e�ciently compressed and are therefore ideal to be sent across the network.

3.3 Rule Generator

The rule generator then uses the database �le to propose matching �rewall
rule sets. The user interface of the rule generator shall provide an integrated
terminal so that the user does not have to leave the GUI to start and control

5



the tra�c analyser on the remote site. A facility to perform custom SQL
queries against the database shall also be provided. The �ows recorded in
the database shall be visualized in a table like structure for close inspection
by the user. The security policies are visible in another tab and all changes
made from anywhere within the system should be immediately re�ected here.
At the end of the review and re�nement process the user should be able to
export the policies into a Firewall Builder network object �le or alternatively
invoke one of Firewall Builder's policy compilers directly.

The basic strategy to automatically generate a rule set is to divide the net-
work into an 'inside the wall' and an 'outside the wall' part. Initially both
sides start o� with the least possible privileges (deny all). Then all incoming
�ows targeted at commonly known services are permitted. Flows targeting
high port numbers are only allowed as a response to outgoing �ows. The
presence of services that are commonly considered outdated such as Telnet
is pointed out to the user and a suggestion for their replacement made. This
quite lax basic con�guration can then be re�ned by the administrator by
either individually allowing or denying �ows or by specifying wildcards on
IP, protocol or port level.

By default ICMP rules will be generated from a template. The user can then
activate or deactivate the desired subtypes. A facility for reverse DNS lookup
shall be provided, so that unwanted sites can be blocked at the discretion of
the user.

3.4 Firewall Builder

Firewall Builder is a GUI-based �rewall con�guration and management tool
that supports iptables (net�lter), ip�lter, pf, ipfw, Cisco PIX (FWSM, ASA)
and Cisco routers extended access lists [1]. It features a set of policy compilers
that compile the rule sets created from within its GUI, from xml based object
�les, into, �rewalling solution speci�c, �rewall rule sets. The policy compilers
do also create automatic deployment scripts, that allow the �rewall to be
brought up remotely and to roll back the installation if necessary. Firewall
Builder also ensures that the SSH connection between the con�guring host
and the �rewall will never accidentally be interrupted. Because Firewall
Builder's GUI is built upon Qt [2, 10] it is capable of running on a wide
variety of target platforms, such as Linux, FreeBSD, OpenBSD, Mac OS X
and Windows [5]. All of the above mentioned features make Firewall Builder
the ideal backend for the project.

6



4 POSSIBLE FUTURE EXTENSIONS

Since the proposed system is considered a proof of concept, most future
extensions considered at this time are related to adding features that will
make it a stable production release. A very obvious one is adding IPv6
support, which should be relatively straight forward. Furthermore the tra�c
analyser could be extended to generate additional scoring metrics that can
help to further optimize the generated rule sets. The inclusion of an intrusion
detection and prevention system such as snort and in turn its automatic
con�guration and deployment would certainly result in a more powerful and
complete �rewalling solution. At a later stage, the option of customizing and
integrating Firewall Builder's policy compilers into the rule generator might
prove desirable, to increase ease of use and lessen the dependency on this
third party package.

5 CONCLUSION

Although this research is still at a very early stage, it is anticipated that the
approach of automatic �rewall rule set generation by means of passive tra�c
inspection will prove feasible and that a working prototype can be developed
within the given timeframe. It is hoped that the proposed system will not
only be quicker and more convenient than manual con�guration, but possibly
prove to be more accurate and allow for faster turnaround in the deployment
of new �rewalling solutions. This should result in decreased risk and cost for
organisations deploying such solutions.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support by Telkom SA, Comverse,
Tellabs, Stortech, Mars Technologies, Amatole Telecommunication Services,
Bright Ideas Project 39, THRIP and the NRF through the Telkom Centre
of Excellence in the Department of Computer Science at Rhodes University.

References

[1] Firewall builder cookbook. Online: http://www.fwbuilder.org/guides/.

7



[2] Qt - a cross-platform application and ui framework. Online:
http://www.qtsoftware.com.

[3] Sqlite. Online: http://www.sqlite.org.

[4] Tcpdump/libpcap public repository. Online: http://www.tcpdump.org.

[5] What is �rewall builder. Online: http://fwbuilder.org/about.html.

[6] Winpcap: The windows packet capture library. Online:
http://winpcap.org.

[7] Cisco ios ipsec accounting with cisco ios net�ow. Tech. rep., Cisco Sys-
tems, 2004.

[8] Cisco cns net�ow collection engine user guide, 5.0.3. Tech. rep., Cisco
Systems, 2005.

[9] Introduction to cisco ios net�ow - a technical overview. Tech. rep., Cisco
Systems, 2007.

[10] Blanchette, J., and Summerfield, M. C++ GUI Programming
with Qt 4. Prentice Hall, 2006.

[11] Garcia, L. M. Programming with libpcap - sni�ng the network from
our own application. hackin9 3 (2008), 39.

[12] Ogletree, T. practical �rewalls. Que, 2000.

[13] Owens, M. The De�nitive Guide to SQLite. Apress, 2006.

[14] Siyan, K. S., and Parker, T. TCP Unleashed. SAMS Publishing,
2002.

[15] Zwicky, E. D., Cooper, S., and Chapman, D. B. Building Internet
Firewalls. O'Reilly, 2000.

8



 


