
Apache TsFile: An IoT-native Time Series File Format
Xin Zhao

Tsinghua University
zhao-x19@mails.tsinghua.edu.cn

Jialin Qiao∗
Timecho Ltd

jialin.qiao@timecho.com

Xiangdong Huang
Tsinghua University

huangxdong@tsinghua.edu.cn

Chen Wang
Timecho Ltd

wangchen@timecho.com

Shaoxu Song†
Tsinghua University

sxsong@tsinghua.edu.cn

Jianmin Wang
Tsinghua University

jimwang@tsinghua.edu.cn

ABSTRACT
The proliferation of the Internet of Things (IoT) has led to an ex-
ponential increase in time series data, distributed and applied in
various contexts, demanding a dedicated storage solution. Based
on our observations and analysis of IoT production systems, we
have characterized 3 requirements for time series data: (1) a close
association with devices and sensors, (2) continually synchronizing
between cloud-edge, and (3) requiring the ability for high ingestion
and low latency access on big volume data. Despite the growing
trend, current time series database systems lack a standardized file
format, and existing open file formats do not adequately leverage
the unique characteristics of IoT time series data. In this paper, we
introduce Apache TsFile, a specialized file format tailored for IoT
time series data. TsFile organizes data by devices, creating indexes
based on device-related information. Our experiments demonstrate
the efficiency of TsFile in achieving high data ingestion rates, mini-
mizing latency, and optimizing data compactness.

PVLDB Reference Format:
Xin Zhao, Jialin Qiao, Xiangdong Huang, Chen Wang, Shaoxu Song,
and Jianmin Wang. Apache TsFile: An IoT-native Time Series File Format.
PVLDB, 17(12): 4064 - 4076, 2024.
doi:10.14778/3685800.3685827

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/apache/tsfile/.

1 INTRODUCTION
Time series data are prevalent in the Internet of Things (IoT) sce-
narios. With the widespread deployment of sensor-equipped de-
vices, a vast amount of time series data are generated to reflect
the operational states of these devices. These series serves diverse
purposes including simulation design, production manufacturing,
and equipment maintenance. For instance, CCS, one of our partners,
tracks the time series data throughout whole lifecycle of 30 million
of shipbuilding components, storing these data in cluster servers

∗Jialin Qiao is the PMC Chair of Apache TsFile Committee (https://tsfile.apache.org/).
†Shaoxu Song (https://sxsong.github.io/) is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685827

for long-term maintenance and analysis. While another of our in-
dustrial partners, ZY, has sensors installed on their rock drilling
machines, caching posture and position information on device con-
troller to enable real-time control. Unless otherwise specified, time
series and series will be used interchangeably in this paper.

1.1 Motivation
In the aforesaid IoT scenarios, rather than directly storing the time
series data in databases such as InfluxDB [18], it is highly desired to
first store the time series as files in end devices, and then sync them
to edge and cloud servers. The reason is that time series database
management systems are often too heavy to be installed in end
devices. While SQLite [31] is light enough for end devices, it incurs
huge ETL costs to transfer the data from end devices to the cloud,
e.g., hosted by InfluxDB.

Some open file formats, such as Apache Parquet [19, 20, 28],
have been applied to store time series data. However, they do not
recognize and leverage features of time series data in IoT, resulting
in performance fallback to some extent. To be more specific, these
features include 3 aspects as follows.

1.1.1 Series Specific Compression. As sensors detects physical sta-
tus like temperature, speed, pressure, or displacement and convert
these into digital signals all the time, voluminous time series data
has been produced and requires efficient storage. Sensors produce
distinct series even when measuring the same type of physical
quantity, reflecting variations in the objects being measured. Each
time series fluctuates with inherent patterns, adhering to the phys-
ical laws underlying its sensor. Selecting a suitable encoding and
compression scheme for each series is vital for optimal compact-
ness [39], with each stored separately and contiguously.

However, common file formats, such as Apache Parquet, typically
place multiple series of the same physical quantity type into a
single column, applying a uniform compression scheme across the
entire column. Time series that measure physical quantities of the
same type can differ vastly in patterns, leading to additional space
overhead due to the uniform compression method. This situation
motivates the design in Sect 3.2, which enables each series employ
individual encoding and compression scheme.

1.1.2 Hierarchical Device Identification. Once transmitted from
sensors to an Industrial PC (IPC) or PLC, time series data are
matched with specifications from the point table using a communi-
cation address assigned by field engineers during installation, as
shown in Figure 1 (a). The identifier of the device, an essential part
of the specification, typically possesses a hierarchical structure. For
instance, energy and power enterprises employ KKS coding [38] to

4064

https://doi.org/10.14778/3685800.3685827
https://github.com/apache/tsfile/
https://tsfile.apache.org/
https://sxsong.github.io/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685827
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Figure 1: Hierarchy Across Endpoint, Edge and Cloud

categorize and identify devices within a power plant, while the Do-
main Model in IoT-A [7] presents a self-association of device entity,
both exemplifying a hierarchical structure. Figure 1 (b) depicts a
company with numerous wind farms across different regions. On
this hierarchy, each leaf represents a sensor collecting time series,
while the path from the root to the parent of the leaf denotes the
identifier of the device, i.e., device ID. The hierarchical structure
reveals the relationship between the identification of related time
series, and thus leads to the design in Sect 4.2. As the hierarchy
naturally represents the entities and relationships in the scenarios,
it is also referred as the data model in the following sections.

Device ID remains static throughout the lifecycle of time series
while serving as a part of the index for access, thereby ought to
be handled distinctively from ordinary time series data. In Parquet
and similar open file formats, both the device ID and time series
data are stored as ordinary columns without any dedicated indexes.
To achieve reasonable latency for series access, these formats re-
sort to sorting rows by device IDs, facilitating binary search upon
related columns. However, the repetition of device specifications
across numerous rows introduces storage redundancy even with
dictionary encoding employed. Moreover, utilizing nested datatype
to describe the hierarchy of device IDs increases complexity due to
the column-striping and record-assembly algorithms [26].

1.1.3 ETL-free File Compaction. Time series data is typically com-
pacted several times during the synchronization, as shown in Fig-
ure 1 (c) and (d). End devices, such as IPCs or PLCs, are commonly
resource-constrained and thus store only the latest time series data
for real-time control while continuously transmitting this data.
Edge computers gather time series from multiple endpoints and

compact them into consolidated files for efficiency. Ultimately, cloud
servers preserve gross time series data for long-term application,
conducting compaction for higher performance.

As Parquet and similar file formats rely on ordering rows by
device ID to ensure efficient access, preserving the order throughout
compaction is essential but costly. Compacting multiple pages, each
belonging to different files and containing interleaved device IDs,
into a single consolidated page requires decoding and rewriting,
making the compaction rather expensive. This situation motivates
a layout where data points from the same time series are stored
contiguously, as elaborated in Sections 3.2 and 3.3.

1.2 Contribution
In this paper, we introduce a novel open file format dedicated to time
series in IoT scenarios, referred to as TsFile (Time Series File). TsFile
enhances the entire lifecycle of IoT time series data. On resource-
limited endpoint devices, an open file format allows for direct data
manipulation, eliminating dependency on additional processes. At
the edge level, it reduces the overhead of ETL tasks during data
compaction. On cluster servers, directly analyzing extensive time
series data from files proves more efficient than executing database
system operations [9, 26].

Specifically, the unique IoT features stated in Section 1.1 have
shaped the design choices and novelty as below.
(1) TsFile organizes data by series, enabling distinct encoding and
compression schemes for each series. This strategy effectively min-
imizes the space cost for series exhibiting various patterns. Data
points within one series are store contiguously, leveraging inherent
patterns for enhanced compression. Series originating from the

4065



same device are stored in locality, since they are more likely to
be accessed together for joint analysis. As some sensors generate
multiple readings at once, a common timestamp sequence is utilized
to reduce storage footprint;
(2) TsFile constructs indexes based on device identifiers and sensor
names, thoroughly eliminating storage redundancy of identifiers.
The index adopts two implementations, based on B-Tree and Trie
respectively, leveraging shared prefix among identifiers originated
from the hierarchical structure;
(3) As TsFile organizes data by series, and distinct files being com-
pacted, whether at the edges or in the cloud, are disjoint in terms
of time range, compaction is simplified to the concatenation of se-
ries data and adjustment of index offsets. This approach minimizes
deserialization and decoding, which constitute the most expensive
part of ETL.

This paper is organized as follows: Section 2 gives a overall per-
spective of TsFile structure, Section 3 and Section 4 delve into the
design principles behind Apache TsFile. Section 5 provides straight-
forward examples of usage for further comprehension. Section 6
compares TsFile against prevalent open file format and evaluates
its design choices. Section 7 explores related research on IoT time
series data models and other open file formats. Finally, Section 8
concludes the paper.

2 TSFILE FORMAT OVERVIEW
The overall structure of TsFile is divided into 2 parts: the Data Area
and the Index Area, as shown in Figure 2. The Data Area is self-
documenting and thus can be independent of the Index Area, in
spite of the low efficiency. The Index Area can be implemented in
alternative structures to satisfy specific application requirements.
This paper only outlines a B-Tree-based implementation.

The Data Area comprises various Chunk Groups, each holding
time series data for a device over a specific period. A device may be
associated with multiple Chunk Groups, depending on the work-
load. Within a Chunk Group, each Chunk contains data for a single
series. Other than TsFiles resulting from compaction, each Chunk
within one Chunk Group is associated with a distinct series.

The Index Area links query conditions, such as identifiers, time,
or value ranges, to data offsets in the Data Area. It includes a Bloom
Filter to quickly determine the presence of a specific series, thus
speeding up searches across multiple TsFiles. The Chunk and Series
Indexes are crucial for fast access and will be explored further in
subsequent sections.

3 TSFILE DATA AREA
The principle of the data area is to store the data points of each time
series in a columnar way to enhance compression efficiency and to
provide locality at both the device level and file system block level.
This principle differs TsFile from other common open file formats
with higher compression ratio and throughput for time series in
IoT scenarios.

3.1 Chunk Group
The data area is organized into one or more contiguous chunk
groups, with each chunk group corresponding to all time series data
from a single device over a period. Devices can be categorized into

Figure 2: Data Area and Index Area in TsFile

aligned and non-aligned types, and accordingly, chunk groups also
fall into these two categories. A chunk group consists of a header
and one or more chunks, each chunk stores data from a specific
time series. The header of the chunk group stores the identifier of
the device, which is the path from the root to the device node in
the data model. The concept of chunk groups achieves device-level
locality, as different time series from the same device are often
queried simultaneously.

Chunk groups are the basic units for flushing TsFile on secondary
storage.When data is written to TsFile, it is first buffered in memory.
Once the memory usage reaches a threshold, the buffer, which
may contain multiple chunk groups, will be flushed to secondary
storage. This threshold can be adjusted in line with the file system
configuration to deliver block-level locality. For example, adjusting
the buffering threshold based on the block size in HDFS can prevent
a single chunk group from being stored separately across different
blocks.

Common file formats use a tabular structure as the data model,
organizing tuples with their ingesting order into row groups as
the unit for writing to secondary storage [15, 16, 26]. In contrast,
TsFile flushes multiple independent chunk groups once it reaches
the memory threshold, with each chunk group corresponding to
a distinct device, thereby offering improved locality. Furthermore,
different chunks may consist of varying chunks, while different
row groups always contain the same set of columns. This feather
is beneficial for typical industrial scenarios, as datasets from our
partners illustrate in Section 6.1.2. In these scenarios, one file may
contain data points from up to thousands of sensors with different
names; these sensors are distributed across various devices, with
most devices having only a tiny subset of all the sensors. Figure 4
showcases a common scenario where, despite tuples being sorted
by device IDs, values from distinct series end up grouped on the
same page due to the row-wise grouping strategy, thereby reducing
compression efficiency.

4066



Figure 3: Detail of Data Area

3.2 Chunk
A Chunk consists of a header and one or more pages, storing data of
a single time series over a period. The header contains information
such as the name of the time series, the data type, the encoding and
compression scheme, and the number of pages within the chunk.
The time series data in a chunk are sequentially and disjointedly
distributed across the pages, ordered by timestamp.

In non-aligned chunk groups, each chunk serializes both times-
tamps and values into every page. In aligned chunk groups, where
all time series of the device share the same sequence of timestamps,
there is a specialized chunk stores the sequence of timestamps ex-
clusively, and other chunks store the sequence of value along with
a bitmaps indicating null values, as shown in Figure 3.

Each chunk has a corresponding entry in the Chunk Index.When
accessing a time series, the system first locates the specific chunk
and then evaluates whether to deserialize the pages within the
chunk by checking the header of each page. The deserialization,
involving decoding and decompression, can introduce significant la-
tency. Deserializing by page rather than by chunk enables a balance
between index size and access efficiency.

3.3 Page
A page represents the smallest unit for the serialization or deserial-
ization of time series data, consecutively storing data from a specific
series over a given period. IoT time series data, originating from
physical states on devices, often exhibit stable values or periodic
patterns, thus holding the potential for efficient compression. In
contrast, storing time series in the tabular data model of common
file formats involves interleaving data values from multiple series
in one column, which degrades compression efficiency.

Each page stores its statistical information in the header, enabling
fast filtering of irrelevant pages during data access. For non-aligned
time series, each page sequentially stores 2 segments: a sequence of
timestamps and a sequence of data values. For aligned time series,

depending on the type of chunk it belongs to, a page stores only
one sequence, either of timestamps or data values.

The ingesting data is first placed in the buffer of the current
page. Once the buffer reaches a threshold, the data is encoded,
compressed, and written to the buffer of the corresponding chunk.
The threshold of a buffer in page is configurable; a higher threshold
imposes a higher cost to deserialize a single page even if only a
few points are expected, while a lower threshold introduces more
fragmented pages thus affecting both the efficiency of locating the
target page and data compression efficiency. A reasonable threshold
needs to strike a balance between the two.

3.4 Time Series Encoding
Since each data series employs individual encoding and compres-
sion schemes, specialized algorithms can more efficiently leverage
intervals in timestamps [11], variations in values [12], and patterns
in frequency domain [37], compared to ordinary counterparts.

While there aremany encoding algorithms available, they haven’t
fully exploited the characteristics of time series in IoT scenarios [39].
Timestamps from sensor data are typically at fixed intervals, al-
though network delays may introduce variation or loss. To address
this, we propose a timestamp encoding method [11] that focuses
on these regular intervals, accommodating potential disturbance.
Moreover, an effective encoding scheme should exploit not only
the patterns within each series but also the intricate relationships
that exist among values across various series. Therefore, we have
introduced an encoding method based on feature models, which
captures similarity and regression relationships among series [12].

When analyzing time series data, frequency domain information
plays a crucial role. To avoid performing complex frequency domain
transformations, such as Fast Fourier Transform (FFT), with every
analysis process, we propose an efficient encoding method that
stores the frequency domain of the series directly [37].

4 TSFILE INDEX AREA
The retrieval of time series data typically specify series identifier
and target time or value range. Thereby the Index Area mainly
includes 2 parts: the Series Index is tasked to locate the entrance
of a single series through its identifier, and the Chunk Index is
designed for locating the exact chunks containing requested data.

4.1 Chunk Index
Each time series has an entry in the chunk index, which comprises
2 parts as Figure 6 demonstrated. The first part, referred to as the
time series metadata (TSM), holds the name and datatype of the
corresponding series, along with comprehensive statistical informa-
tion about the series across the entire file. This information includes
maximum and minimum values, as well as the earliest and latest
timestamps, among other data. The second part consists of one or
more chunk metadata, each stores the statistical information and
offset for each chunk. The fields of statistics in both the TSM and
chunk metadata are identical.

When flushing chunk groups to a TsFile, the chunk index is
maintained in memory. Once all data in the data area has been
flushed, the chunk index is then written to the file. When querying
data from a TsFile, as Figure 5 shows, the Series Index locates the

4067



Figure 4: Comparative Example for Data Area

Figure 5: Access from Index Area to Data Area

TSM of the requested series through its identifier. The query process
determines the chunks to be accessed by sequentially inspecting
the chunk metadata.

Compared to index structures in prevalent open file formats,
such as Page Index in Parquet [28], the Chunk Index distinctively

indexes only the data within requested series. The count of chunk
metadata for a specific series depends solely on its volume in the
file, reserving stable access efficiency irrespective of the presence
of other series, as Section 6 demonstrate. This approach leverages

4068



Figure 6: Detail of Chunk Index

the structure of Data Area, where time series data are grouped by
devices and sensors.

4.2 Series Index
The Series Index is a composite index structure composed of 2
layers, each being a 256-ary search tree by default. The first layer
is a dense index that uses the device ID, which is the path from the
root to the device node in the data model, as the index key. The
index value is the offset of the root node of a tree in the second layer.
The second layer consists of multiple search trees, each indexing
the name of a series to the offset of its TSM. Every tree in the second
layer indexes only a portion (by default, 1/256) of the series within
its corresponding device.

All trees in the Series Index are constructed bottom-up. During
the process of writing the chunk index to a file, the offsets and names
of the series from the TSMs to be indexed are temporarily buffered in
memory. These TSMs serves as the entry of tree nodes, constructing
second layer trees from bottom up. Similarly, the offsets of these
trees serve as the entries for constructing the tree in the first layer.
Ultimately, the offset of the first layer tree is stored in the tail of
TsFile, serving as the entry for accessing time series.

The two-layered structure reduces the duplication of device IDs,
typically represented by long strings, across its nodes, effectively
reducing the footprint of the index. In the second layer of the tree
structure, only a subset of the TSMs for each device is indexed. The
TSMs that are not indexed are always stored contiguously after
the indexed TSMs, and searching for these series requires a linear
search starting from the indexed TSMs. In the IoT context, where
devices are often equipped with numerous sensors, this sparse
indexing approach strikes a balance between space and time.

4.3 Automatic Schema Identification
Consistent patterns exhibited within individual sequence, along
with indexes that delineate the relationships between series, facil-
itate automatic correction of the association between each series
and its specification [32], which may be mismatched due to sensor
cable misplacement.

In IoT scenarios, field engineers may install new sensors to col-
lect new metrics, introducing additional time series. During device
maintenance, engineers might mistakenly connect sensor cables,

Figure 7: B-Tree Based Series Index

leading to mismatches between time series data and their identifiers,
necessitating identification and correction based on data pattern.
Previous research has found that such schema issues occur with
a probability of about 4% in production environments [32]. Con-
sequently, we propose an automatic method [32] for identifying
schema of series to reduce data loss caused by schema issues.

As Section 3 stated, the alignment of time series significantly
affects their storage methods. However, due to the aforementioned
lack of authority, some series that are actually aligned might be
mistakenly stored as non-aligned. Furthermore, given that sensors
typically operate at regular sampling rates, certain sensors could
have similar sampling timestamps even without being aligned at
hardware level, making it efficient to store them as aligned series.
Our proposed method [10] evaluates the similarity of series times-
tamps and automatically groups aligned time series, considering
the trade-off with spatial overhead.

5 THE API OF TSFILE
Given its high throughput and efficient storage from columnar
organization, combined with the grouping strategy that eases com-
paction, TsFile is well-suited as SSTable in LSM architecture [27]
and thus serves well as storage format in time series database
management (TSDBMS), like Apache IoTDB. Moreover, TsFile also
provides direct data access through integrated interfaces as follows.

In TsFile, the essential unit of time series data is a quadruple,
consisted of a timestamp, a value, and identifications of device and
sensor generating the value. Ingest data into TsFile means storing
a sequence of these quadruples, while read from TsFile is accessing
data through specifying part of them.

4069



5.1 TsFile Writer
TsFile can be created and manipulated on both local and distributed
file systems, such as HDFS, integrating seamlessly with the big data
ecosystem. The following code example outlines 3 constructors
along with its parameter types. Line 1 instantiate a writer with a file
descriptor, while line 2 create the writer with a schema describing
devices and sensors. TsFileOutput in line 3 can be an instance of
HDFSOutput, which enables TsFile to be store in HDFS.

1 public TsFileWriter(File);
2 public TsFileWriter(File , Schema);
3 public TsFileWriter(TsFileOutput , Schema);

Constructors below demonstrate details in Schema. Among these,
MeasurementSchema represents the name and physical schema of
one series, including datatype, encoding and compression scheme.
MeasurementGroup describe multiple series within one device and
the alignment of the device, while Schema holds mappings from
device IDs to descriptions of its sensors.

1 public Schema(Map <String , MeasurementGroup >);
2 public MeasurementGroup(boolean , Map <String ,

MeasurementSchema >);
3 public MeasurementSchema(
4 String , TSDataType , TSEncoding , CompressionType);

Each series in TsFile can be assigned with distinct schema, with
details are store in the header of each chunks as shown in Figure
3, provided the datatype is compatible with the encoding scheme.
This approach offers greater schema flexibility compared to com-
mon file formats, which typically stores series with the same name
in a single column, applying uniform encoding and compression
schemes irrespective of their distinct characteristics.

Before ingesting data from new series, they must be registered in
TsFile as follows, which evolvs the schema within the TsFile. Line
7-8 register a time series through specifying its device and schema,
after then the series is ready to ingest data.

1 TsFileWriter writer = new TsFileWriter(file);
2
3 String device = "Turbine.Beijing.FU01.AZQ01";
4 MeasurementSchema sensor = new MeasurementSchema(
5 "Speed", TSDataType.FLOAT , TSEncoding.RLE);
6 writer.registerTimeseries(device , sensor);

TsFile accepts time series data by TSRecords or Tablets. The
former holds only 1 timestamps, containing multiple values mea-
sured at that time from distinct sensors within 1 device. The later
submits data points from 1 device in batch, requiring a schema
for initiation while providing higher throughput. Line 5-11 shows
that a tablet is created with given device and schema list, and the
tablet collects data points via arrays of timestamps and values. The
evaluations in Section 6 is based on Tablets since it represents the
ingestion capability of TsFile.

1 TSRecord record = new TSRecord(now(), device);
2 record.addTuple(new FloatDataPoint("Speed", 1.2);
3 writer.write(record);
4
5 List <MeasurementSchema > schemas = new ArrayList <>();
6 schemas.add(sensor);
7 Tablet = new Tablet(device , schemas);
8 tablet.timestamps[tablet.rowSize] = now();
9 float [] values = (float []) tablet.values [0];
10 values[tablet.rowSize ++] = 1.13;
11 writer.write(tablet);

Neither of Tablet nor TSRecord determines alignment of the
device, which is a description on physical level. Aligned and non-
aligned devices are logically equivalent, yet they exhibit significant
performance differences under specific workloads.

TsFile can not modify or delete data in place, since data from
sensor reading is rarely required to update. For those under the
TSDBMS, modifications are delivered by tombstones.

5.2 TsFile Reader
There are two ways reading data from TsFile, their constructors are
stated below. TsFileSequenceReader describes metadata of the
TsFile and provides a low level access where data can be located
by position and is deserialized from page to page. TsFileReader
retrieves data with specifications consisted of series identifiers
and optional filters. Read with TsFileReader requires specifying
one or more series. If the process knows nothing about the series
inside a TsFile, it is better to access data by TsFileSequenceReader.
As TsFileReader provides more general usage, this paper mainly
focus on it and take it for evaluation in Section 6.

1 public TsFileSequenceReader(File);
2 public TsFileReader(TsFileSequenceReader);

TsFileReader accepts expressions consisted of specific series
paths and filters. Filters can be applied to timestamps or values, and
can be composed via logical operators like and and or.

1 TsFile reader = new TsFileReader(file);
2 Path series = new Path(device , sensor);
3 Filter valueFilter = ValueFilterApi.gt(1.1);
4 Filter timeFilter = TimeFilterApi.gt(now() - 3 * hour);
5 IExpression filterExpression =
6 BinaryExpression.and(
7 new SingleSeriesExpression(path , valueFilter),
8 new GlobalTimeExpression(timeFilter));
9 QueryExpression expression =
10 QueryExpression
11 .create ()
12 .addSelectedPath(path)
13 .setExpression(expression);
14 QueryDataSet res = reader.query(expression);
15 RowRecord row = res.next();

Code example above demonstrate a naive usage to access data
points of a certain series with time and value filters. Line 3-5 exem-
plify that value filter is applied to a specific series while time filter
works on all series specified in line 9-13. Line 15 places the initial
data points that meet the filter criteria, each from a selected series,
into a RowRecord, thereby forming a tabular structure, smoothly
integrating with various applications that utilize table formats.

Since TsFile can be stored in distributed file systems like HDFS, it
can be split into fixed-size blocks distributed across cluster servers.
TsFileReader provides an interface for querying data at specific
offset range, facilitating data retrieval only on the local server to
minimize network overhead in big data analysis.

5.3 TsFile Compaction
TsFileResource and ICompactionPerformer are the two key com-
ponents for compaction. The fundamental usage of each is outlined
below. TsFileResource acts as a summary of TsFile, offering sta-
tistics on the devices contained within the file, such as timestamps
of both the first and the last data point. ICompactionPerformer

4070



can be implemented in various approaches but consistently requires
both source and target files.

1 TsFileResource rsc1 = new TsFileResource(tsFile1);
2 TsFileResource rsc2 = new TsFileResource(tsFile2);
3 TsFileResource rsc3 = new TsFileResource(newFile);
4
5 ICompactionPerformer performer =
6 new FastCompactionPerformer ();
7 performer.setSourcesFiles(rsc1 , rsc2);
8 performer.setTargetFiles(rsc3);
9 performer.perform ();

6 PERFORMANCE EVALUATION
We compare TsFile with otherwidely-used open file formats, namely
Parquet and Arrow. Furthermore, we also compare Apache IoTDB
[36], which employs TsFile as its underlying storage format, with
InfluxDB [18] and other top performers in time series database
track. Among these systems, InfluxDB-IOx [19, 20] utilizes Parquet
as its underlying storage. When storing time series data in Parquet,
we will discuss the alternatives of schema for fairer comparison.

6.1 Experimental Setup
6.1.1 Hardware. For evaluation in Section 6.2 , we perform the ex-
periments on an 8-core Intel(R) Core(TM) i7-9700K CPU@ 3.60GHz
machine with 32GB memory, 1T SSD, and 64-bit Windows 10.

For systematic evaluation in Section 6.3.1, we conduct the exper-
iments on a machine with 20-core Intel(R) Core(TM) i7-12700 CPU,
16 GB memory and 512GB SSD, running 64-bit Ubuntu 22.04.1 SMP.
For Section 6.3.2, we conduct the evaluations on a Raspberry Pi 4
Model B with 8GB RAM, which is approximate to industrial end
devices in typical IoT scenarios.

6.1.2 DataSets. We employ three public real-life datasets, one time
series benchmark, and two datasets from our industrial partners as
listed in Table 1.

The Reference Energy Disaggregation Data Set (REDD) [23] con-
tains detailed electricity usage data collected from various house-
holds, including both high-frequency appliance-level power usage
and low-frequency whole-house power consumption. The dataset
used in this paper contains data from 6 buildings, each with approx-
imately 20 meters. Every meter is considered as a device generating
only 1 time series and is identified by the combination of building
and meter number.

GeoLife [43] and TDrive [40, 41] are GPS trajectory datasets
consisted of coordinates recorded during a wide array of activities
like walking, running, cycling and driving. Every object tracked
in these datasets are deemed to be a device equipped with sensors
measuring its coordinate, which constitutes time series data.

Time Series Benchmark Suite(TSBS) [34] is a collection of pro-
grams widely used to generate tailored dataset for benchmark. This
paper employ the IoT case in the suite, where data are pertained
to a set of trucks, including their coordinates, velocity and other
status. TSBS interleaves data points from different devices, but the
data points for each individual device are sequential in terms of the
timestamp. As Section 3 illustrates, performance in common file
formats like Parquet declines when data points are not sorted by
device ID, whereas TsFile maintains unaffected performance. For
the sake of fairness, we reorganize all data points by its device ID,

Table 1: Dataset Profile

DataSet Points Series Devices
REDD 56M 115 115
GeoLife 72M 543 181
TDrive 18M 17778 8889
TSBS 496M 16000 4000
ZY 376M 17154 186
CCS 161M 2750 1108

i.e., data points from the same device are stored contiguously and
ordered by timestamp, before writing to the file.

The ZY dataset, provided by our industrial partner, consists of
data points collected by sensors on rock drilling machines. This
dataset is more sparse as these data are only available if related
machines are working. Furthermore, the quantity of sensors linked
to different devices differs significantly. Some devices have fewer
than three sensors, while others have over a hundred due to the
varying complexity of their tasks.

The CCS dataset is provided by our industrial partner as well.
The data are collected from shipbuilding components, as mentioned
earlier. In comparison to other datasets, some time series in this
dataset are collected at high frequency, such as data points from
vibration measurements.

6.2 File Evaluation
We evaluate TsFile with Parquet and Arrow, which are represen-
tative open file formats in these days, regarding space cost, write
speed, and query latency across various datasets. While Arrow
was initially designed for in-memory usage, it indeed has an inter-
process communication format, which is also known as Feather
[25]. When we write data into disks, we actually write Feather files;
while we read data from Feather, we actually read Arrow data in
memory. In the following experiments, for simplicity, we will refer
to both Arrow and Feather collectively as Arrow. Although there
are other open file formats such as ORC [16] or RCFile [15], their
architecture is similar to that of Parquet and has been thoroughly
analyzed in previous research [24, 36, 42].

In contrast to the flexible and IoT-native data model in TsFile,
Parquet and Arrow require the data schema to be defined based on
data characteristics before writing data to the file. As they employ
a tabular schema, if the device ID has multiple fields, there are
primarily two alternatives for schema definition. The first approach
stores each field from the device ID in an individual field. InfluxDB-
IOx, which utilizes Parquet as its underlying storage, adopts this
approach [19, 20]. The second approach stores the entire device ID
in a single column, resulting in a simpler layout but compromis-
ing the atomicity of these fields. For instance, Device ID in TSBS
includes three parts: name, fleet, driver. The first definition stores
them in different fields while the second stores them in a single
one, as the following snippet illustrated. On the other hand, the
device ID in TsFile is represented as segmented string such similar
to “<name>.<fleet>.<driver>”.
// schema of Parquet
message TSBS{

4071



required binary name;
required binary fleet;
required binary driver;
required int64 timestamp;
optional double lat;
optional double lon;
optional double ele;
optional double vel;

}
// schema of Parquet-AS
message TSBS{

required binary deviceID;
required int64 timestamp;
optional double lat;
optional double lon;
optional double ele;
optional double vel;

}

We implement both strategies on Parquet, referred to as Parquet and
Parquet-AS (for Alternated-Schema) respectively in the following
sections, while Arrow is only implemented with the second one for
simplicity.

TsFile achieves optimal performance by writing Tablet in batch.
However, as Parquet lacks such batch interface [1] currently, we
compare only the write times of internal processes during data
ingestion, mitigating effect of interface differences. Furthermore, we
have added the construction time of Tablet in to the comparison of
write time. In terms of space cost, Parquet automatically select the
most suitable encoding scheme with its auto-encoding feature, and
TsFile consistently uses GORILLA [29] encoding for comparability.
To mitigate discrepancies in the implementation of compression
algorithms, we employ no compression for all file formats.

Through all following evaluations, each datasets are written into
one file per format. Parquet takes the default blocks size threshold
128 MB, which equals the flush threshold within TsFile. Arrow
takes a default batch size 64K rows. Both Parquet and Arrow en-
able dictionary encoding for text fields, i.e., component fields of
deviceID. unless specifically mentioned, all other configurations
are consistent with the default setting.

6.2.1 Space Cost. Space cost is crucial because time series data is
either stored on resource-constrained endpoints or edge devices,
or is stored with a high volume in cluster servers. Figure 8 (a)
reports that with various datasets, TsFile consistently occupies less
or approximate space compared to Parquet, and both significantly
outperform serialized Arrow format [24] in term of space cost. The
figure reveals that the space cost is little affected by the alternative
schema definition due to the dictionary encoding. While Parquet
utilizes dictionary encoding to mitigate the redundancy of device
IDs, this ultimately increases space cost in data area. It should be
noted that TsFile consumes slightly more space than Parquet with
the TDrive dataset, attributed to the numerous devices each hosting
brief series data, leading to an increased number of Chunk Groups
in TsFile.

Figure 8 (b) shows TsFile can have larger Index Area than Parquet
under specific dataset conditions. However, in these datasets, index
area is several orders of magnitude smaller than the data area,

TDrive REDD GeoLife TSBS CCS ZY

0
.1

0
1

.0
0

s
p
a
c
e
 c

o
s
t 

(B
y
te

s
)

×109

(a) Data Area

TDrive REDD GeoLife TSBS CCS ZY

0
.0

1
0

.1
0

1
.0

0
s
p
a
c
e
 c

o
s
t 

(B
y
te

s
)

×106

(b) Index Area

TsFile Parquet Parquet-AS Arrow

Figure 8: Space Cost

thereby its effect on the overall size remainsminimal. In Parquet, the
size of the index area depends on the number of pages, correlating
directly with the overall number of data points. On the other hand,
the index area size in TsFile is primarily proportional to the number
of devices, as there is no index entry for pages.

6.2.2 Write Latency. Figure 9 presents the write latency across
various datasets for the data area and index area, indicating the rate
of data points written per second. TsFile outperforms Parquet in the
data area by eliminating the redundant storage of descriptions like
device IDs. Parquet introduces extra overhead for its auto-encoding
feature and column-striping algorithms, adding complexity even if
all datasets employed involve no nested types. Arrow is significantly
faster than its competitors, as its in-memory and serialized layouts
are similar.

Given that Parquet provides no batch writing interface, whereas
TsFile employs a batch style ingestion, we have also included the
construction time of Tablets in TsFile in the figure. Even with this
additional time overhead, TsFile still performs out Parquet. It is
worth noting that to imitate the writing method of Parquet, the
tablet construction approach in the evaluation is far from the op-
timal, indicating that TsFile could exhibit even better performance
in practice.

In the index area, Parquet employs Apache Thrift [4] for seri-
alization, trading off higher latency for reduced space occupation.
Like with space cost, latency in the index area is significantly lower
than in the data area, minimally affecting the overall performance.

6.2.3 RawQuery. Raw query denotes accessing specific series or
multiple series within a device without any filters. To ensure equiv-
alence of queries across different formats for each dataset, we per-
formed uniform random sampling from the dataset prior to query-
ing, using these samples as query conditions. The query commands
for each file were defined based on these pre-generated conditions.

4072



TDrive REDD GeoLife TSBS CCS ZY

0
.1

0
1

.0
0

s
p
a
c
e
 c

o
s
t 

(B
y
te

s
)

×109

(a) Data Area

TDrive REDD GeoLife TSBS CCS ZY

0
.0

1
0

.1
0

1
.0

0
s
p
a
c
e
 c

o
s
t 

(B
y
te

s
)

×106

(b) Index Area

TsFile Parquet Parquet-AS Arrow

Figure 9: Write Latency

We employed a cold query methodology. Only one type of query
will be performed once a file is opened. After the file is closed and
reopened, queries of other types will then be conducted.

The query latency is calculated between the time when the query
is issued and when all target data is received. This process includes
the time taken to read the relevant data blocks from disk into
memory. All data is sorted first by timestamp and then by device
ID, ensuring that data from the same device is stored contiguously
and ordered by timestamp.

As shown in Figure 10, TsFile maintains consistently low la-
tency in pinpointing series, whereas Parquet, using page indexes
for locating specific series, shows increased latency as Data Area
extends, despite data being sorted by device ID. Even under the
sorting aforementioned, access latency in Arrow is significantly
higher than other formats due to two factors. Firstly, Arrow must
deserialize the entire block [24, 42] for each read operation before
it can filter the data, thus decoding an excessive amount of unnec-
essary data; secondly, Arrow does not establish an index at the file
level, necessitating sequential scanning of blocks for access. While
other modules have been developed for facilitating access to Arrow
data structures, they primarily aim to improve expressiveness [2]
or universality [3] without modifying the file layout, and therefore,
are beyond the scope of this paper.

6.2.4 Filtered query. Filtering time series data based on times-
tamps or values reflects the comprehensive performance of the
index mechanism. For either type of filtering, only the filtered se-
ries will be retrieved, regardless of other series under the same
device. As shown in Figure 11, TsFile consistently outperforms
across all datasets and filters, with timestamp filtering always ex-
hibiting lower latency. This is because timestamps in each series are
monotonically increasing, allowing TsFile to leverage this feature to
optimize querying process. In contrast, Parquet and Arrow cannot

TDrive REDD GeoLife TSBS CCS ZY0
.1

0
1

.0
0

q
u
e
ry

 l
a
te

n
c
y
 (

m
s
)

×102

(a) Access Single Series

TDrive REDD GeoLife TSBS CCS ZY

0
.0

1
0

.1
0

1
.0

0
q
u
e
ry

 l
a
te

n
c
y
 (

m
s
)

×103

(b) Access Aligned Series

TsFile Parquet Parquet-AS ARROW

Figure 10: Raw Series Access

TDrive REDD GeoLife TSBS CCS ZY

0
.1

0
1

.0
0

q
u
e
ry

 l
a
te

n
c
y
 (

m
s
)

×102

(a) Filter on Time

TDrive REDD GeoLife TSBS CCS ZY

0
.1

0
1

.0
0

q
u
e
ry

 l
a
te

n
c
y
 (

m
s
)

×102

(b) Filter on Value

TsFile Parquet Parquet-AS ARROW

Figure 11: Filtered Series Access

ascertain timestamps are monotonically incrementing, resulting in
higher latency.

The effectiveness demonstrated in overall performance compari-
son derives from a more detailed design. This section evaluates the
aforementioned designs using more specific metrics.

6.2.5 Bulk Compaction. Figure 12 illustrates that the compaction
method employed for TsFile, termed Fast-Compaction, significantly

4073



TD
ri
ve

G
eo

Li
fe

R
ED

D

TS
BS

C
C
S Z

Y

0.10

1.00

la
te

n
c
y
 (

m
s
)

×105

(a) Compaction Time

TD
ri
ve

G
eo

Li
fe

R
ED

D

TS
BS

C
C
S Z

Y
0.0

0.5

1.0

1.5

2.0

s
iz

e
 (

k
b
)

×106

(b) Compaction Size

Fast-Compaction Naive-Compaction

Figure 12: Compact Effect

outperforms Naive-Compaction, which requires reading all chunks
to verify the interleaving of devices to maintain their order.

Fast-Compaction sketches all files specified for compaction at
begin, executing a multi-way merge for each device appearing in
more than one file. When addressing devices from multiple files,
it scrutinizes all chunks within the chunk group for any overlap
in time ranges. Chunks without time range overlap are directly
transferred to the target file by the order of time, without dese-
rialization and decoding. This approach may also benefits from
zero-copy technology. In contrast, Naive-Compaction, a method
requisite for common open file formats like Parquet that necessitate
maintaining device order for efficient access, mandates decoding
for each chunk, thus incurring additional latency.

Files resulting from Fast-Compaction are shown to be equally
efficient or nearly so, regarding file size and performance across
various queries. Details on query latency and other metrics are
omitted due to spatial constraints.

6.3 System Evaluation
6.3.1 Overall Performance. Another important role of TsFile is
serving as the storage format for TSDBMS. We compared the write
throughput and access latency of Apache IoTDB and top performers
in the ranking of TSDBMS according to the benchANT [8].

It is worth noting that among these systems, only Apache IoTDB
and InfluxDB employs open file format as underlying storage. Vic-
toriaMetrics [35] writes data into ‘part’ directories on disk, each
containing separate time and value files, along with several other
metadata and index files. QuestDB [30] stores data of each table into
several appending files, each relating to a column. Every column file
is accompanied by an extra index file. TimescaleDB [33] employs
PostgreSQL for underlying storage so time series data are stored
in related files [14]. These file formats do not provide integrated
interfaces for direct usage and, thus, typically cannot be utilized
independently of their associated database systems. These file for-
mats are challenging to employ for IoT devices with insufficient
resources to run a complete database system.

TDrive REDD GeoLife TSBS CSS ZY

0.
10

1.
00

la
te

nc
y 

(m
s)

×105

(a) Data Ingestion

TDrive REDD GeoLife TSBS CSS ZY

1.
00la

te
nc

y 
(m

s)

×102

(b) Data Query

IoTDB
InfluxDB IOx

VictoriaMetrics
QuestDB

TimescaleDB

Figure 13: System Comparison

TDrive GeoLife REDD TSBS CCS ZY0
.0

0
0

.0
1

0
.1

0
1

.0
0

q
u
e
ry

 l
a
te

n
c
y
 (

m
s
)

×105

(a) Overall Write Latency

TDrive GeoLife REDD TSBS CCS ZY

0
.0

1
0

.1
0

1
.0

0
q
u
e
ry

 l
a
te

n
c
y
 (

m
s
)

×103

(b) Filter on Time

TsFile Parquet Parquet-AS ARROW

Figure 14: Industrial End Device Setup

Figure 13 reports that Apache IoTDB consistently outperforms
other systems across various datasets. Given the earlier compar-
isons between TsFile and Parquet under various loads and function-
alities and the report from benchANT [8], result of this comparison
is hardly surprising.

6.3.2 End Device. We conduct the performance on typical indus-
trial devices. Since TsFile provided platform-independent interfaces,

4074



the architectural or system differences between industrial comput-
ers and ordinary personal computers have little impact on per-
formance. Figure 14 (a) reports overall write latency. Figure 14 (b)
illustrates query latency with filters on time, a typical access pattern
in IoT scenario. To cope with the limited memory resource on the
end device, we reduced the block size in Parquet and flush threshold
in TsFile to 64M. For Arrow, we reduce the batch size to 32K rows.
However, these discrepancies barely impact the performance.

7 RELATEDWORK
7.1 Data Model for IoT Time Series
The data model of time series represents the associations between
series and the semantics of time series data. As the data model
determines the physical layout in some extent, therefore designing
an efficient file format for IoT time series requires an in-depth study
of its data model.

The hierarchical structure is widely applied among conventional
time series management. Since the 1980s, the industrial sector has
relied on data historians [6] to manage time series data from sensors
within industrial systems, making time series modeling a pivotal
concern. The International Society of Automation introduced stan-
dards like Batch Control ISA-88 [21] and Enterprise-Control System
Integration ISA-95 [22], featuring a hierarchical Physical Model to
delineate the structure among sensors and devices. In 2009, major
industry players like IBM and Siemens, alongside other enterprises
and institutions, participated in the European Union’s Seventh
Framework Internet of Things Architecture Project (IoT-A) [7]. This
initiative aimed to standardize fundamental IoT concepts, offering a
domain model that sketches out entities such as devices and sensors.
OSIsoft’s renowned PI Asset Framework [5] and General Electric’s
Predix Asset Model [13] both employ hierarchical structures to or-
ganize industrial system entities. The PI Asset Framework utilizes
interconnected Elements to represent entities, with each element
having multiple children but only one parent. Similarly, the Predix
Asset Model categorizes entities into five hierarchical levels, struc-
turing the complex relationships within industrial systems. For
TSDBMS today, a unified data model has yet to be established, the
concept of device is implemented in diverse approaches. Such as
InfluxDB and Prometheus employ labels for series specification,
QuestDB and QuasarDB leverage symbol-type columns in tables for
data invariant of time. TsFile, as the underlying storage of IoTDB, or-
ganizes device IDs in a hierarchy, thereby adhering to IoT standards
and capturing device specifications as proposed by TSDBMS.

7.2 File Format for Big Data
In big data applications, various file formats have been proposed
and applied widely for their high performance and concise format
design, such as Parquet [28], ORC [16] and RCFile [15]. However,
these formats are not designed for time series data in IoT scenario,
resulting in performance fall back as show in Section 6.

Specifically, Apache Parquet [28] is featuredwith column-striping
and record assembly algorithms [26], which is designed for the
nested data such as XML or JSON documents. However these com-
plex types rarely occurs in time series data as sensor readings are
mostly numerical, resulting in unnecessary overhead to store and
decode corresponding structures. For instance, although InfluxDB

IOx [18, 20] stores time series data into Parquet, it only provides
primitive data types to this day. Storing time series data into com-
mon file format, like Parquet, ORC or RCFile, incurs another serious
drawback, even though descriptive information about time series,
like device ID, are static through the life cycle, they are handled
as ordinary columns thus introducing unnecessary storage con-
sumption even with dictionary encoding. Let alone that Parquet
would withdraw its dictionary encoding once a dictionary grows
too large, storing identical time series description repeatedly. In
contrast, TsFile stores them in tree-structured index area, reducing
space cost while proving fast access.

Apache ORC [16] is a successor of RCFile [15], employing a
tabular data model and supporting nested data types as Parquet.
Instead of using a specific threshold to determine encoding strategy
as Parquet, ORC uses the ratio of distinct values to predetermine
whether to apply dictionary encoding [24]. When the number of
time series in one file increases, ORC would finally withdraw dictio-
nary encoding the drawback occurs. Contrast to Parquet construct
its page-level index after all row groups, ORC maintains index data
in the front of each stripes, leading to a higher price to filter with
specific condition. ORC investigates the affect of row reordering, ta-
ble partitioning and data packing on performance in deep dive [17],
however these scenario-independent designs are not taking ad-
vantage of the features in IoT scenarios. Since the data placement
method in ORC is quite similar to that in Parquet, thereby this
paper do not take it in evaluations as above.

8 CONCLUSION
This paper presents Apache TsFile, which, to our knowledge, stands
as the first open file format specifically designed for time series data
in IoT applications. TsFile leverages characteristics inherent to each
series, by employing distinct encoding and compression scheme
upon individual series. As IoT time series is invariably associated
with devices, TsFile groups series from the same device and stores
points from same series contiguously, optimizing compactness.
Specification of series is crucial for accessing and invariant of time,
these elements are utilized for indexes in TsFile. This approach
minimizes storage redundancy and ensures rapid data retrieval.
Having been recognized as a top-level Apache project, TsFile has
seen extensively applied in IoT contexts and demonstrates superior
performance as demonstrated by our evaluation. With the rapid
emergence of time series data and intelligent devices, we believe
that TsFile holds significant promise for enhancing future time
series data applications and beyond.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China (62021002, 62072265, 62232005, 92267203), the
National Key Research and Development Plan (2021YFB3300500),
the State Grid Science and Technology Project (5700-202435261A-1-
1-ZN), the Chongqing Technical Innovation and Application Devel-
opment Key Project (CSTB2023TIAD-STX0034), Beijing Key Labo-
ratory of Industrial Big Data System and Application. Shaoxu Song
(https://sxsong.github.io/) is the corresponding author.

4075

https://sxsong.github.io/


REFERENCES
[1] Apache. 2024. https://github.com/apache/parquet-java/.
[2] Apache. 2024. https://arrow.apache.org/docs/cpp/gandiva.html.
[3] Apache. 2024. https://arrow.apache.org/docs/java/dataset.html.
[4] Apache Thrift. 2024. https://thrift.apache.org/.
[5] Aveva. 2024. Asset Framework and PI System Explorer. https://docs.aveva.com/

bundle/pi-server-af-pse-f/page/1031642.html. Accessed: 2024-02-16.
[6] DC Barr. 1994. The use of a data historian to extend plant life. (1994).
[7] Martin Bauer, Nicola Bui, Jourik De Loof, Carsten Magerkurth, Andreas

Nettsträter, Julinda Stefa, and Joachim W Walewski. 2013. IoT reference model.
Enabling Things to Talk: Designing IoT solutions with the IoT architectural reference
model (2013), 113–162.

[8] benchANT. 2024. https://benchant.com/ranking/database-ranking.
[9] Jeffrey Dean and Sanjay Ghemawat. 2010. MapReduce: a flexible data processing

tool. Commun. ACM 53, 1 (2010), 72–77.
[10] Chenguang Fang, Shaoxu Song, Haoquan Guan, Xiangdong Huang, Chen Wang,

and Jianmin Wang. 2023. Grouping time series for efficient columnar storage.
Proceedings of the ACM on Management of Data 1, 1 (2023), 1–26.

[11] Chenguang Fang, Shaoxu Song, and Yinan Mei. 2022. On repairing timestamps
for regular interval time series. Proceedings of the VLDB Endowment 15, 9 (2022),
1848–1860.

[12] Chenguang Fang, Shaoxu Song, Yinan Mei, Ye Yuan, and JianminWang. 2022. On
aligning tuples for regression. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 336–346.

[13] GE Digital. 2022. About Asset Model. https://www.ge.com/digital
/documentation/predix-essentials/latest/c_apm_asset_about_asset_model_1.
html. Accessed: 2024-02-16.

[14] The PostgreSQL Global Development Group. 2024. https://www.postgresql.org/
docs/16/storage-file-layout.html/.

[15] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang,
and Zhiwei Xu. 2011. RCFile: A fast and space-efficient data placement struc-
ture in MapReduce-based warehouse systems. In 2011 IEEE 27th International
Conference on Data Engineering. IEEE, 1199–1208.

[16] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N Hanson,
Owen O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and Xiaodong Zhang.
2014. Major technical advancements in apache hive. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 1235–1246.

[17] Yin Huai, Siyuan Ma, Rubao Lee, Owen O’Malley, and Xiaodong Zhang. 2013.
Understanding insights into the basic structure and essential issues of table
placement methods in clusters. Proceedings of the VLDB Endowment 6, 14 (2013),
1750–1761.

[18] InfluxData. 2024. https://www.influxdata.com/time-series-platform/influxdb/.
[19] InfluxData. 2024. https://www.influxdata.com/blog/understanding-influxdb-iox

-commitment-open-source/.
[20] InfluxData. 2024. https://github.com/influxdata/influxdb/tree/3c5e

5bf241dcc2c0e13554c5286577ad6066bfec/parquet_file/.
[21] International Society of Automation (ISA) 2010. Batch Control Part 1: Mod-

els and Terminology. International Society of Automation (ISA). Accessed
online at https://www.isa.org/products/ansi-isa-88-00-01-2010-batch-control-
part-1-models.

[22] International Society of Automation (ISA) 2010. Enterprise-Control System
Integration. International Society of Automation (ISA). Accessed on-
line at https://www.isa.org/products/ansi-isa-95-00-01-2010-iec-62264-1-mod-
enterprise.

[23] J Zico Kolter and Matthew J Johnson. 2011. REDD: A public data set for energy
disaggregation research. In Workshop on Data Mining Applications in Sustain-
ability (SIGKDD), San Diego, CA, Vol. 25. 59–62.

[24] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. 2023. A
deep dive into common open formats for analytical dbmss. Proceedings of the
VLDB Endowment 16, 11 (2023), 3044–3056.

[25] Wes McKinney. 2024. https://github.com/wesm/feather/.
[26] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment 3, 1-2 (2010), 330–339.

[27] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385. https://doi.org/10.1007/S002360050048

[28] Apache Parquet. 2024. https://parquet.apache.org/.
[29] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin

Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816–1827. https://doi.
org/10.14778/2824032.2824078

[30] QuestDB. 2024. https://questdb.io/docs/concept/storage-model/.
[31] SQLite. 2024. https://www.sqlite.org/.
[32] Yu Sun, Shaoxu Song, Chen Wang, and Jianmin Wang. 2020. Swapping repair

for misplaced attribute values. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 721–732.

[33] TimescaleDB. 2023. https://www.timescale.com/.
[34] TimescaleDB. 2023. Time Series Benchmark Suite (TSBS). https://github.com/

timescale/tsbs.
[35] VictoriaMetrics. 2024. https://docs.victoriametrics.com/#storage/.
[36] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian

Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. 2023. Apache IoTDB: A Time
Series Database for IoT Applications. Proceedings of the ACM on Management of
Data 1, 2 (2023), 1–27.

[37] HaoyuWang and Shaoxu Song. 2022. Frequency domain data encoding in apache
IoTDB. Proceedings of the VLDB Endowment 16, 2 (2022), 282–290.

[38] ZhenhuaWang, Huikun Pei, Xiaomeng Zhang, ChenghaoWang, Xi Chen, and Te
Zhou. 2021. Application of KKSCoding andQRCode Technology in Transmission
Asset Management. In 2021 IEEE 2nd China International Youth Conference on
Electrical Engineering (CIYCEE). IEEE, 1–6.

[39] Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong Huang,
and Jianmin Wang. 2022. Time Series Data Encoding for Efficient Storage: A
Comparative Analysis in Apache IoTDB. Proc. VLDB Endow. 15, 10 (2022), 2148–
2160. https://doi.org/10.14778/3547305.3547319

[40] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with
knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Diego,
CA, USA, August 21-24, 2011, Chid Apté, Joydeep Ghosh, and Padhraic Smyth
(Eds.). ACM, 316–324. https://doi.org/10.1145/2020408.2020462

[41] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong
Sun, and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories.
In 18th ACM SIGSPATIAL International Symposium on Advances in Geographic
Information Systems, ACM-GIS 2010, November 3-5, 2010, San Jose, CA, USA, Pro-
ceedings, Divyakant Agrawal, Pusheng Zhang, Amr El Abbadi, and Mohamed F.
Mokbel (Eds.). ACM, 99–108. https://doi.org/10.1145/1869790.1869807

[42] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An Empirical Evaluation of Columnar Storage Formats.
Proc. VLDB Endow. 17, 2 (2023), 148–161. https://www.vldb.org/pvldb/vol17/p148-
zeng.pdf

[43] Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A Collaborative Social
Networking Service among User, Location and Trajectory. IEEE Data Eng. Bull.
33, 2 (2010), 32–39. http://sites.computer.org/debull/A10june/geolife.pdf

4076

https://github.com/apache/parquet-java/
https://arrow.apache.org/docs/cpp/gandiva.html
https://arrow.apache.org/docs/java/dataset.html
https://thrift.apache.org/
https://docs.aveva.com/bundle/pi-server-af-pse-f/page/1031642.html
https://docs.aveva.com/bundle/pi-server-af-pse-f/page/1031642.html
https://benchant.com/ranking/database-ranking
https://www.ge.com/digital
/documentation/predix-essentials/latest/c_apm_asset_about_asset_model_1.html
/documentation/predix-essentials/latest/c_apm_asset_about_asset_model_1.html
https://www.postgresql.org/docs/16/storage-file-layout.html/
https://www.postgresql.org/docs/16/storage-file-layout.html/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/blog/understanding-influxdb-iox
-commitment-open-source/
https://github.com/influxdata/influxdb/tree/3c5e
5bf241dcc2c0e13554c5286577ad6066bfec/parquet_file/
https://github.com/wesm/feather/
https://doi.org/10.1007/S002360050048
https://parquet.apache.org/
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://questdb.io/docs/concept/storage-model/
https://www.sqlite.org/
https://www.timescale.com/
https://github.com/timescale/tsbs
https://github.com/timescale/tsbs
https://docs.victoriametrics.com/#storage/
https://doi.org/10.14778/3547305.3547319
https://doi.org/10.1145/2020408.2020462
https://doi.org/10.1145/1869790.1869807
https://www.vldb.org/pvldb/vol17/p148-zeng.pdf
https://www.vldb.org/pvldb/vol17/p148-zeng.pdf
http://sites.computer.org/debull/A10june/geolife.pdf

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 TsFile Format Overview
	3 TsFile Data Area
	3.1 Chunk Group
	3.2 Chunk
	3.3 Page
	3.4 Time Series Encoding

	4 TsFile Index Area
	4.1 Chunk Index
	4.2 Series Index
	4.3 Automatic Schema Identification

	5 The API of TsFile
	5.1 TsFile Writer
	5.2 TsFile Reader
	5.3 TsFile Compaction

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 File Evaluation
	6.3 System Evaluation

	7 Related Work
	7.1 Data Model for IoT Time Series
	7.2 File Format for Big Data

	8 Conclusion
	Acknowledgments
	References

