Application of HY-2B Satellite Data to Retrieve Snow Depth on Antarctic Sea Ice
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. HY-2B SMR and GCOM-W1 AMSR-2 Brightness Temperature Data
2.3. NSIDC Snow Depth Data Product and Ship-Based Observational Snow Depth Data
3. Methods
3.1. Snow Depth Retrieval Model
3.2. Comparison and Accuracy Evaluation
4. Results and Discussion
4.1. Assessment of the Retrieved HY-2B SMR Snow Depth Based on Different Models
4.2. Comparison of HY-2B SMR Snow Depth with GCOM-W1 AMSR-2 Snow Depth Product
4.3. Spatiotemporal Variations of Snow Depth on Antarctic Sea Ice in 2019
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massom, R.A.; Stammerjohn, S.E. Antarctic Sea ice change and variability-physical and ecological implications. Polar Sci. 2010, 4, 149–186. [Google Scholar] [CrossRef]
- Himmich, K.; Vancoppenolle, M.; Madec, G.; Sallée, J.-B.; Holland, P.R.; Lebrun, M. Drivers of Antarctic sea ice advance. Nat. Commun. 2023, 14, 6219. [Google Scholar] [CrossRef] [PubMed]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea ice-albedo climate feedback mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Rees, W.G. Remote Sensing of Snow and Ice; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Webster, M.A.; Gerland, S.; Holland, M.; Hunke, E.; Kwok, R.; Lecomte, O.; Massom, R.; Perovich, D.; Sturm, M. Snow in the changing sea-ice systems. Nat. Clim. Change 2018, 8, 946–953. [Google Scholar] [CrossRef]
- Webster, M.A.; Rigor, I.G.; Nghiem, S.V.; Kurtz, N.T.; Farrell, S.L.; Perovich, D.K.; Sturm, M. Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res.-Oceans 2014, 119, 5395–5406. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2. Cryosphere 2018, 12, 2789–2801. [Google Scholar] [CrossRef]
- Nicolaus, M.; Hoppmann, M.; Arndt, S.; Hendricks, S.; Katlein, C.; Nicolaus, A.; Rossmann, L.; Schiller, M.; Schwegmann, S. Snow depth and air temperature seasonality on sea ice derived from snow buoy measurements. Front. Mar. Sci. 2021, 8, 655446. [Google Scholar] [CrossRef]
- Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z.S.; Djepa, V.; Wadhams, P.; Sandven, S. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. Cryosphere 2015, 9, 37–52. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Webster, M.A.; Kurtz, N.; Petty, A. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination. J. Geophys. Res.-Oceans 2020, 125, 2019JC016008. [Google Scholar] [CrossRef]
- Pang, X.; Chen, Y.; Ji, Q.; Li, G.; Shi, L.; Lan, M.; Liang, Z. An improved algorithm for the retrieval of the Antarctic sea ice freeboard and thickness from ICESat-2 altimeter data. Remote Sens. 2022, 14, 1069. [Google Scholar] [CrossRef]
- Wongpan, P.; Meiners, K.M.; Langhorne, P.J.; Heil, P.; Smith, I.J.; Leonard, G.H.; Massom, R.A.; Clementson, L.A.; Haskell, T.G. Estimation of Antarctic land-fast sea ice algal biomass and snow depth from under-ice radiance spectra in two contrasting areas. J. Geophys. Res.-Oceans 2018, 123, 1907–1923. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; López-Moreno, J.I.; Toro, M.; Hultstrand, D.M. Mapping snow cover and snow depth across the Lake Limnopolar watershed on Byers Peninsula, Livingston Island, Maritime Antarctica. Antarct. Sci. 2013, 25, 157–166. [Google Scholar] [CrossRef]
- Kwok, R.; Haas, C. Effects of radar side-lobes on snow depth retrievals from Operation IceBridge. J. Glaciol. 2015, 61, 576–584. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. Antarct. Sea Ice Phys. Process. Interact. Var. 1998, 74, 19–39. [Google Scholar]
- Markus, T.; Cavalieri, D.J.; Gasiewski, A.J.; Klein, M.; Maslanik, J.; Powell, D.; Stankov, B.; Stroeve, J.; Sturm, M. Microwave signatures of snow on sea ice: Observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3081–3090. [Google Scholar] [CrossRef]
- Comiso, J.C.; Cavalieri, D.J.; Markus, T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 243–252. [Google Scholar] [CrossRef]
- Sturm, M.; Maslanik, J.A.; Perovich, D.; Stroeve, J.; Richter-Menge, J.; Markus, T.; Holmgren, J.; Heinrichs, J.; Tape, K. Snow depth and ice thickness measurements from the Beaufort and Chukchi Seas collected during the AMSR-Ice03 campaign. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3009–3020. [Google Scholar] [CrossRef]
- Worby, A.P.; Markus, T.; Steer, A.D.; Lytle, V.I.; Massom, R.A. Evaluation of AMSR-E snow depth product over East Antarctic Sea ice using in situ measurements and aerial photography. J. Geophys. Res.-Oceans 2008, 113, C05S94. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Cicek, B.; Willmes, S.; Nicolaus, M.; Haas, C.; Ackley, S. An intercomparison between AMSR-E snow-depth and satellite C-and Ku-band radar backscatter data for Antarctic Sea ice. Ann. Glaciol. 2011, 52, 279–290. [Google Scholar] [CrossRef]
- Markus, T.; Massom, R.; Worby, A.; Lytle, V.; Kurtz, N.; Maksym, T. Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data. Ann. Glaciol. 2011, 52, 242–248. [Google Scholar] [CrossRef]
- Rostosky, P.; Spreen, G.; Farrell, S.L.; Frost, T.; Heygster, G.; Melsheimer, C. Snow depth retrieval on Arctic sea ice from passive microwave radiometers—Improvements and extensions to multiyear ice using lower frequencies. J. Geophys. Res. Ocean. 2018, 123, 7120–7138. [Google Scholar] [CrossRef]
- Shen, X.; Ke, C.Q.; Li, H. Snow depth product over Antarctic Sea ice from 2002 to 2020 using multisource passive microwave radiometers. Earth Syst. Sci. Data 2022, 14, 619–636. [Google Scholar] [CrossRef]
- Worby, A.P.; Geiger, C.A.; Paget, M.J.; Van Woert, M.L.; Ackley, S.F.; DeLiberty, T.L. Thickness distribution of Antarctic Sea ice. J. Geophys. Res.-Oceans 2008, 113, C05S92. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. Interannual and regional variability of Southern Ocean snow on sea ice. Ann. Glaciol. 2006, 44, 53–57. [Google Scholar] [CrossRef]
- Raphael, M.N.; Handcock, M.S. A new record minimum for Antarctic sea ice. Nat. Rev. Earth Env. 2022, 3, 215–216. [Google Scholar] [CrossRef]
- Gilbert, E.; Holmes, C. 2023’s Antarctic sea ice extent is the lowest on record. Weather 2024, 79, 46–51. [Google Scholar] [CrossRef]
- Shokr, M.; Sinha, N. Sea Ice: Physics and Remote Sensing; American Geophysical Union: Washington DC, USA, 2015. [Google Scholar]
- Kelly, R.E.; Chang, A.T.; Tsang, L.; Foster, J. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. The AMSR-E NT2 sea ice concentration algorithm: Its basis and implementation. J. Remote Sens. Soc. Jpn. 2009, 29, 216–225. [Google Scholar]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.; Kern, S.; Qu, M.; Ji, Q.; Fan, P.; Liu, Y. Sea ice concentration derived from FY-3D MWRI and its accuracy assessment. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Willatt, R.C.; Giles, K.A.; Laxon, S.W.; Stone-Drake, L.; Worby, A.P. Field investigations of Ku-band radar penetration into snow cover on Antarctic Sea ice. IEEE Trans. Geosci. Remote Sens. 2009, 48, 365–372. [Google Scholar] [CrossRef]
- Smith, J.; Johnson, R.; Williams, C. Statistical evaluation of model performance. J. Hydro.-Environ. Res. 2000, 231, 143–150. [Google Scholar]
- Sun, X.; Lv, T.; Sun, Q.; Ding, Z.; Shen, H.; Gao, Y.; He, Y.; Fu, M.; Li, C. Analysis of spatiotemporal variations and influencing factors of sea ice extent in the Arctic and Antarctic. Remote Sens. 2023, 15, 5563. [Google Scholar] [CrossRef]
- Wang, J.; Massonnet, F.; Goosse, H.; Luo, H.; Barthélemy, A.; Yang, Q. Synergistic atmosphere-ocean-ice influences have driven the 2023 all-time Antarctic sea-ice record low. Commun. Earth Environ. 2024, 5, 415. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Markus, T.; Ivanoff, J.A.; Miller, J.A.; Brucker, L.; Sturm, M.; Maslanik, J.A.; Heinrichs, J.F.; Gasiewski, A.J.; Leuschen, C.; et al. Comparison of snow depth on sea ice retrievals using airborne altimeters and an AMSR-E simulator. IEEE Trans. Geosci. Remote Sens. 2016, 50, 3027–3040. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, C.; Zhang, T.; Liang, Q.; Wang, K. Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2. Cryosphere 2022, 14, 3811–3827. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Cicek, B. An attempt to improve snow depth retrieval using satellite microwave radiometry for rough Antarctic sea ice. Remote Sens. 2009, 11, 2323. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Chang, A.; Rango, A.; Josberger, E. Snow depths and grain-size relationships with relevance for passive microwave studies. Ann. Glaciol. 1993, 17, 171–176. [Google Scholar] [CrossRef]
- Holland, M.M.; Landrum, L.; Raphael, M.; Stammerjohn, S. Springtime winds drive Ross Sea ice variability and change in the following autumn. Nat. Commun. 2017, 8, 731. [Google Scholar] [CrossRef]
- Knuth, S.L.; Tripoli, G.J.; Thom, J.E.; Weidner, G.A. The influence of blowing snow and precipitation on snow depth change across the Ross Ice Shelf and Ross Sea regions of Antarctica. J. Appl. Meteorol. Clim. 2010, 49, 1306–1321. [Google Scholar] [CrossRef]
Sensor | SMR | AMSR2 |
---|---|---|
Satellite | HY-2B | GCOM-W1 |
Launch date | 25 October 2018 | 4 July 2012 |
Altitude (km) | 973 | 700 |
Incidence Angle (°) | 53 | 55 |
Swath Width (km) | 1600 | 1450 |
Scan Period (s) | 3.8 | 1.5 |
Center Frequency (GHz) Polarization, Temperature Sensitivity (K) | 6.93 V/H, 0.5 | 6.93 V/H, 0.4 |
10.65 V/H, 0.6 | 10.65 V/H, 0.7 | |
18.7 V/H, 0.5 | 18.7 V/H, 0.7 | |
23.8 V, 0.5 | 23.8 V/H, 0.6 | |
37 V/H, 0.8 | 36.5 V/H, 0.7 | |
- | 89 V/H, 1.2 |
Model | MD/cm | MAD/cm | RMSD/cm |
---|---|---|---|
Markus98 | −5.6 | 7.0 | 9.9 |
Comiso03 | −1.9 | 6.1 | 8.2 |
Shen22 | −3.5 | 7.0 | 9.9 |
Sea Ice State | Month | MD/cm | RMSD/cm |
---|---|---|---|
Ablation period | November | 5.3 | 6.9 |
December | 9.3 | 14.8 | |
January | 11.1 | 19.4 | |
February | 5.9 | 16.9 | |
March | 5.2 | 14.2 | |
The whole ablation period | 5.0 | 14.4 | |
Growth period | April | 2.4 | 10.0 |
May | 1.2 | 8.0 | |
June | 1.3 | 7.4 | |
July | 0.6 | 6.8 | |
August | 1.1 | 6.9 | |
September | 1.3 | 6.7 | |
October | 2.3 | 7.1 | |
The whole growth period | 1.0 | 7.4 |
Sea Ice State | Antarctic Sea Area | MD/cm | RMSD/cm |
---|---|---|---|
Spring (September to November) | Bellingshausen and Amundsen seas | 6.4 | 11.8 |
Weddell Sea | 2.0 | 9.2 | |
Southern India Ocean | 2.4 | 7.9 | |
Southern Pacific Ocean | 2.1 | 8.4 | |
Ross Sea | 1.5 | 8.0 | |
Summer (December to February) | Bellingshausen and Amundsen seas | 12.1 | 21.8 |
Weddell Sea | 9.2 | 16.9 | |
Southern India Ocean | 6.6 | 17.3 | |
Southern Pacific Ocean | 6.1 | 18.4 | |
Ross Sea | 9.7 | 17.5 | |
Autumn (March to May) | Bellingshausen and Amundsen seas | 5.0 | 13.1 |
Weddell Sea | 0.9 | 9.4 | |
Southern India Ocean | 3.3 | 12.7 | |
Southern Pacific Ocean | 2.5 | 10.1 | |
Ross Sea | 0.9 | 7.5 | |
Winter (June to August) | Bellingshausen and Amundsen seas | 5.1 | 11.0 |
Weddell Sea | −1.1 | 7.0 | |
Southern India Ocean | 0.1 | 7.0 | |
Southern Pacific Ocean | 2.6 | 8.6 | |
Ross Sea | 1.9 | 8.0 | |
Annual (January to November) | Bellingshausen and Amundsen seas | 6.3 | 13.2 |
Weddell Sea | 1.4 | 9.5 | |
Southern India Ocean | 1.9 | 8.9 | |
Southern Pacific Ocean | 2.6 | 9.7 | |
Ross Sea | 2.3 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Liu, N.; Yu, M.; Zhang, Z.; Xiao, Z.; Pang, X. Application of HY-2B Satellite Data to Retrieve Snow Depth on Antarctic Sea Ice. Remote Sens. 2024, 16, 3253. https://doi.org/10.3390/rs16173253
Ji Q, Liu N, Yu M, Zhang Z, Xiao Z, Pang X. Application of HY-2B Satellite Data to Retrieve Snow Depth on Antarctic Sea Ice. Remote Sensing. 2024; 16(17):3253. https://doi.org/10.3390/rs16173253
Chicago/Turabian StyleJi, Qing, Nana Liu, Mengqin Yu, Zhiming Zhang, Zehui Xiao, and Xiaoping Pang. 2024. "Application of HY-2B Satellite Data to Retrieve Snow Depth on Antarctic Sea Ice" Remote Sensing 16, no. 17: 3253. https://doi.org/10.3390/rs16173253
APA StyleJi, Q., Liu, N., Yu, M., Zhang, Z., Xiao, Z., & Pang, X. (2024). Application of HY-2B Satellite Data to Retrieve Snow Depth on Antarctic Sea Ice. Remote Sensing, 16(17), 3253. https://doi.org/10.3390/rs16173253