
Animating Autonomous Pedestrians

by

Wei Shao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

January, 2006

Advisor: Demetri Terzopoulos



c© Wei Shao

All Rights Reserved, 2006



To my mother and father, and to my wife.

iii



Acknowledgements

I would like to take this opportunity to express my gratitude to the people who

have helped and supported me during my Ph.D. program.

First and foremost, I am particularly grateful to my adviser, Professor Demetri

Terzopoulos. It was his guidance, encouragement and collaboration that lead me

along the bumpy road of Ph.D. study to this final accomplishment. I am so fortu-

nate to have had the experience of research and study with him for the past five

years, which has changed me and will be influencing me for the rest of my life.

Next, I would like to thank Professors Ken Perlin, Davi Geiger, Yann LeCun,

Denis Zorin and Chris Bregler for serving on my proposal and dissertation com-

mittees. Special thanks go to Ken for his insightful opinions and suggestions on

my research work.

I owe a lot to my colleagues and lab mates, among them Mauricio Plaza who

worked on the reconstructed Penn Station model with me, Alex Vasilescu, Sung-

Hee Lee and Evgueni Parilov who shared their ideas, opinions, discussion and jokes

with me, and everybody at the Media Research Lab for the discussions, laughter,

food and drink.

The research reported herein was supported in part by grants from the Defense

iv



Advanced Research Projects Agency (DARPA) of the Department of Defense and

from the National Science Foundation (NSF). My work has benefitted from col-

laboration with Brown University, in particular with Dr. Eileen Vote who created

the reconstructed model of the Petra Great Temple (Daniel Feliz provided a re-

cent version of the model) and with Professor David Cooper, the PI of the NSF

Information Technology Research (ITR) grant that helped support my work. My

thanks also go to Dr. Donald Sanders of the Institute for the Visualization of His-

tory for his advice and feedback on the application of our pedestrian simulator to

virtual archaeology.

Most of all, I thank my loving wife, Yi Fang, for her great care, unconditional

support and continuous encouragement throughout this time, without which this

dissertation would not have been possible.

v



Abstract

This thesis addresses the difficult open problem in computer graphics of autonomous

human modeling and animation, specifically of emulating the rich complexity of

real pedestrians in urban environments.

We pursue an artificial life approach that integrates motor, perceptual, behav-

ioral, and cognitive components within a model of pedestrians as highly capable

individuals. Our comprehensive model features innovations in these components,

as well as in their combination, yielding results of unprecedented fidelity and com-

plexity for fully autonomous multi-human simulation in large urban environments.

Our pedestrian model is entirely autonomous and requires no centralized, global

control whatsoever.

To animate a variety of natural interactions between numerous pedestrians and

their environment, we represent the environment using hierarchical data structures,

which efficiently support the perceptual queries of the autonomous pedestrians that

drive their behavioral responses and sustain their ability to plan their actions on

local and global scales.

The animation system that we implement using the above models enables us

to run long-term simulations of pedestrians in large urban environments without

vi



manual intervention. Real-time simulation can be achieved for well over a thousand

autonomous pedestrians. With each pedestrian under his/her own autonomous

control, the self-animated characters imbue the virtual world with liveliness, social

(dis)order, and a realistically complex dynamic.

We demonstrate the automated animation of human activity in a virtual train

station, and we employ our pedestrian simulator in the context of virtual archae-

ology for visualizing urban social life in reconstructed archaeological sites. Our

pedestrian simulator is also serving as the basis of a testbed for designing and

experimenting with visual sensor networks in the field of computer vision.
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Chapter 1

Introduction

“Forty years ago today at 9 a.m., in a light rain, jack-hammers began

tearing at the granite walls of the soon-to-be-demolished Pennsylvania

Station, an event that the editorial page of The New York Times termed

a “monumental act of vandalism” that was “the shame of New York.” ”

(Glenn Collins, The New York Times, 10/28/03)

Figure 1.1: The original Pennsylvania Train Station in New York City.
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The demolition of New York City’s original Pennsylvania Station (Figure 1.1),

which had opened to the public in 1910, in order to make way for the Penn Plaza

complex and Madison Square Garden, was “a tragic loss of architectural grandeur”.

Although state-of-the-art computer graphics enables a virtual reconstruction of

the train station with impressive geometric and photometric detail (Figure 1.2),

it does not yet enable the automated animation of the station’s human occupants

with anywhere near as much fidelity. This thesis addresses the difficult, long-term

challenge of automated human animation.

The creation of lifelike characters has been one of the most provocative topics in

computer animation. From traditional expressive cartoon characters such as Dis-

ney’s “Snow White”1 to modern CG characters such as Pixar’s “Buzz Lightyear”2

we have experienced the revolutionary transition from manual drawing to computer-

generated graphics. However, most lifelike characters on the big screen today re-

main hand-animated in labor-intensive fashion, using key-framing or a mixture

of key-framing and motion capture techniques. As the latest modeling and ren-

dering technologies begin to produce synthetic characters that look remarkably

photorealistic, such as the virtual humans of the 2001 CGI film “Final Fantasy”,3

the animation research community is increasingly challenged to develop techniques

that can automatically achieve compatibly realistic motions and even autonomous

behaviors for such characters. The need for self-animated, lifelike virtual humans

is even more acute in the rapidly evolving interactive game industry.

For more than a decade, research groups in academia and industry have been

1Snow White and the Seven Dwarfs, 1937, Walt Disney Pictures.
2Toy Story, 1995, and Toy Story 2, 1999, Pixar.
3Final Fantasy: The Spirits Within, 2001, Square USA.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 1.2: The original (a,b,d,f) and reconstructed (c,e,g) Pennsylvania Train Sta-
tion, including (a,b,c) views of the main waiting room, (d,e) the upper concourse,
and (f,g) the arcade.
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pursuing an artificial life approach to synthesizing self-animated characters that

are in some rudimentary sense “alive” [Terzopoulos 1999]. A variety of animation

systems have been reported in the literature that can create lifelike characters pat-

terned after lower animals for various practical purposes, from scientific simulation,

to education, to entertainment including movies and interactive computer games.

Recently, researchers have turned their ambitions towards the holy grail of creating

lifelike autonomously self-animated humans that inhabit complex virtual worlds.

Partial solutions aimed at various sub-problems toward this long-range goal have

been proposed.

1.1 Research Focus

Ideally, to mimic a real human being, every aspect of a living human should be in-

cluded in a character model—from the musculoskeletal system, to skin and clothes,

from body motion to facial expression, from internal emotion to external behavior,

from perception to interaction, and from learning to knowledge representation and

reasoning. This may be a reasonable breakdown from a natural scientist’s point

of view. On the other hand, from a sociologist’s perspective, an individual can

play different roles in life, such as a graduate student, a violinist, a child, a parent,

a spouse, a shopper, a driver, an office clerk, a teacher, an athlete, a conference

delegate, etc. Although many of these roles can be played by the same biological

human, each potentially requires different sets of motions, behaviors, and intelli-

gent skills. Clearly, developing a general autonomous human model capable of the

full repertoire of observed human complexity is a gargantuan, seemingly impossible

4



task. To make progress, we must focus our attention to an interestingly complex

yet tractable slice of the big picture that has not yet been fully addressed.

In this thesis, we take an artificial life approach to solving the difficult open

problem of animating autonomous virtual pedestrians in large urban spaces. Our

primary objective will be a computer model of a self-animated human pedestrian,

including its motor, perceptual, behavioral, and cognitive abilities. Our secondary

yet also important objective will be to develop external data structures and al-

gorithms that can efficiently support numerous instances of our highly capable

pedestrian model within a suitably rich synthetic urban environment. As a pre-

view of our results, Figure 1.3 illustrates the virtual Penn Station environment

populated by our autonomous virtual pedestrians.

1.2 Methodology and Architecture

Though much simpler than modeling a general human being, modeling a pedestrian

is still a very tough problem. To tackle the problem, we pursue an artificial life

modeling approach [Terzopoulos 1999], constructing a fully autonomous artificial

human that possesses external characteristics and internal control mechanisms

consistent with those of a real pedestrian, including

• a geometric model of body shape and articulation;

• color and texture properties of the skin, eyes, hair, and clothes;

• various controllable body movements, primarily for locomotion;

• sensing of the external environment, mainly via visual perception;

5



(a) (b)

(c) (d)

Figure 1.3: A large-scale simulation of Penn Station populated by self-animated
virtual humans. Rendered images of the main waiting room (a), concourses (b,c),
and arcade (d).
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• internal representation of individual physiological, psychological and social

needs;

• a behavioral repertoire, including obstacle avoidance behaviors, following

behaviors, etc;

• a reactive behavioral control mechanism that initiates, sequences, and termi-

nates behaviors in accordance with internal motivators and external sensory

stimuli;

• higher-level deliberative control mechanisms based on knowledge, which pro-

vide the intelligence to interact with the environment and achieve long-range

goals.

Our virtual pedestrians are compound models spanning five distinguishable

modeling levels, as is shown in Figure 1.4. This modeling hierarchy or pyramid

is patterned after those depicted in [Terzopoulos 1999; Funge et al. 1999]. At the

lowest level is the geometric human model, including an articulated skeleton with

colored/textured skin and clothes. The second level is a kinematic motion layer

which covers motion synthesis and motor control. Above that is the perceptual

modeling level, including sensing processes for both external situation and internal

states. The behavioral model on the next level controls a character’s reactive and

motivational behaviors in response to both internal and external stimuli obtained

through perception processes. At the apex of the modeling pyramid, knowledge

representation, reasoning, and planning are encapsulated in the cognitive model,

which provides characters with deliberative intelligence and free will. Finally, the

modeling hierarchy associated with the individual pedestrian is embedded within

7



Cognition 

Behavior 

Perception 

Motion 

Geometry 

Environment 
 & Interaction 

Figure 1.4: Modeling pyramid.

the environment and interaction model. The latter supports the relations and

interactions between the pedestrians and their environment.

An important guideline for our work is that, as in real life, each virtual pedes-

trian should be an autonomous, intelligent individual. More explicitly, each pedes-

trian should be able to control itself across the motor, perceptual, behavioral and

cognitive levels. Just like real people, it should be an autonomous agent that does

not require any external, global coordination whatsoever, including control by any

real human animators in order to cope with its highly dynamic environment. How-

ever, this criterion does not preclude the possibility for our virtual characters to

be directed by animators at an abstract level in a manner that reflects certain

animation objectives.
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1.3 Contributions

In a departure from the substantial literature on so-called “crowd simulation”, the

contribution of this thesis is a decentralized, comprehensive model of pedestrians

as autonomous individuals capable of a broad variety of activities in large-scale

synthetic urban spaces. While our work is innovative in the context of behavioral

animation, it is very different from simple crowd animation, where one character

algorithmically follows another in a stolid manner, which is relatively easy to ac-

complish with simple rules. We are uninterested in crowds per se. Rather, the goal

of our work has been to contribute a comprehensive, self-animated model of indi-

vidual human beings that incorporates nontrivial human-like abilities suited to the

purposes of animating virtual pedestrians in urban environments. In particular, we

pay serious attention to deliberative human activities over and above the reactive

behavior level. Our artificial life approach to modeling humans spans the mod-

eling of pedestrian appearance, locomotion, perception, behavior, and cognition.

Our approach has been inspired most heavily by the work of [Tu and Terzopoulos

1994] on artificial animals and by [Funge et al. 1999] on cognitive modeling for

intelligent characters that can reason and plan their actions. We have taken this

comprehensive artificial life approach further, adopting it for the first time to the

case of an autonomous virtual human model that can populate large-scale urban

spaces.

Following the above described methodology and architecture, our overall con-

tribution is a novel framework for human simulation, an implementation that can

efficiently animate numerous pedestrians autonomously performing a rich variety

of activities in large-scale urban environments, and its application. In more detail,
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our specific major contributions are as follows:

1. A sophisticated new model of autonomous pedestrians that has innovations

in each of its components as well as in their combination. The pedestrian

model, which was reported in [Shao and Terzopoulos 2005a], includes:

(a) a motor control interface that hides the details of the low-level motion

implementation;

(b) a perception paradigm that considers not only sensing processes, but

situation interpretation as well;

(c) a robust repertoire of reactive behavior routines and a novel way of

combining them;

(d) a variety of navigational behaviors with concerns from both global and

local perspectives; and

(e) cognitive planners and a memory model suitable for pedestrians.

2. A new, hierarchical environment model, which was reported in [Shao and

Terzopoulos 2005b], that supports natural interactions among pedestrians in

extensive and highly dynamic virtual worlds through:

(a) efficient perceptual processing; and

(b) fast online path planning at various scales.

3. A human simulation system combining implementations of the two mod-

els that can automatically produce real-time animation on high-end PCs

involving well over a thousand simulated pedestrians in large-scale urban

environments.
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4. Novel applications of our simulator to virtual archeology for the purposes

of visualizing urban social life in reconstructed archaeological sites, as well

as a potential computer-based archaeological tool in developing and testing

theories about ancient site usage.

Regarding the latter contribution, in addition to the aforementioned Penn Station

environment, we have applied our pedestrian simulator to a reconstruction of the

Great Temple archaeological site of ancient Petra in Jordan (Figure 1.5). Our work

has also enabled research in the domain of computer vision where our pedestrian

simulator is being used as a developmental testbed for visual surveillance sensor

networks.

1.4 Thesis Overview

The remaining chapters of this dissertation are organized as follows: In Chapter 2,

we review related prior work. In addition to the voluminous relevant literature in

computer graphics and animation, we cover some related work in robotics and the

scientific study of pedestrian traffic.

Chapter 3, presents a technical overview of our pedestrian simulation frame-

work, including the virtual environment model and the virtual pedestrian model.

Chapter 4 and Chapter 5 proceed with a full explanation of the autonomous

pedestrian model, covering the details of the behavioral control and cognitive con-

trol sub-models, respectively. After briefly describing the low-level human model-

ing package that we use and the specific implementation of pedestrian’s appearance

and lower-level motor control, Chapter 4 presents the various behavior modules,

11



(a) (b)

(c) (d)

Figure 1.5: Filling the Petra Great Temple amphitheater.

how they alter the motor control commands, how they are combined to give optimal

performance, and how appropriate behaviors are triggered both by the pedestrian’s

external environment and internal states through sensory processes. Chapter 5

presents the heuristic guidelines underlying the cognitive model and how it en-

ables pedestrians to form plans, execute them, and update them, and how these

plans affect the behavioral layer.

Chapter 6 presents the full details of the hierarchical environment model, which

supports large-scale data organization, accurate perceptual queries, and efficient

12



path search algorithms, enabling the real-time animation of well over a thousand

pedestrians in large-scale virtual worlds.

With the environment model fully explained, we can then explain in Chapter 7

the details of the algorithms that support local and global path planning in the

autonomous pedestrians.

In Chapter 8, we present several animation results and analyze the performance

of our simulation system.

Chapter 9 draws conclusions from our work and discusses avenues for future

research and application.

The main body of the dissertation is supplemented by three appendices. Ap-

pendix A presents the details of our scheme for optimally sequencing the reactive

behavior routines. Appendix B presents additional motivational behavior routines

for autonomous pedestrians in the Penn Station environment. Finally, Appen-

dix C investigates motion analysis and synthesis, presenting new algorithms that

can potentially serve as an alternate low-level motion layer for virtual pedestrians.
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Chapter 2

Related Work

The creation of lifelike virtual creatures that emulate their counterparts in the real

world is obviously a very challenging task, considering the complexity of the crea-

ture’s biology and its dynamic physical surroundings. Such complexity increases to

the extreme in the case of modeling human beings [Badler et al. 1993]. The focus

of our research—to model pedestrians as self-controlled individuals—is a difficult

open sub-problem of this task.

In this chapter, we will review previous work related to our research in the fields

of artificial life, computer animation, scientific simulation, and robotics. We will

start with an overview of motion synthesis techniques, continue with a detailed

review of behavioral models and autonomous agents related to our work, and

conclude with a brief discussion of environment models that support interaction

between agents and their surroundings.
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2.1 Natural Motion Synthesis

Creating realistic motion is a basic part of animating lifelike characters. Generally

speaking, the most commonly used motion synthesis and editing techniques fall

into the following three categories: kinematic, dynamic, and hybrid.

Kinematic techniques: Keyframing is the most traditional kinematic technique

and it has proven successful for decades. It gives the artist full control over the

character’s action and thus, given enough skill and perseverance, it can yield very

expressive animation. Many vivid cartoon characters have been created using this

method. However, as key framing requires lots of interactive editing and usually

takes a considerable amount of time, it is best used as a tool for offline animation

production with a small number of characters. As vision technology has developed,

a new motion creation method—motion capture—has become increasingly popu-

lar. Simply stated, motion capture is the recording of human body movement (or

other movement) for immediate or delayed analysis and playback [Sturman 1994].

Ignoring inaccuracies during recording, the acquired motion data yields a realis-

tic animation of the original motion if it is transferred to a “virtual copy” of the

original character. To obtain animation with variation, several offline editing tech-

niques (in addition to the most traditional keyframing), such as warping [Witkin

and Popovic 1995], retargeting [Gleicher 1998], path editing [Gleicher 2001], tran-

sition generation [Rose et al. 1996], and motion signal processing [Bruderlin and

Williams 1995], have been developed in order to adapt the original data to partic-

ular needs. Possible artifacts involving high-frequency details, such as foot skate,

which are likely to be introduced in the above editing processes, can be removed
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by methods such as those described in [Kovar et al. 2002b]. Motion capture data

can also enhance keyframing animations by adding in missing degrees of freedom

and missing motion details [Pullen and Bregler 2002]. While motion capture is

drawing increasing attention from the animation community, it still lacks the flexi-

bility to be useful in applications featuring dynamic and interactive environments.

Recently, several research groups [Kovar et al. 2002a; Arikan and Forsyth 2002;

Lee et al. 2002] have started employing new techniques to analyze and abstract

motion databases into graphs. Their abstractions transform the motion synthesis

problem into graph walks. By drawing upon algorithms from graph theory and AI

planning, particular graph walks that satisfy certain constraints can be extracted

efficiently, thereby making motion synthesis fast and controllable [Kwon and Shin

2005].

Dynamic techniques: Motion synthesis via physical simulation usually requires

a dynamic character model together with a set of actuators and controllers. Actu-

ators emulate natural muscles and controllers activate and coordinate these actua-

tors, driving the dynamic character model to produce desired motions. To synthe-

size realistic motions, physically-based models are used to compute the dynamics

of passive moving bodies subject to kinematic constraints. This approach frees

the animator from having to specify many low-level motion details, since motion is

synthesized automatically by the procedural controllers through physical simula-

tion. A substantial amount of research devoted to animating creatures using this

method has already demonstrated its success in non-human animals, such as fishes

[Tu and Terzopoulos 1994] and birds [Wu and Popovic; 2003]. However, humans
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have more elaborate musculoskeletal systems and thus need more complex control

mechanism for coordinated motions. Consequently, controllers for physically based

humans are difficult to construct and motion synthesis is usually computationally

expensive. Although encouraging research results such as the animation of human

athletics [Hodgins et al. 1995] and the virtual stuntman [Faloutsos et al. 2001b;

Faloutsos et al. 2001a] have revealed the potential, human motions synthesized by

dynamic simulation still tend to look robotic—they are physically valid but still

lack the natural fluidity evident in biological humans.

Hybrid techniques: Seeing the respective advantages and drawbacks of kine-

matic and dynamic approaches, researchers have recently started combining the

two methods, hoping to gain better performance out of the resulting hybrid tech-

niques. Zordan and Hodgins [2002] have developed interactive character models

that include trajectory tracking controllers that follow motion capture data and

balance controllers that keep the character upright while modifying motion se-

quences to accomplish specified tasks, such as throwing punches or swinging a

racket. Their simulated human characters can respond automatically to impacts

and return smoothly to tracking motion data. Shapiro et al. [2003] have imple-

mented a framework that employs both kinematic and dynamic controllers. They

also developed transition methods between the two control methods for interactive

character animation. In their framework, characters are able to perform natural-

looking gaits and react dynamically to unexpected situations. Pollard and Zordan

[2005] propose a controller for physically based hand grasping that draws from

motion capture data. They show that a controller derived from a single motion
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capture example can be used to form grasps of different object geometries. Arikan

et al. [2005] present an algorithm for animating characters being pushed by an

external disturbance. Their technique uses a collection of motions of a real person

responding to being pushed, and synthesizes new motions by selecting a motion

from the recorded collection and modifying it so that the character responds to

the push from the desired direction and location on its body. Similar approaches

combining kinematic and dynamic techniques have also drawn the attention of the

animation industry. Natural Motion, Inc.’s, Active Character Technology [Natural

Motion, Ltd 2003] is capable of producing smooth “hand-over” transitions between

pre-designed or imported character motions and physically simulated motions for

real-time interactive character animation.

Each of the above three types of techniques has its own advantages and disad-

vantages. As we want our virtual humans to be animated online in real time, we

need a motion synthesis technique that provides both speed and quality. To this

end, recent advances in motion capture research have drawn our attention. We

have designed an efficient data analysis and synthesis algorithm which can produce

high quality motions as desired in real time. We have implemented our algorithm

as an Alias Maya [Alias Systems Corp. 2005] real-time animation plug-in that is

designed specifically for this purpose. However, in our current pedestrian simula-

tion system, we employ the human animation package DI-Guy [Koechling et al.

1998] from Boston Dynamics, Inc. [Boston Dynamics, Inc. 2004], which also pro-

vides us with textured character models. Thus, we are restricted to using only the

motion repertoire and blending algorithms that come with this software. Human

18



motion synthesis, therefore, falls outside of the major focus of this thesis. For

completeness, however, we provide the details of our motion analysis and synthesis

algorithms in Appendix C, as an alternative for interested readers.

2.2 Behavioral Models and Autonomous Agents

Animating a character, whether human or non-human, with lifelike behaviors is

anything but simple for an artist. Animation of groups of characters, such as

flocks of birds or schools of fish, requires even more effort and time in addition to

creativity. Not only does the overall motion of the whole group need to be highly

coordinated, each individual creature should have its own distinct behavioral de-

tails as well. To tackle the problem, researchers developed self-animating character

models that efficiently generate animation for groups of characters with much less

effort than before. A variety of behavioral animation models and systems have

appeared in both research and industry. We list a few representative samples in

the following discussion.

2.2.1 Behavioral Characters in Animation

Boids: In his seminal work, Reynolds [1987; 1999] proposed a computational

model of a distributed (multi-agent) behavioral system. In his approach, each an-

imated character, called a “boid”, is able to carry out a behavior from a small

repertoire (separation, alignment, and cohesion) based on the location of its neigh-

boring boids at any given time. The organized flock is an emergent property of

the autonomous interactions between individual behaviors. Using a similar model,
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Brogan and Hodgins [1997] have reproduced behaviors for groups of simulated

creatures traveling fast enough that dynamics plays a significant role in deter-

mining their movement. Their algorithm is evaluated in three different simulated

systems—legged robots, humanlike bicycle riders, and point-mass systems.

Artificial Fishes: Tu and Terzopoulos [1994] developed a physics-based, virtual

marine world inhabited by lifelike artificial life forms that emulate the appearance,

motion, and behavior of fishes in their natural habitats. Each artificial fish is an

autonomous agent that can demonstrate a repertoire of piscine behaviors, including

collision avoidance, foraging, preying, schooling, courting, and mating. Despite

their rudimentary brains, compared to the biological brains of real animals, these

artificial fishes can learn basic motor functions and carry out perceptually guided

motor tasks [Terzopoulos et al. 1994; Terzopoulos et al. 1996].

Improv: “Improv” is an authoring system developed by Perlin and Goldberg

[1996] for creating interactive worlds inhabited by believable animated actors. Au-

thors can use an Animation Engine to create layered, continuous, non-repetitive

motions and smooth transitions, and can use the Behavior Engine to create rules

governing how actors communicate, change, and make decisions. Characters cre-

ated using the system are behavior-based as well as interactive. They can respond

to each other and to users in real-time, with personalities and moods consistent

with user-defined goals and intentions.

Mr. Bubb: Similarly, Loyall et al. [2004] presented an innovative system that

enables the authoring of rich procedural knowledge related to autonomous in-
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teractive characters. Their system is composed of a programming language with

emotion/expression models and a motion synthesis system that can combine hand-

animated motion data with artistically authored procedures. “Mr. Bubb” is a char-

acter with emotion and rich personality that was created for a simple interactive

game using their system.

EMOTE: Badler and his collaborators introduced a 3D character animation

system called “EMOTE” (Expressive MOTion Engine) [Chi et al. 2000], which was

inspired by movement observation science, specifically Laban Movement Analysis

[Maletic 1987] and its “Effort and Shape” components. With the help of this

system, they are able to create and parameterize specific agent behaviors (such as

upper-body motions during walking, arm gestures, and facial expressions [Ashida

et al. 2001; Badler et al. 2002]) more naturally.

AlphaWolf: Focusing on the synthetic social behavior for interactive virtual

characters, Tomlinson et al. [2002] have built a computational model that cap-

tures a subset of the social behaviors of wild wolves, involving models of learning,

emotion, and development. By howling, growling, whining or barking into a mi-

crophone in their interactive installation “AlphaWolf”, users can play the role of

wolf pups and therefore influence other members of a pack of autonomous and

semi-autonomous virtual wolves.

Social Learning in Synthetic Characters: Buchsbaum et al. [2005] have

created animated characters that are able to observe, recognize and imitate what

others are performing. In addition, their characters can identify simple goals and
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motivations from perceived behavior, and can learn about new objects by observing

and correctly interpreting interactions performed by others with these objects.

Cognitive Modeling: Funge et al. [1999] have developed a cognitive modeling

language CML, which is based on a logic formalism from artificial intelligence

known as the situation calculus. They used it in different animation settings

(a prehistoric world with dinosaurs and an undersea world with a shark and a

“merman”), imbuing synthetic characters with domain knowledge and deliberative

character behavior in terms of goals. With their cognitively empowered characters,

the animator need only specify a brief high-level “script” and, through reasoning,

the character will automatically work out a detailed sequence of actions satisfying

the specification. This approach allows behavioral animation to be directed more

intuitively, more succinctly and at a much higher level of abstraction than would

otherwise be possible.

2.2.2 Low-level Pedestrian Simulation in Science

Next, we direct our attention to pedestrian models. In the scientific studies of

pedestrian traffic, there are two major categories of models, microscopic and macro-

scopic. The former focuses on traffic characteristics of individual units, such as

individual speed and individual interaction, while the latter studies the collec-

tive flow of aggregated pedestrian movement by examining average speed, covered

area, etc. Since we are interested in detailed models of pedestrians as individuals,

the microscopic model is more relevant to our work. There are several different

categories of simulation models in microscopic pedestrian studies: Cellular mod-
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els, physical force models, and queuing models. Teknomo [2002] provides a more

detailed comparison among different microscopic pedestrian simulation models.

Cellular Models: Gipps and Marksjo [Gipps and Marksjo 1985] simulated pedes-

trians as particles in a grid of cells, each of which is assigned a cost score based

on proximity to the pedestrian and a gain score based on distance to the target.

According to these two scores, a pedestrian can pick the most beneficial neigh-

boring cell to proceed toward. Later, Blue and Adler [1998; 2000] developed a

cellular automata model for pedestrian simulation, which was originally applied

to car traffic simulation. In their model, two parallel stages—lane change and cell

hopping—are applied in each simulation time step for a pedestrian.

Physical Force Models: In 1979, Okazaki [1979] developed a magnetic model

in which pedestrians and obstacles are assigned positive poles and goal locations

assume negative poles. The overall magnetic effect causes pedestrians to move to

their goals and avoid collisions. Helbing and Molnar [1995] introduced a model

for pedestrian simulation based on “social forces”, which is a measurement for the

internal motivations of the individuals to perform certain actions (movements).

Their model can be further applied to describe group dynamics and other social

phenomena.

Queuing Models: These models, which were developed by several researchers

[Watts 1987; Lovas 1993; Thompson and Marchant 1995; Schreckenberg and Sharma

2001], are often used for evacuation simulation in architecture design and urban

planning.
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2.2.3 Pedestrian Models in Animation

Hierarchical ViCrowd: Musse and Thalmann [2001] introduced a simulation

system called “ViCrowd”. As the name indicates, the goal of their system is to gen-

erate crowd simulation based on large groups rather than individuals. Autonomy

is developed for their crowd model and by means of pre-programmed, scripted and

interactive control, their system can generate crowd behaviors with various levels

of realism.

Reactive Massive Crowd: Based on artificial life technology, Massive Software,

Inc., [Massive Software, Inc. 2005] has developed a 3D animation tool called

“Massive” for generating crowd-related visual effects and character animation for

film and television. Using this software, artists can design characters with a set

of reactions to what is going on around them. These reactive characters possess

a special vision process, and a sense of hearing and touch that allows them to

respond naturally to their environment.

Reactive Navigation using Iterative Optimization: Lamarche and Donikian

[2004] developed a system that enables reactive pedestrian navigation within a hi-

erarchical topological structure built from the geometric database of a virtual en-

vironment. In their approach, an iterative optimization process is used for pedes-

trians to avoid collisions and reach targets at the same time.

Situation-based Behaviors for Scalable Crowd Simulation: Sung et al.

[Sung et al. 2004] developed a situation-based animation system that embeds com-

posable behaviors into the environment. As characters enter a specific place/situation,
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behaviors stored there can temporarily be added to the character’s behavior reper-

toire and they can be composed with the existing behaviors on the fly to en-

able characters to respond to the situation more appropriately. These augmented

situation-specific behaviors are removed once the character leaves the situation

behind.

2.2.4 Other Related Models

Subsumption Architecture: The subsumption model introduced to the ro-

botics community by Brooks [1986; 1991; 1995] had an unconventional control

architecture. The traditional approach decomposed the control problem into a se-

ries of functional units and information flowed sequentially through each unit until

the final control commands can be picked after last unit. However, in Brooks’

model “task achieving behaviors” are used to replace functional units. They have

parallel access to perceptual input and can simultaneously control the same set

of robot actuators. To resolve the conflicts in control competence, higher level

function units, when they wish to take control, can subsume the roles of lower

level ones. The construction of the whole system is incremental from the bottom

up, and at any level a complete operational control system can be formed by using

only the layers below that level.

Combining Deliberation, Reactivity, and Motivation: Stoytchev and Arkin

[2001] described a hybrid mobile robot architecture that combines deliberative

planning, reactive control, and motivational drives to deal with dynamic and un-

predictable environments and high-level human commands. Using this architec-
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ture, they were able to control a mobile robot to accomplish a fax delivery mission

in a normal office environment.

2.2.5 Comparative Summary

Considering the substantial research effort devoted to behavioral models and au-

tonomous agents from both academia and industry, our review above was by no

means exhaustive. However, as a good representative subset, our selection spans

the spectrum from simple particle systems (such as those in Section 2.2.2) to

visually convincing systems with realistic artificial creatures that resemble their

counterparts in the real world (such as those in Section 2.2.1). With each of them

having its own focus, they demonstrate various advantages. Some of the exam-

ples are fully autonomous characters that do not require any direction from users

(e.g., artificial fishes [Tu and Terzopoulos 1994]) while others are more friendly

to authoring, guidance and interaction (e.g., Improv [Perlin and Goldberg 1996]);

some put more emphasis on individuals (e.g., EMOTE [Chi et al. 2000; Ashida

et al. 2001; Badler et al. 2002]), and others may focus more on large groups (e.g.,

ViCrowd [Musse and Thalmann 2001]); some of the characters are simple and

purely reactive (e.g., [Lamarche and Donikian 2004]) and therefore can be used to

animate crowds in real time, while there are intelligent ones that can do reasoning,

planning, or even learning (e.g., the cognitive creatures [Funge et al. 1999] and

social-learning characters [Buchsbaum and Blumberg 2005]). A comparison of the

aforementioned models and systems is summarized in Table 2.1.

Our work is greatly inspired by the existing systems, especially those that aspire

to fully autonomous characters. Our goal is to achieve realtime animation, at the
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Level of Level of User Learning or
Autonomy Intelligence Interaction Development

Boids Medium Low No No
Artificial High Medium No Learning
Fishes
Improv Medium Medium Authoring & Development

Interaction
Mr. Bubb High Medium Interaction No

Emote Low Low Authoring No
Cognitive High High No No
Creatures
AlphaWolf High Medium Interaction Development

Social
learning High Medium/High Interaction Development

Characters
Low Level
Pedestrian Low/Medium Low No No

Models
ViCrowd Various Medium Authoring No
Massive Medium Low Authoring No
Reactive Medium Low No No

Navigation
Situation-

based High Low Authoring No
Behavior

Subsupmtion Incremental Incremental No No
Architecture
Deliberation
+Reactivity High Medium No No
+Motivation
Autonomous User-
Pedestrians High High Controllable No

Characters

Table 2.1: Comparing different animation models and systems
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level of individual behaviors, of numerous virtual pedestrians in large-scale urban

spaces. Although this may sound similar to the research of “crowd animation”,

which has been a hot topic for the past decade in both academia [Musse and

Thalmann 2001; Tecchia et al. 2002; Loscos et al. 2003; Ulicny et al. 2004; Sung

et al. 2005] and industry [Prasso et al. 1998; Autodesk 3ds Max 2005; Massive

Software, Inc. 2005; BioGraphic Technologies, Inc. 2005], it is actually quite

different. Crowd animation usually focuses on the collective movement of a group of

characters, each one being a simple reactive agent with comparably low intelligence.

On the contrary, we focus on modeling intelligent individuals. The goal of our

work is to develop a comprehensive, self-animated model of individual humans

that incorporates nontrivial abilities suited to the purposes of animating virtual

pedestrians in urban environments. Our characters must be fully autonomous so

they can perceive, behave, reason, and plan in a manner similar to real pedestrians.

Consequently, the animation produced from these virtual pedestrians will be more

natural and purposeful than that generated by conventional “crowd animation”

systems.

While our work is innovative in the context of behavioral animation, the ap-

proach taken here is inspired most heavily by the work of [Tu and Terzopoulos

1994] on artificial animals and by [Funge et al. 1999] on cognitive modeling for

intelligent characters that can reason and plan their actions. We develop this com-

prehensive artificial life approach further and adopt it for the first time to the case

of an autonomous virtual human model suitable for large-scale urban spaces.
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2.3 Environmental Modeling

To enable artificial characters to interact with their virtual environment, a suitable

representation of the environment is indispensable in supporting efficient sensing,

navigation, or path planning. While most of the currently available environmental

modeling techniques were developed in the robotics community for robot navi-

gation, novel environmental models have also appeared in the field of computer

animation with the growth in interest in autonomous agents and behavioral ani-

mation. We briefly survey the different techniques in the remainder of this section.

(A more detailed survey on robotic mapping can be found in [Thrun 2002].)

2.3.1 Map Representations in Robotics

The Occupancy Grid mapping technique [Elfes 1987; Moravec 1988] represents the

environment with a grid of fixed resolution. This multidimensional grid main-

tains the occupancy state of each cell. This model has been widely used since

its introduction because of its simple yet rich representation, but it has two main

drawbacks: 1) the grid can hardly capture the topological relationships between

regions; 2) it usually suffers from high cost in both time and space when fine grids

are used.

Another metric approach is the feature map [Leonard and Durrant-Whyte

1991], in which the environment is represented with parametric features such as

points, lines, cylinders, corners, etc., and is augmented with information of the

features such as position, geometry, color, etc. It is a highly applicable model for

visual processing of sensory data. However, such a technique is not useful for an
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unstructured environment, where it is not always possible to find clearly distinct

geometries.

Topological approaches [Kuipers and Byun 1991] use graphs to represent the

environment. Nodes and arcs in the graph indicate relations between regions,

such as adjacency and connectivity. On the one hand, this compact abstraction

facilitates certain tasks, such as path planning, but on the other hand, it does not

support detailed navigation due to its lack of metric information, such as absolute

position.

Given the advantages and disadvantages of the various approaches, researchers

have started to combine different techniques to form Hybrid Maps [Thrun and

Buecken 1996; Guivant et al. 2004]. The combined models can benefit from every

technique used and are able to show satisfactory performance. Our virtual envi-

ronment model falls into this hybrid category.

2.3.2 Environment Models in Animation

In the field of computer animation, as synthetic characters are getting more and

more sophisticated, modeling their surrounding world is drawing increasing atten-

tion from researchers.

Lamarche and Donikian [2004] developed a system that can build an accu-

rate hierarchical topological structure from the geometric database of a virtual

environment. Based on this structure, they were able to develop visibility compu-

tation, close neighbor detection, collision avoidance and optimized path planning

algorithms.

Noser et al. [Noser et al. 1995] used synthetic vision as the only sensing channel
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for their actors to perceive their environment. A dynamic octree serves as the

internal representation for actors to memorize what they see and to determine

where to go.

In the Informed Environment research reported by Farenc et al. [1999], an

urban scene is decomposed into a hierarchy of Environment Entities that provide

not only geometrical information but semantic notions as well, allowing a more

realistic simulation of character behavior.

Sung et al. [2004] proposed a more “meaningful” environment model, which

embeds composable character behaviors in the regions where they are relevant.

These behaviors can be added into characters’ behavior repertoire when they enter

the associated regions. While this model is unnatural, it provides an interesting

solution to the problem of interpreting and interacting with the environment after

it is perceived.

Even from the brief review above, it is becoming increasingly clear that, in

the context of modeling artificial characters, an environment model must go well

beyond the representation of maps and objects. It also needs to facilitate all

perceptual processes, interpretation, and interaction, which makes it a difficult

research problem.
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Chapter 3

Framework

This chapter overviews our autonomous pedestrian simulation framework, whose

two major components include the environment model and the autonomous pedes-

trian model. The details of each of these two components are deferred to later

chapters.

3.1 Virtual Environment Model

The interaction between a pedestrian and his/her environment plays a major role

in the animation of autonomous virtual humans in synthetic urban spaces. This,

in turn, depends heavily on the representation and (perceptual) interpretation of

the environment. We have devoted considerable effort to developing two large-

scale urban environment models, one is an (indoor) model of a train station, the

other is an (indoor/outdoor) archeological site model. To make the bulk of the

ensuing discussion in this dissertation more concrete, we will briefly describe the

train station model at this juncture.
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Figure 3.1: Plan view of the Penn Station model with the roof not rendered,
revealing the 2-level concourses and the train tracks (left), the main waiting room
(center), and the long shopping arcade (right).

The original Pennsylvania Train Station of New York City was a monumental

architectural masterpiece that was originally built in 1910 and, sadly, demolished

in 1963. Figure 1.1 and the left column of Figure 1.2 show historical photographs

of the exterior and interior of the station, respectively. The reconstructed 3D

model of Penn Station, which includes raw geometry and textures, (see the right

column of Figure 1.2) is available in MultiGen-Paradigm Inc.’s OpenFlight file

format [MultiGen-Paradigm, Inc. 2005] and was distributed to us by Boston Dy-

namics, Inc. [Boston Dynamics, Inc. 2004]. Figure 3.1 shows a roofless plan view

of the rendered Penn Station geometric model with the two-level concourse at the

left, the main waiting room at the center, and the long arcade at the right. Geo-

metrically, the station is a large 3D space (200m (l) × 150m (w) × 20m (h)) that
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is architecturally complex, featuring hundreds of objects, including levels of floors,

stairs, walls, doorways, big columns, ticket booths, platforms, train tracks, etc.

These objects, together with a collection of non-architectural objects that we have

added to the model such as lamps, fountains, benches, vending machines, tables,

sporadic trash on the floors, etc., sum up to over 500 in total.

We represent the virtual environment by a hierarchical collection of maps. As

illustrated in Fig. 3.2, the model comprises (i) a topological map which represents

the topological structure between different parts of the virtual world. Linked within

this map are (ii) perception maps, which provide relevant information to perceptual

queries, and (iii) path maps, which enable online path-planning for navigation.

Finally, on the lowest level, are (iv) specialized objects that support quick and

powerful perceptual queries.

In the topological map, nodes correspond to environmental regions and edges

represent accessibility between regions. A region is a bounded volume in 3D-space

(such as a room, a corridor, a flight of stairs or even an entire floor) together with all

the objects inside that volume (e.g., ground, walls, benches). The representation

assumes that the walkable surface in a region may be mapped onto a horizontal

plane without loss of essential geometric information. Consequently, the 3D space

may be adequately represented within the topological map by several 2D, planar

maps, thereby enhancing the simplicity and efficiency of environmental queries.

The perception maps include grid maps that represent stationary environmental

objects on a local, per region basis, as well as a global grid map that keeps track of

mobile objects, usually virtual pedestrians. Each cell of the stationary object grid

maps, whose cell size is typically 0.2 ∼ 0.3 meters, stores information that identifies
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Figure 3.2: Hierarchical environment model.

all of the objects occupying its cellular area. Each cell of the mobile grid map stores

and updates identifiers of all the agents currently within its cellular area. Since it

serves simply to identify the nearby agents, rather than to determine their exact

positions, it employs cells whose size is commensurate with the pedestrian’s visual

sensing range (currently set to 5 meters). The perception process will be discussed

in more detail in Section 3.2.2.

The path maps include a quadtree map which supports global, long-range path

planning and a grid map which supports short-range path planning. Each node of

the quadtree map stores information about its level in the quadtree, the position

of the area covered by the node, the occupancy type (ground, obstacle, seat, etc.),
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and pointers to neighboring nodes, as well as information for use in path planning,

such as a distance variable (i.e., how far the node is from a given start point)

and a congestion factor (the portion of the area of the node that is occupied by

pedestrians). The quadtree map supports the execution of several variants of the

A* graph search algorithm, which are employed to compute quasi-optimal paths to

desired goals (cf. [Botea et al. 2004]). Our simulations with numerous pedestrians

indicate that the quadtree map is used for planning about 94% of their paths.

The remaining 6% of the paths are planned using the grid path map, which also

supports the execution of A* algorithm and provides detailed, short-range paths

to goals in the presence of obstacles, as necessary. A typical example of its use is

when a pedestrian is behind a chair or bench and must navigate around it in order

to sit down.

The specialized objects at the lowest level of the environment hierarchy are able

to provide answers to queries that can not be handled directly by perception maps.

They make it easy for behavioral controllers to acquire higher level perceptual

information from the virtual world.

We will present the full details of our environment model and path planning al-

gorithms in Chapters 6 and 7, respectively. Our Penn Station environment model is

efficient enough to support the real-time (30fps) simulation of about 1400 pedestri-

ans on a 2.8GHz Xeon PC with 1GB memory. More detailed performance statistics

are presented in Chapter 8.
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3.2 Virtual Pedestrian Model

Analogous to real humans, our synthetic pedestrians are fully autonomous. They

perceive the virtual environment around them, analyze environmental situations,

make decisions and behave naturally. As described in Section 1.2, our autonomous

human characters are structured in accordance with a hierarchical character model

similar to the one advocated by [Funge et al. 1999] for an aquatic “merman” and

dinosaurs. Progressing through levels of abstraction up the “modeling pyramid”,

our model incorporates appearance, motor, perception, behavior, and cognition

sub-models, each of which will be summarized in the following sections.

3.2.1 Appearance and Motor Control

DI-Guy: Human Appearance and Movement

As an implementation of the appearance and motor levels of the pyramid, we em-

ploy a human animation package called DI-Guy, which is commercially available

from Boston Dynamics Inc. [Koechling et al. 1998; Boston Dynamics, Inc. 2004].

DI-Guy provides a variety of textured geometric models that portray different peo-

ple. These character models are capable of basic motor skills, such as strolling,

walking, jogging, sitting, etc., implemented using conventional IK and motion cap-

ture techniques. DI-Guy is intended as an application that enables users to script

the actions of human characters manually in space and time. To facilitate this

task, it provides an interactive scripting interface called DI-Guy Scenario, which

we do not use in our work. However, it also provides an SDK that enables each

character’s motor repertoire to be controlled by external user-specified C/C + +
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programs. We build upon this interface our own control programs at the motor,

perceptual, behavioral, and cognitive levels.

Emulating the natural appearance and movement of human beings is a highly

challenging problem and, not surprisingly, DI-Guy suffers from several limitations.

In particular, the DI-Guy geometric human models are insufficiently detailed to

provide pleasing renderings of humans for close-up viewing. We have made no

attempt to ameliorate this situation as the DI-Guy appearance code is not open-

source and remains a proprietary “black box”. More importantly, although the

most advanced DI-Guy characters have reasonably broad action repertoires, they

cannot synthesize the full range of motions needed in a busy urban environment

that produces frequent close encounters between independently locomoting pedes-

trians. Specifically, DI-Guy characters are limited in how tightly they can execute

turns and how quickly they can change locomotion gaits and speeds, sometimes

requiring up to a couple of seconds before completing a transition, depending on

the exact instant within the locomotion cycle. Fortunately, the most recent release

of the software package provides a Motion Editor interface that enables users to

modify and supplement the motion repertoires of DI-Guy characters. We have

used this interface to decompose DI-Guy motions, which typically span one entire

cycle of a gait, into more elementary motions that include only single steps and

other motion primitives. The decomposition enables the DI-Guy-based pedestrians

to make faster transitions so that they can better deal with highly dynamic urban

environments.
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Motor Control Interface

We have implemented a motor control interface (see Figure 3.3) between the low

level kinematic layer of DI-Guy, and the higher-level behavioral controllers, which

will be discussed later in this chapter and presented in full detail in Chapter 4.

This interface accepts motor control commands from behavior modules, selects the

appropriate direction, speed, acceleration, and gait for a pedestrian in accordance

with its kinetic limits, and updates the posture and position of the pedestrian using

the low-level kinematic control mechanism of DI-Guy. As motor control commands

issued by the higher-level behavior system are not necessarily physically achievable,

our motor control layer is responsible for verifying and correcting them (e.g., large

magnitude speeds or accelerations are trimmed). Given a desired locomotion speed,

the motor controller will choose the gait that has the closest speed and, if necessary,

call upon the kinematic layer to make as smooth as possible a transition from the

current gait to the new one.
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Hence, this motor control layer is a seamless interface that hides the details of

the underlying kinematic layer from the higher-level behavior modules, enabling

the latter to be developed more or less independently. Despite its limitations,

we have found that, at least for the time being, our “Augmented DI-Guy” low-

level humanoid model adequately supports our research into autonomous human

animation through perceptual, behavioral, and cognitive modeling, as we shall

describe in subsequent chapters. It is important to note, however, that our higher-

level modeling abstractions are designed to be more or less independent of the

lower levels; hence, any other suitable low-level API can easily replace DI-Guy in

our future work. As case in point, in addition to “Augmented DI-Guy”, we have

implemented a simpler kinematic layer for testing our higher level algorithms,

where each pedestrian is represented by a simplistic mobile bounding box (see

Figure 3.3). We have used both the Augmented DI-Guy and the “mobile bounding

box” to produce the various animated demonstrations of our pedestrian simulation

system.

3.2.2 Perception

In a highly dynamic virtual world, an autonomous intelligent character is con-

fronted with two classes of sensory problems. First, to interact with its environ-

ment, it must have a keenly perceptive regard for the external world. Second, as

a virtual creature, it should also be able to experience internal stimuli, that con-

vey its tendencies, emotions, and desires, that once perceived can trigger fulfilling

behaviors. In this chapter, we will focus on sensory processes of these two types.
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External World

The environment model presented in Chapter 6 is used extensively for pedestrians

to perceive the external world. Through various perceptual queries, the hierarchical

environment model can provide not only the raw sensed data, but sometimes the

interpretation of the perceived situation as well, which is more important and

useful to a pedestrian. Next, we summarize the major perceptual processes whose

goals are to provide answers to three questions, as follows:

Where Am I? In real life, people are capable of using surrounding objects and

spatio-temporal context together with optional prior knowledge to determine their

current position, which can be either relative or absolute. Despite its seeming

simplicity, such human ability is not easy to simulate. This problem, which is

referred to as map building and localization, has been a long-standing research

topic in robotics [DeSouza and Kak 2002]. In a virtual world such as the one we

have for our pedestrians, however, we can simply query the environmental model

in accordance with the pedestrian’s absolute position and orientation. Additional

queries are also designed to allow a pedestrian to “recognize” in which region he

is and what type of region it is (a staircase, a passageway, a portal, etc). Such

information will later be used to decide the appropriate navigational behaviors

employed (such as passageway navigation).

What is Around Me? This question is answered by the perceptual queries of

static and mobile objects described in Section 6.2.
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Static Objects: In sensing static objects, a pedestrian emits a probing eye-ray

to detect obstacles in a specific direction. This technique is also exploited for vis-

ibility (or direct-reachability) check—a visual test frequently used in navigational

behaviors—in which a pedestrian tests whether obstacles exist between him and

his target.

Dynamic Objects: Dynamic objects in our simulations are mostly pedestrians.

Obtaining perceivable information of neighboring pedestrians is crucial to collision

avoidance behaviors to be described in the next chapter. Such information not only

includes a nearby pedestrian’s current position, orientation, velocity, acceleration,

turning speed, etc., but also includes his observable intention in the next move,

as pointed out by Goffman [1971]. The latter can help others estimate the future

trajectory of this pedestrian, thus predicting collisions more accurately. For our

pedestrians, a limited number of nearby humans can be detected by interrogating

tiers of neighboring perception map cells and further information can be obtained

by simply querying each individual’s “observable” data.

What is Happening There? In this question, “there” can be anywhere within

a pedestrian’s visual range. Such questions are relevant when a pedestrian needs

a high level interpretation of a perceived situation before making a decision. For

instance, when a tired pedestrian sees a chair and another pedestrian, he should

be able to tell whether that pedestrian is sitting on the chair, is going to sit on the

chair, is going to leave the chair, or is just passing by and is uninterested in the

chair. Different interpretations will probably lead to different decisions. In real life,

such interpretations may require continuous observation for several seconds and
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abilities such as shape estimation, pattern recognition, etc. As they are nontrivial

problems, we believe that in our system it is not affordable nor necessary to let

every pedestrian do it for itself. Instead, we use specialized objects (see Section

6.4) within the environment model to keep track of evolving situations that may

be important to pedestrians’ decision making. Such situations are usually found

at places where resources (e.g., space, transaction points, etc.) are limited and

pedestrians may need to compete for them, such as:

• seats, chairs and benches;

• vending machines;

• ticket booths;

• entrances and exits;

• stairs;

• narrow passageway or portals; and

• the artist performance area.

With the help of specialized objects, pedestrians can efficiently determine “what

is happening there” by querying the environment model.

Internal States

The evolution of the world is also indirectly affected by the evolution of an indi-

vidual. The latter is in turn reflected by the changing of the individual’s internal

states, among which are its physiological, psychological or social needs. To encode
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them, we maintain a set of internal mental state variables for each pedestrian, in-

cluding tiredness, thirst, curiosity, the propensity to get attracted by performers,

the need to acquire a ticket, etc. The values of these variables are initialized either

randomly or through a configuration file at the beginning of a simulation, and are

updated at each simulation step in accordance with the nature of the variables.

Thirst, for instance, increases continuously, while the propensity to get attracted

by performers increases and decreases now and then.

3.2.3 Behavior

Modeling of realistic human behavior in general is a challenging task. Considerable

literature in psychology, ethology, artificial intelligence, robotics, and artificial life

is devoted to the subject. Following [Tu and Terzopoulos 1994], we adopt a bottom-

up strategy that uses primitive reactive behaviors as building blocks that in turn

support more complex motivational behaviors, all controlled by an action selection

mechanism.

We developed six key reactive behavior routines that cover virtually all the

local obstacle situation that a pedestrian can encounter. Given that a pedestrian

possesses a set of motor skills, such as standing still, moving forward, turning

in several directions, speeding up and slowing down, etc., these routines are re-

sponsible for initiating, terminating, and sequencing the motor skills on a short-

term basis guided by sensory stimuli and internal percepts. The timely and ac-

curate perceptual interpretation of afferent sensory data is crucial for meaningful

behavioral response.

While the reactive behaviors enable pedestrians to move around freely, almost
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always avoiding collisions, navigational and motivational behaviors enable them to

go where they desire, which is crucial for pedestrians.

When the value of a mental state variable exceeds a specified threshold, an

action selection mechanism chooses the appropriate behavior to fulfill the need.

Once a need is fulfilled, the value of the associated internal state variable begins

to decrease asymptotically to zero.

We classify pedestrians in the virtual train station environment as commuters,

tourists, law enforcement officers, performers, etc. Each pedestrian type has an

associated action selection mechanism with appropriately set behavior-triggering

thresholds associated with mental state variables. For instance, law enforcement

officers on guard will never attempt to buy a train ticket and commuters will never

act like performers.

Chapter 4 will present the details of the pedestrian behavioral model.

3.2.4 Cognition

At the highest level of autonomous control, a cognitive model [Funge et al. 1999] is

responsible for creating and executing plans, as is necessary for a deliberative hu-

man agent. Such a model must be able to make reasonable global navigation plans

in order for a pedestrian to travel purposefully and with suitable perseverance be-

tween widely separated regions of the environment. During the actual navigation,

however, the pedestrian must have the freedom to decide whether or not and to

what extent to follow the plan, depending on the real-time situation. On the other

hand, in a highly dynamic environment such as a train station, the pedestrian also

needs the ability to decide whether and when a new plan is needed. These decisions
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require a proper coupling between the behavioral layer and cognitive layer.

Chapter 5 will present the details of the pedestrian cognitive model.
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Chapter 4

Behavioral Control

“(Julian) Huxley likened the human to a ship also commanded by many

captains, all of whom stay on the bridge continuously, each giving his

own commands without consideration of any of the others. Sometimes

the conflict caused by their countermanding commands leads to com-

plete chaos, but sometimes they jointly succeed in choosing a course

which none of them would have arrived at alone. ”

(K. Lorenz. 1981. The Foundations of Ethology. Page 242.)

Realistic human behavioral modeling, whose purpose is to link perception to ap-

propriate actions in an intelligent virtual human, is an enormous hurdle since, even

for pedestrians, the complexity of any substantive behavioral repertoire is high. In

this chapter, we first present the architecture of our behavioral model, and then

fill in the details of the various behavioral routines and control mechanisms.
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4.1 Human Behavior Modeling Methodology

Ever since people started to record their thoughts, the behaviors of living systems

have been a topic of study for both natural and social scientists, as well as philoso-

phers. Evidence from a vast number of observations and experiments have led

scientists to believe that the control mechanism behind observable behaviors takes

hierarchical form in its organizational structure [Tinbergen 1951; Eibl-Eibesfeldt

1975] and different levels in this hierarchy can be activated either sequentially or in

parallel (as pointed out by Huxley’s parable above) [Lorenz 1981]. Drawing upon

these hypotheses and speculation, researchers in computer animation and robotics

have proposed various architectures for building autonomous behavioral systems

[Tu and Terzopoulos 1994; Maes 1991; Brooks 1986].

We design our behavioral architecture in accordance with these pioneering

works (see Figure 4.1). In a bottom-up strategy, we start with a collection of

carefully chosen primitive reactive behaviors at the bottom, and use lower level

behaviors as building blocks that in turn support more complex higher level be-

haviors. During execution, we employ several activation schemes at different levels

to

• either selectively chain together simple behavioral modules in order to achieve

complex goals,

• or exclusively activate one behavior and inhibit others on the same level

according to external stimuli and internal percepts,

• or effectively incorporate several modular controllers simultaneously to allow

a combined response to complex environmental situations.
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Figure 4.1: Behavioral architecture. Despite the hierarchical structure, behavioral
execution takes three forms in our system: (1) higher level routines sequentially
draw upon simple ones at lower levels; (2) an action selection mechanism activates
high level behaviors one at a time; (3) at every simulated human step, usually not
one but multiple reactive behaviors get activated.

In particular, the second scheme is used in a high level action selection mechanism,

while the third is for combining primitive reactive behaviors. We now start our

description with reactive behaviors at the lowest level and will move upward to

navigational and motivational behaviors.

4.2 Basic Reactive Behaviors

“Take for example, techniques that pedestrians employ in order to avoid

bumping into one another. These seem of little significance. However,

there are an appreciable number of such devices; they are constantly in
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use and they cast a pattern on street behavior. Street traffic would be a

shambles without them.”

(E. Goffman. Relations in public: microstudies of the public order,

Page 6.)

Reactive behaviors appropriately connect perceptions to immediate actions.

For our synthetic pedestrians, we have developed six key reactive behavior routines,

each suitable for a different set of situations related to the navigation of a densely

populated and highly dynamic environment. We will first explain each of these

behavior routines in detail, and then explain how they are combined.

4.2.1 Six Key Routines

Routine A: Avoid stationary obstacles ahead (Figure 4.2). With the

help of perception map discussed in Section 6.2, a virtual pedestrian can perceive

objects within a predefined field of view and is able to determine the identity of

and estimate the distance to these perceived objects. If there is a nearby obstacle

in the direction of locomotion, a set of lateral directions within a specified angular

extent (currently set to 90 degrees) to the left and right are tested for obstacles

and the less cluttered direction is chosen. If none of the alternative directions

seems better than the current heading, the pedestrian will slow down and perform

the aforementioned test again using larger lateral search angles (currently set to

150 degrees). This behavioral response mimics that of a real pedestrian, who will

normally slow down and turn his head to look around before proceeding when he

encounters a tough (set of) obstacle(s).
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Figure 4.2: Routine A: avoid stationary obstacles. 1) Original travel direction. 2)
Detect obstacle ahead by examining grid entries along the rasterized eye ray. 3)
Perceive situation around by shooting out more eye rays (rasterization not shown).
4) Change direction and move on.

N

Figure 4.3: Routine B: avoid stationary obstacles in a big turn. Initially heading
north, the two pedestrians want to turn southward. They use routine B and pick
the best turning curves.
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Figure 4.4: Routine C: maintain separation in a moving crowd. Other pedestrians
in H ’s front cut-off parabola and are traveling in similar directions as H (labeled
“C”) are considered to be in H ’s temporary crowd.

Routine B: Avoid stationary obstacles in a complex turn (Figure 4.3).

A pedestrian employs this routine whenever it needs to make a turn that cannot be

finished in one step. In this routine, turns with increasing curvatures are considered

in both directions, starting with the side that permits the smaller turning angle,

until a collision-free turn is found. If the surrounding space is too cluttered, the

curve is likely to degenerate causing the pedestrian to stop and turn on the spot.

The turn test is implemented by checking sample points along a curve with interval

equal to the distance of one step of the pedestrian moving with the anticipated

turn speed.

Routine C: Maintain separation in a moving crowd (Figure 4.4). For

a pedestrian H , other pedestrians are considered to be in H ’s temporary crowd if

they are moving in a similar direction to H and are situated within a parabolic

region [Goffman 1971] in front of H defined by

y = − 4

R
x2 + R, (4.1)
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where R is the sensing range, y is oriented in H ’s forward direction and x is

oriented laterally. To maintain a comfortable distance from each individual Hi in

this temporary crowd, a directed repulsive force (cf. [Helbing and Molnar 1995])

given by

�fi = ri ×
�di/|�di|
|�di| − dmin

(4.2)

is exerted on H , where �di is the vector separation of Hi from H , and dmin is the

predefined minimum distance allowed between H and other pedestrians (usually

2.5×H ’s bounding box size). The constant ri is Hi’s perceived “repulsiveness” to

H (currently set to −0.025 for all pedestrians). The repulsive acceleration due to

H ’s temporary crowd is given by

�a =
∑

i

�fi

m
, (4.3)

where m is the inertia of H . The acceleration vector is decomposed into a forward

component �af and a lateral component �al. The components ∆t× �af and ∆t×ci×�al

are added to H ’s current desired velocity. The crowding factor ci determines H ’s

willingness to “follow the crowd”, with a smaller value of ci giving H a greater

tendency to do so (currently 1.0 ≤ ci ≤ 5.0).

Routine D: Avoid oncoming pedestrians. In a crowded public area, such

as a plaza, where pedestrians are moving in various directions, the likelihood of

collisions increases dramatically. To mitigate the situation, pedestrian H estimates

its own velocity �v and the velocities �vi of nearby pedestrians Ci. It then considers

two types of threats. By intersecting its own linearly extrapolated trajectory T
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Figure 4.5: Routine D: avoid oncoming pedestrians. 1) To avoid cross collision,
H slows down and turns toward C while C does the opposite (left) until collision
is cleared (middle). 2) To avoid head-on collision, both pedestrians turn slightly
away from each other (right).

with the trajectories Ti of each of the Ci, pedestrian H identifies potential collision

threats of the first type: cross collision (Figure 4.5, left). In the case where

trajectories of H and Ci are almost parallel and will not intersect imminently, a

head-on collision (Figure 4.5, right) may still occur if their lateral separation is too

small; hence, H measures its lateral separation from oncoming pedestrians. The

details are given in Table 4.1.

Note that each pedestrian evaluates the possibility of collision with respect to

the size of its own bounding box B(H) and the size of the bounding boxes B(Ci) of

the nearby pedestrians. Bounding box sizes vary from 0.3 to 0.6 meters for different

pedestrians, depending on body size. Among all collision threats, H will pick the

oncoming pedestrian C∗ that poses the most imminent one. If C∗ poses a head-on

collision threat, H will turn slightly away from C∗. If C∗ poses a cross collision

threat, H will estimate who will arrive first at the anticipated intersection point p.

If pedestrian H determines that it will arrive sooner at p than C∗, it will increase

its speed and turn slightly away from C∗; otherwise, it will decrease its speed and
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if T and Ti intersect then
let p be the anticipated point of intersection
let t be H’s travel time to p
let ti be Ci’s travel time to p
∆tsafe = (B(H) + B(Ci))/min(|v|, |vi|)
if |t− ti| < ∆tsafe then

return “Ci is a cross collision threat”

if T and Ti almost parallel then
if the lateral separation < B(H) + B(Ci) then

return “Ci is a head-on collision threat”

return “Ci is not a collision threat”

Table 4.1: Algorithm for checking threats.

turn slightly towards C∗. This behavior will continue for several footsteps, until

the potential collision has been averted.

Routine E: Avoid dangerously close pedestrians. This is the fail-safe be-

havior routine, reserved for emergencies due to the occasional failure of Strategies

C and D, since in highly dynamic situations predictions have a nonzero probability

of being incorrect. Once a pedestrian perceives another pedestrian within his for-

ward safe area (Figure 4.6), it will resort to a simple but effective behavior–brake

as soon as possible to a full stop, then try to turn to face away from the intruder,

and proceed when the way ahead clears.

Routine F : Verify new directions relative to obstacles. Since the reactive

behavior routines are executed sequentially as will be explained momentarily in
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Figure 4.6: Routine E: avoid dangerously close pedestrians. H ’s forward safe
area is shown in dotted line. Both the width w and the depth d depend on H ’s
bounding box size. In addition, d is also determined by H ’s current speed s (black
arrow). Here H encounters C and slows down (light gray arrow) to let C pass.
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Figure 4.7: Routine F : verify new directions relative to obstacles. When con-
fronted by both static and dynamic threats, H abandons the direction (dark gray
arrow) issued by Routine C, uses the direction (light gray arrow) picked by Routine
A and slow down (black arrow) to let others to pass before proceed.
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Figure 4.8: Lanes of opposing traffic form in a busy area. (Snapshot from anima-
tion.)

Section 4.2.2, motor control commands issued by Routines C, D or E to avoid

pedestrians may counteract those issued by Routines A or B to avoid obstacles,

thus steering the pedestrian towards obstacles again. To avoid this, the pedestrian

checks the new direction against surrounding obstacles once more. If the way is

clear, it proceeds. Otherwise, the original direction issued by either the higher-level

path-planning modules or by Routine A, whichever was executed most recently

prior to the execution of Routine F , will be used instead. However, occasion-

ally this could lead the pedestrian toward future collisions with other pedestrians

(Figure 4.7) and, if so, it will simply slow down to a stop, let those threatening

pedestrians pass, and proceed.
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Some remarks regarding the above routines are in order: The intuition behind

the strategy of Routine F is that whenever a pedestrian is faced with threats of

collision from both static and mobile obstacles, it is a bad idea to steer toward the

former, as that will definitely lead to a collision. Instead, the pedestrian should hes-

itate until the mobile collision threats pass and then proceed in the direction that is

free of static obstacles. Obviously, the fail-safe strategy of Routine E suffices per se

to avoid nearly all collisions between pedestrians. However, our experiments show

that in the absence of Routines C and D, Routine E makes the dynamic obstacle

avoidance behavior appear awkward–pedestrians stop and turn too frequently and

they make slow progress. As we enable Routines C and D, the obstacle avoid-

ance behavior looks increasingly more natural. Interesting multi-agent behavior

patterns emerge when all the routines are enabled. For example, pedestrians will

queue to go through a narrow portal. In a busy area, lanes of opposing pedestrian

traffic will tend to form spontaneously after some time passes (see Figure 4.8),

since this pattern enables more pedestrians to make faster progress. These self-

organizing patterns of movement, which the virtual pedestrians are not explicitly

programmed to form, resemble those of real human crowds in urban environments.

4.2.2 Combining the Routines

A remaining issue is how best to activate the aforementioned six reactive behavior

routines. Since the situation encountered by a pedestrian is always some com-

bination of the six key situations that are covered by the behavior routines, it is

necessary to employ each applicable routine. Therefore, we have chosen to activate

the routines in a sequential manner, as illustrated in Figure 4.9, giving each the
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Figure 4.9: Flow of control for reactive behaviors. Shown here is the best permu-
tation order C − A− B − F − E −D.

chance to alter the currently active motor control command, comprising speed,

turning angle, etc. For each routine, the input is the motor command issued by its

predecessor, either a higher-level behavior module (possibly goal-directed naviga-

tion) or another reactive behavior routine. The sequential flow of control affords

later routines the advantage of overwriting motor commands issued by earlier rou-

tines (cf. [Brooks 1986; Brooks 1995]), but this may cause the pedestrian to ignore

some aspect of the situation covered by those routines, resulting in a collision. The

problem can be mitigated by finding a “best” permutation ordering for the six rou-

tines (cf. [Reynolds 1993]). We have run many extensive simulations (with each

one longer than 20 minutes in virtual time) in the Penn Station environment with

different numbers of pedestrians (333, 666, and 1000), exhaustively evaluating the

performance of all 720 possible permutation orderings. Permutations that result in

fewer collisions and more progress are considered better. Finally, the best permu-

tation of the reactive behavior routines that we have found is C−A−B−F−E−D

as shown in Figure 4.9.

Appendix A presents the details regarding the exhaustive search and an analysis
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of the results.

4.3 Navigational and Motivational Behaviors

While the reactive behaviors enable pedestrians to move around freely, almost

always avoiding collisions, navigational and motivational behaviors enable them to

go where they desire, which is crucial for pedestrians.

As we must deal with online simulations of numerous pedestrians within large,

complex environments, we are confronted with many navigational issues, includ-

ing the speed and scale of path planning, the realism of actual paths taken, and

pedestrian flow control through and around bottlenecks. We have found it neces-

sary to develop a number of novel navigational behavior routines to address these

issues. These behaviors rely in turn on a set of conventional navigational behavior

routines. The latter include moving forward, wandering about, turning in place,

steering towards a target, proceeding towards a target, and arriving at a target

(see [Reynolds 1999] for detailed description of these primitive behaviors).

4.3.1 Guided Navigation

The realism of synthetic human navigation depends on the presence of rational

behavior details at different levels (or scales). Globally, a pedestrian should be

able to make reasonable travel plans. As will be explained in Chapter 5, such plans

usually have certain favorable properties, such as taking time-saving paths. During

navigation, however, the pedestrian shall have the freedom to decide whether or

not, and to what extent to follow the plan, depending on the real-time situation.
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Figure 4.10: Perception-guided navigation. (1) To reach target T , (2) pedestrian
H will plan a jagged path on a path map (either grid or quadtree), (3) pick the
farthest visible point (in blue) along the path as an intermediate target (marked
F in (4)) and (4) proceed toward it.

More attention shall be drawn to the local (in both space and time) settings of

the dynamic environment in order to keep the pedestrian safe while still making

progress. In this section, we present behavior routines that use a planned path

and a selective set of reactive behaviors as the global and local guide, respectively,

and combine them together to make navigation as natural as possible.

Perception-guided navigation among static obstacles. Given a path P

(the global planning of paths will be explained in Chapter 7), a farthest visible

point p on P—i.e., the farthest point along P such that there is no obstacle on the

line between p and the pedestrian’s current position—is determined using percep-

tual queries and set as an intermediate target (see Figure 4.10). As the pedestrian

progresses toward p, it may detect a new farthest visible point that is even further

along the path. This enables the pedestrian to approach the final target in a nat-

ural, incremental fashion. During navigation, motor control commands for each

footstep are verified sequentially by the entire set of reactive behavior routines in

their aforementioned order so as to keep the pedestrian safe from collisions.

61



Detailed “arrival at target” navigation. Before a pedestrian arrives at a

target, a detailed path will be needed if small obstacles intervene that are not

resolved on ordinary path maps. Such paths can be found on a fine-scale grid

path map. Unlike the previous situation, a pedestrian will follow the detailed

path more strictly as it approaches the final target, because accuracy becomes

an increasingly important factor in the realism of the navigation as the distance

to the target diminishes. As some part of an obstacle may also be a part of

the target or be very close by (e.g., the front part of a vending machine, or the

back of a bench in which the pedestrian wants to sit), indiscriminately employing

reactive behaviors for static obstacle avoidance (Routines A and B) will cause the

pedestrian to avoid the obstacle as well as the target, thereby hindering or even

preventing the pedestrian from reaching the target. One possible solution is to

remove the target portion of the obstacle from the perception map before applying

the routines, but this becomes difficult to manage in an online simulation. We

choose a simpler alternative—temporarily disable Routines A and B and let the

pedestrian accurately follow the detailed path, which already avoids obstacles.

Note that the other reactive behaviors, Routines C, D, and E, remain active, as

does Routine F , which will continue to play the important role of verifying that

modified motor control commands never lead the pedestrian into obstacles.

4.3.2 Bottleneck Flow Control

“The members of an orderly community do not go out of their way to

aggress upon one another. Moreover, whenever their pursuits interfere,

they make the adjustments necessary to escape collision and make them
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according to some conventional rule.”

(Edward Alsworth Ross. 1908. Social Control, Page 1. [Ross 1908])

In the Penn Station environment, stairways from the concourse to train plat-

forms are less than 1.8 meters in width, which allows only two pedestrians to

advance comfortably side by side. The two major portals connecting the main

waiting room and the concourses are less than 2.8 meters wide, making it difficult

for four pedestrians to pass simultaneously. In a space that is expected to accom-

modate the hustle and bustle of hundreds or even thousands of pedestrians, these

narrow passageways can easily become bottlenecks that will cause queuing crowds

to accumulate. The crowds will hinder opposing traffic, exacerbating the situation,

and pedestrians may experience lengthy delays.

To our knowledge, available techniques cannot completely tackle the problem.

The queuing behavior introduced by Reynolds [1999] is not well-suited to situations

involving two-way traffic, because in narrow passageways oncoming pedestrians

often cause one another to slow down or stop. In the cramped space, this quickly

leads to blockage. Self-organization, as discussed by Helbing and Molnar [1995] and

by us in the last section, yields lanes of opposing traffic which increases throughput,

but it takes time and space to manifest itself. A crowd will quickly grow beyond

control in narrow passageways, well before self-organization can help. Global crowd

control techniques, such as those proposed by Musse and Thalmann [2001], are

useful for directing a given group of agents traveling around as a whole, but they

lack the flexibility to handle highly dynamic groups of individual autonomous

pedestrians.
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Figure 4.11: Passageway navigation. (1) Two imaginary boundaries (dashed lines)
and the safety fan. (2) Pedestrian H searches for a safe direction interval when
confronted by oncoming traffic. (3) Spread out when no oncoming traffic is ob-
served. (4) Typical flow of pedestrians in a passageway—big flows on the sides
with small unblocking streams intermingling in the middle.

In our solution, we have determined that the application of two behavioral

heuristics maximizes pedestrian flow in bottleneck situations. First, pedestrians

inside a bottleneck should move with on-going traffic while trying not to impede

oncoming traffic. Second, all connecting passageways between two places should

be used in balance. These two behaviors are detailed next.

Passageway navigation: Inside a narrow passageway, real people demonstrate

different behavior patterns under different conditions. If all people are traveling

in the same direction, they will tend to spread out in order to see further ahead

and maximize their pace. However, if people are in busy two-way traffic, they will

compromise and quickly form opposing lanes of pedestrian traffic to maximize the

throughput. When inside a passageway, our pedestrians employ a similar behavior:

First, two imaginary boundaries are computed parallel to the walls of the pas-

sageway with an offset of about half the pedestrian H ’s bounding box size (Fig-

ure 4.11(1)). Space between these boundaries is considered to be safe. Hence,

restricting H ’s travel direction within a safety fan, as shown in the figure, guaran-
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tees that H stays clear of the walls.

Second, if H detects that its current direction is blocked by oncoming pedes-

trians, it will search within the safety fan for a safe interval to get through (Fig-

ure 4.11(2)). The search starts from H ’s current direction and continues clockwise.

During the search, H attempts to steer to the right of every blocking on-comer,

testing whether there is enough room to get through. If the search succeeds, H will

move in the safe direction found. Otherwise, H will slow down and proceed in the

rightmost direction within the safety fan. This strategy allows non-blocking traffic

to intermingle without resistance. However, in a manner that reflects the prefer-

ence of real people in many countries, a virtual pedestrian will tend to squeeze to

the right if it is impeding or impeded by oncoming traffic (Figure 4.11(4)).

Finally, pedestrians apply reactive behavior Routine C described in the pre-

vious section in order to maintain a safe separation between one another in the

moving crowd. In the event that no more oncoming traffic is observed, pedestri-

ans increase their crowding factor ci (which lowers the willingness to follow the

crowd—see section 4.2.1) to spread out, allowing faster walkers to overtake slower

ones (Figure 4.11(3)). Upon encountering oncoming traffic, they will decrease their

crowding factor, which will draw the crowd more tightly, making more space for

oncoming pedestrians.

Passageway selection: In most urban environments there exist several options

for transiting from one location to another. Real people are usually motivated

enough to weigh the options and choose a route that promises to maximize their

pace. Their choice depends on both personal preferences and the real-time situ-
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Given a list of candidate passageways Pi, together with the
density Di (unit: #pedestrians/m2) and proximity Ti (unit:
meters) of the entrance of Pi that closer to the pedestrian:

let c = the index of the passageway picked in previous step,
or NULL if none is picked previously

let Si = Ti + 25×Di, a value that reflects Pi’s situation
(Smaller Si indicates a better situation.)

let m = the index of the passageway that has the smallest Si

if (c is NULL)
then pick Pm (no previous choice, so pick the best)
else if (Sm < Sc − 5.0)

then pick Pm (a significantly better one found, so pick it)
else pick Pc (stick to the previous choice)

Table 4.2: Algorithm to pick a passageway.

ation in and around those access facilities. Likewise, our pedestrians will assess

the situation around stairways and other passageways, pick a preferred one based

on proximity and density of pedestrians near it, and proceed toward it. As crowd

density is always changing, however, our pedestrian may be motivated to modify

its choices too frequently. Hence, our selection routine dictates that the pedestrian

maintain its original choice unless a significantly more favorable traffic density

condition develops in a different passageway (see Table 4.2 for algorithm of the

behavior). This behavior, although executed at the level of an individual, has a

global effect, balancing the loads at different passageways.

With the above two passageway behaviors, we are able to increase the number

of pedestrians within the Penn Station model from under 400 to well over 1000

without any long-term blockage in bottlenecks.
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Figure 4.12: Crowds interacting in the arcade. Images in the left column show
emergent group patterns due to the use of a combination of purely reactive behav-
iors. Images in the right column show motivational behaviors suitable for corridors
and passageways.
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4.3.3 Crowds Interacting in the Arcade

The self-organizing patterns described in Section 4.2 as well as the passageway

navigation behavior covered in Section 4.3.2 are able to improve pedestrian traffic

flow. Next, two simulations will illustrate the similarity and differences between

them (see Figure 4.12).

In the first simulation (left column of Figure 4.12), two crowds of pedestri-

ans heading in opposite directions along the arcade encounter each other. The

pedestrians execute purely reactive behaviors described in Section 4.2 in order to

avoid bumping into one another. Even with such simple behaviors, the virtual

humans show interesting emergent group patterns. Though they are not explicitly

programmed to do so, they spontaneously form interleaved lanes of pedestrians

moving in opposing directions, as this tends to maximize the pace of everyone’s

progress.

The scenario in the second simulation (right column of Figure 4.12) is similar

to the first example, but this time the pedestrians perceive the arcade as a corridor

that can conveniently accommodate only two major opposing traffic flows. Once

oncoming people are observed, a pedestrian will search for safe direction in a clock-

wise fashion as described in the passageway navigation behavior (Section 4.3.2).

As a result, the crowds squeeze past each other to their respective right. As soon

as the oncoming crowd is cleared, the pedestrians tend to spread out again in order

to maximize their view and pace.
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4.4 Other Interesting Behaviors

The previously described behaviors comprise an essential portion of the pedes-

trian’s behavioral repertoire. To make our pedestrians more interesting, however,

we have augmented their repertoire with a set of non-navigational behavior rou-

tines including, among others, the following:

• Stand and wait impatiently

• Select an unoccupied seat and sit down

• Approach a performance and watch

• Meet with friends and chat

• Queue at a vending machine and make a purchase

• Queue at ticketing areas and purchase a ticket

In this last behavior, for example, a pedestrian joins the queue and stands behind

its precursor pedestrian until it comes to the head of the queue. Then, it will

approach the first ticket counter associated with this queue that becomes available.

This routine and some of the other aforementioned routines belong to a class

of behaviors often observed in pedestrians. Such behaviors involve competition

among pedestrians for available resources. In Appendix B, we will detail the

description of these behavior routines to show how our pedestrians resolve potential

conflicts like real humans. Figure 4.13 illustrates some of the aforementioned

behaviors in our virtual pedestrians.
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(a) (b)

(c) (d)

Figure 4.13: Examples of non-navigational behaviors. (a) Approaching a dance
performance and watching. (b) Many pedestrians have selected unoccupied seats
and are seated on the benches while others are moving about. (c) Queueing at
ticketing areas and purchasing tickets. (d) Queuing at a vending machine and
making a purchase. Note that the three pedestrians at the left are meeting and
chatting.
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Note that the non-navigational behaviors listed above depend on the basic

reactive behaviors and navigational behaviors to enable the pedestrian to reach its

targets in a collision-free manner. In addition, most of them also need the help from

specialized environment objects (see Section 3.2.2, Section 6.4, and Appendix B),

which provide quick and accurate answers to higher level perceptual queries, such as

“Who is at the end of the line?” or “Is the purchase window available?”, etc. These

answers, which can be thought of as abstract interpretations of the situation, are

crucial to the accomplishment of these behaviors and are well beyond the capability

of perception maps.

4.5 Action Selection

Behaviors are responses to both external situations and internal mental states.

Through sensory processes, as presented in Chapter 3.2.2, a pedestrian can ac-

quire information about its surrounding environment as well as its evolving in-

ternal states. Given this information, an action selection mechanism controls the

behavioral hierarchy at a high level. When a certain combination of a mental state

variable value and proper external situation is perceived, the action selection mech-

anism will initiate an appropriate behavior to attempt to fulfill the need indicated

by the mental state. For example, in a pedestrian whose thirst variable exceeds a

predetermined threshold, behaviors will be triggered to locate a vending machine.

Once a vending machine is found, the pedestrian will approach it, queuing up if

necessary, to obtain a drink. If a tired pedestrian sees an empty seat, he will prob-

ably go and sit down to take a rest. In case more than one need awaits fulfillment,
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the most important need ranked by the action selection mechanism receives the

highest priority. Hence, if a person is in a hurry to catch a train and passes by an

attractive street show, he will likely ignore his interest in the performance and walk

directly to the track. Finally, once a need is fulfilled, the value of the associated

internal state variable begins to change back asymptotically to its nominal value.

In the virtual Penn Station environment, we classify pedestrians as commuters,

tourists, law enforcement officers, performers, etc. Each pedestrian type has an

associated action selection mechanism with behavior-triggering combinations of

mental state thresholds and situation patterns set accordingly. This allows pedes-

trians to behave in a rational and meaningful way—for instance, law enforcement

officers on guard will never attempt to buy a train ticket and commuters will never

act like performers. As a representative example, Figure 4.14 illustrates the action

selection mechanism of a commuter.

4.6 Summary

To summarize, the three sets of behaviors described in this chapter reflect different

levels of sophistication. The non-navigational behaviors described in Section 4.4

direct our pedestrians to fulfill goals and enable them to demonstrate appropriate

high level pedestrian behaviors. These behaviors require navigational and motiva-

tional behaviors covered in Section 4.3, which enable pedestrians to move around

and reach target locations in a rational and natural manner. However, when the

pedestrian is confronted with an imminent threat of collision or other danger, the

motivational behaviors will be preempted by (and must immediately relinquish
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Figure 4.14: Action selection in a pedestrian commuter.

control to) the primitive reactive behaviors presented in Section 4.2. Finally, both

the reactive and the motivational behaviors depend on the basic motor skills which

drive the pedestrian’s body to move appropriately.

In our behavioral hierarchy, an action selection mechanism at a high level is in

charge of initiating and terminating behaviors for making progress, while primitive

behavioral controllers at the low level protect pedestrians from danger. The be-

havioral hierarchy, in turn, supports higher-level cognitive control, which we will

discuss in the next chapter.
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Chapter 5

Cognitive Control

At the highest level of autonomous control, a cognitive model is responsible for

creating and executing plans suitable for autonomous pedestrians. Whereas the

behavioral substrate described in Chapter 4 is mostly reactive, the cognitive mod-

eling layer makes our pedestrian a deliberative autonomous agent.

The realism of pedestrian animation depends on the execution of rational ac-

tions at different levels of abstraction and at different spatio-temporal scales. At a

high level of abstraction and over a large spatio-temporal scale, a pedestrian must

be able to make reasonable global navigation plans that can enable it to travel

deliberatively (and with suitable perseverance) between widely separated regions

of the environment, say from the end of the arcade through the waiting room,

through the concourses, and down the stairs to a specific train platform. Such

plans should exhibit desirable properties, such as being relatively direct and sav-

ing time when appropriate. During the actual navigation, however, the pedestrian

must have the freedom to decide to what extent to follow the plan, depending on
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the realtime situation. Priority must be given to the local (in both space and time)

situation in the dynamic environment in order to keep the pedestrian safe while

still permitting progress towards a long-range goal. In addition, in an environment

like Penn Station, a pedestrian should have the ability to handle not only a single

goal, but a list of goals. With these insights, we follow three heuristics throughout

the design of our pedestrian model, including the cognitive level:

• first, divide and conquer—always decompose complex tasks into simple ones;

• second, think globally and act locally—a plan is always needed at the global

level but on the local level it will only serve as a rough guide; and

• finally, be flexible—always be prepared to change local sub-plans in response

to the real-time situation.

In the subsequent sections, we will present the details of our cognitive model and

explain how these heuristics are applied, starting with a brief description of the

internal knowledge representation.

5.1 Knowledge of the Virtual World

To make plans, especially path plans, a pedestrian must have a world representa-

tion from its own egocentric point of view. In the interest of both time and space

efficiency, we assume that the environment model is also the internal knowledge

representation of the static portion of the virtual world for each pedestrian. Hence,

except for wandering tourists, every pedestrian knows the layout of the environ-

ment and the position of static objects (such as walls, stairs, tracks, ticket booth,
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etc.) as well as the pedestrian’s current position (which is referred as localization

and has been an essential and longstanding problem in robotics [DeSouza and Kak

2002]). On the other hand, each pedestrian keeps, and updates at every simulation

step, a representation of the dynamic aspect of the current world in the form of a

list of perceived objects, including nearby pedestrians, and current events (such as

“the ticket window is available”, “that seat is taken”, etc.).

This approach allows us to keep only one copy (or a small number of copies, in

the case of multiprocessing) of the huge representation of the static world and still

be able to support diverse cognitive and behavioral control for different pedestrians.

Although this is an over-simplification, it is reasonable for modeling pedestrians

who are usually familiar with the urban space around them, and it is a sensible

choice for the purpose of simulating hundreds of pedestrians in large scale environ-

ments in real time.

5.2 Planning

Planning is one of the most essential parts of a cognitive model. For pedestrians,

in particular, path planning is probably the most important planning task. Path

planning directs a pedestrian to proceed through intermediate areas and reach

ultimate destinations. In our pedestrian model, path planning is broken down into

sub-tasks at different scales. Since the path planning algorithms are intimately

dependent on the details of the environment model, which we will cover fully in

the next chapter, we defer their details to Section 6.5 and Chapter 7.

Generally speaking, however, the breakdown of general path planning into sub-
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tasks allows the problem to be solved in a top-down manner. With unique specialty,

each sub-task can attack its own part of the problem in a suitable and efficient

way, giving its contribution to the final solution. In this way, the complete path

planning process has the properties of both global extent and local accuracy as

well as economic cost.

In addition to the path-planner, the cognitive level incorporates other planning

routines (planners). Generally speaking, planners are like manuals that guide one

through the steps needed to accomplish final goals. Each step may also require

further instructions. For instance, to “meet a friend”, a pedestrian must first

reach the meeting point and then wait for the friend. Accomplishing the first step

requires a path planner. Once the planner finishes its work, control is handed over

to the behavioral level to carry out the plan until either it is done or new plan

arises. Continuity is maintained by the memory model, which will be presented

next.

5.3 Memory

A pedestrian can have a lot of different activities inside a big train station. He

may have to meet with a friend before getting on a train. The route from station

entrance to train track may be complicated and may require different strategies

to navigate. On the way to the platform, he may want to get a drink or to stop

and watch a dance by street artists, and so on. To keep certain things in mind

while doing others, a pedestrian requires memory. Such a memory model enables

a pedestrian to:
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• store information—let the pedestrian memorize tasks (ultimate or interme-

diate);

• retrieve information—remind the pedestrian of pending tasks; and

• remove information—once accomplished, tasks shall be forgotten.

Unlike the knowledge of the virtual world which represents one’s internal view

of external things, the memory model stores internal results directly from thinking

or planning, including, for instance, a list of pre-planned goals (first meet friend

and then catch the train), a sequence of sub-tasks decomposed from a major task

(to catch a train, one need to go through the arcade, cross the waiting room, pass

one of the gates, cross the upper concourse, and go downstairs to the platform),

interruption and resumption (after stopping by the vending machine and street

performance, I still need to continue to the train platform), and so on. Therefore,

such a memory model is highly dynamic and usually long-term, and can vary

greatly in size.

To create the memory model, we again take a simple approach—use a stack

as the memory. Such simplification does not sacrifice any functionality except

that it restricts the operations to be on the topmost memory item only. The

restriction certainly affects the capabilities of pedestrians, depriving them of being

able to accomplish multiple tasks in flexible (non-deterministic) orders. Instead, a

randomly-accessed list is among the more sophisticated mechanisms that can use to

solve the problem. However, the observable difference of behaviors on pedestrians

due to such a choice tends to be small, as probably pedestrians themselves do

not make use of such flexibility. In addition, the stack data structure has simple
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. if the goal is accomplished then remove the goal from memory and return.

. if the goal expires then remove the goal from memory and return.

. if multiple sub-tasks are required to achieve the goal then
. make a plan containing these multiple sub-tasks base on current situation;
. put the first sub-task on memory stack with a proper expiration time; and
. return.

. determine the appropriate action needed to attain the goal.

Table 5.1: Typical skeleton of routines for processing memory items.

constant-time operations which permit easy and fast maintenance regardless of its

size. This offers a big advantage toward our ultimate goal—creating a real-time

simulation of hundreds or even thousands of pedestrians.

5.3.1 Memory Items

Before we describe how the memory stack works, let us first look at memory items.

Each item on the memory stack stands for a goal and has a list of properties

including a descriptor of the goal type (e.g., catch a train, have a rest, reach

a specific target point), the level of complexity (ultimate or intermediate), goal

parameters (e.g., platform 10, position and orientation of the seat, position of the

target point), criteria of accomplishment(e.g., target must be within 0.5 meters,

rest until recovered), expiration time (e.g., for 3 seconds, until finished).

5.3.2 Memory Item Processing

The top item on the stack is always the current goal. It will be processed by a

cognitive or behavioral routine designed specifically for its type, typically in the
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way given in Table 5.1. As the table shows, complex goals will be decomposed into

multiple simple ones. The reason why only the first sub-task gets pushed onto the

stack is because the task decomposition is usually done according to the real-time

situation (reflected, for instance, in the choice of goal parameters in sub-tasks).

At the time, when the first sub-task is accomplished the remaining sub-tasks of

the original decomposition may no longer be optimal as lots of things may have

changed. Pushing all the sub-tasks at once will pin down the pedestrian to a static

plan, which is not what real humans do. But if we just keep the first sub-task, when

it is finished and gets removed from the memory stack, the original goal becomes

the top one and gets processed again and a new decomposition can be determined

then. To make it possible for pedestrians to be persistent to their previous choice,

the original goal (the complex one) on the top of the memory stack will get updated

after decomposition but before the pushing of the first sub-task. The update will

store concise information of this decomposition into the then-top memory item

(which stands for the original goal) so that later when it gets exposed again it can

remind the pedestrian of the previous choice, giving him the chance of sticking to

it. Of course, the decision of whether or not to stick to it is up to the cognitive or

behavioral routine that will process the goal.

Sometimes, even the time needed to finish the first sub-task is long. In such

cases, the expiration time attached to the memory item of the first sub-task can

force the sub-task to expire after a certain amount of time, exposing the original

goal again, and thus guarantee frequent plan update. The expiration time also

forces replanning when a task resumes after an interruption by another one. For

example, consider that a pedestrian feels thirsty on the way to the platform and
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detours to reach a vending machine. When he gets the drink, he needs to continue

the trip to the platform. As the “get a drink” task is an interruption, there may be

sub-goals of “get to the platform” underneath it on the memory stack reflecting an

original plan of “get to the platform”. Due to the expiration time of the sub-goals,

they are likely to be invalid by then, which effectively forces a replanning of the

“get to the platform” task.

5.4 Putting Things Together

Having described all the different components, let us put them together to con-

struct an autonomous pedestrian. Figure 5.1 shows the layered relationship of the

various components within the pedestrian model together with the world model.

There are seven major components in the figure coded in different colors—the

world model (Chapter 6), sensing (Chapter 3.2.2), internal states (Chapter 3.2.2 &

4), cognition (this chapter), behavior (Chapter 4), motor control interface (Chap-

ter 3.2.1), and DI-Guy (Chapter 3.2.1). Components within some of the parts

are also illustrated. Between the various components, there are arrows indicating

data exchange during simulation. Next, we will use the figure to explain what

happens at every human simulation step, which comprises several simulation steps

or frames.

At the beginning of each human simulation step, a pedestrian H gets the top

memory item as the current goal g (arrows 2 and 7). If g is a complex goal (such

as “meet a friend”), it will be decomposed by a planner routine into sub-tasks

(e.g., “reach the meeting point” and “wait”) and the first sub-task will become the
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Figure 5.1: The complete autonomous pedestrian model.

82



current task and will be pushed onto memory stack (arrow 2). Proper knowledge

(usually of the static world) will be used (arrow 1) during planning when needed

(say, in planning a path). If the task is simple enough (arrows 6 and 7), the action

selection mechanism will choose a proper behavioral routine to handle it. The

necessary information of the realtime external situation will be obtained directly

or indirectly from sensing processes and internal knowledge representation (arrows

3, 4, 5 and 10). Motor control commands (e.g., go straight forward with speed

1.2m/s in the next step, turn 15 degrees left with walk speed 0.5m/s in the next

step, stand still, sit down, look at watch, look left, etc.) issued at the behavioral

level are sent down (arrow 12) to the motor control interface where they will first

be verified and corrected in accordance with the motion abilities and kinetic limits

of the pedestrian. Then they are translated into actual motions and/or transitions

available in the motion repertoire. These motions and/or transitions will be picked

(arrow 14) from the repertoire to configure the pedestrian’s postures (arrow 15)

for the next several frames (since each human simulation step comprises several

simulation steps or frames). The textured geometric human model will be used

to render the scene in each frame (arrow 16). Feedback from the motion level

(such as change of position and orientation, current speed, already sitting down

or not, etc.) are obtained (arrow 13) and relayed to the world model (arrow 11)

and the sensing component (arrow 8) in order to perform a proper update. This

update leads to a slightly different perceived world (arrow 3, 4, 5, and 10) by

the pedestrian in the next human simulation step. The update also causes the

internal state variables to change (arrow 9), which may in turn trigger (arrow 10)

behavioral controllers to initiate or terminate certain behaviors in order to fulfill
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desires. Finally, after several simulation steps, a new human simulation step will

be processed.

Note from the figure that the motor control interface effectively hides the DI-

Guy software from our higher level models, which makes it easy, in principle, to

replace it with other human animation packages.

5.5 Summary

In this chapter, we have presented the cognitive model of our virtual pedestrians,

which completes the description of our autonomous pedestrian model except for

the path-planning algorithms, which will be detailed in Chapter 7. Before we can

explain the path planning aspects of the cognitive model, we must first present the

full details of the environment model in the next chapter.
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Chapter 6

Environmental Modeling

As outlined in Section 3.1, we represent the virtual environment by a hierarchical

collection of data structures, including a topological map, two types of maps for

perception, two types of maps for path planning and a set of specialized envi-

ronment objects (see Figure 3.2 on page 35). With each of these data structures

specialized to a different purpose, the combination is able to support accurate and

efficient environmental information storage and retrieval.

6.1 Topological Map

At the highest level of abstraction, a graph serves to represent the topological

relations between different parts of a virtual world. In this graph, nodes correspond

to environmental regions and edges between nodes represent accessibility between

regions.

A region is a bounded volume in 3D-space (such as a room, a corridor, a flight

of stairs or even an entire floor) together with all the objects inside that volume
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(for example, ground, walls, ticket booths, benches, vending machines, etc.). We

assume that the walkable surface in a region may be mapped onto a horizontal plane

without loss of essential geometric information, such as the distance between two

locations. Consequently, a 3D-space may be adequately represented by several

planar maps, thereby enhancing the simplicity and efficiency of environmental

queries, as will be described momentarily.

Another type of connectivity information stored at each node in the graph is

path-to-via information. Suppose that L(A, T ) is the length in the number of edges

of the shortest path from a region A to a different target region T , and P (A, T ) is

the set of paths from A to T of length L(A, T ) and L(A, T ) + 1. Then V (A, T ),

the path-to-via of A associated with T , is a set of pairs defined as follows:

V (A, T ) = { (B, CB) | B is a region &

∃p ∈ P (A, T ) &

CB = length of p &

B is next to A on p }.

(6.1)

As the name suggests, if (B, CB) is in V (A, T ), then a path of length CB from A

to T via B exists. In other words, V (A, T ) answers the question “To which region

shall I go, and what cost shall I expect if I am currently in A and want to reach

T”?

Given a graph, the path-to-via information is computed offline in advance using

the incremental algorithm shown in Table 6.1. Note that after Step 3 in the

algorithm, only those entries are stored whose cost is minimal or (minimal + 1).

In this way we can avoid paths with cycles. To understand this, consider V (A, C)
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Given G(N, E), a graph with N nodes and E edges:

1. Initialization:
for each node A

for each target node T
if (A == T )

then V (A, T )← {(A, 0)}
else V (A, T )← {}

2. Collect information associated with paths of length L based
on the information associated with paths of length L− 1:

for length L = 1 to N − 1
for each node A

for each target node T
for every neighbor node B of A and any node X in G

if (X, L− 1) ∈ V (B, T )
then add (B, L) to V (A, T )

3. Keep only low cost entries:
for each node A

for each target node T and any node Y in G
let Cmin be the minimal cost in V (A, T )
for each entry E(Y, C) in V (A, T )

if (C > Cmin + 1)
then remove E from V (A, T )

Table 6.1: Algorithm for computing path-to-via information.
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for the graph in Figure 3.2. C is a direct neighbor of A; so (C, 1) is clearly an

entry of V (A, C). (B, 3) is another entry as A-B-A-C is also a possible path from

A to C. Obviously, A-B-A-C is not desirable as it contains a cycle. Such paths

will automatically be removed from the path-to-via set after Step 3.

Linked within each node of the graph, are perception maps and path maps

together with a list of objects inside that region. Next we will describe them in

turn.

6.2 Perception Maps

Mobile objects and stationary objects are stored in two separate perception maps,

which form a composite grid map. Hence, objects that never need updating persist

after the initialization step and more freedom is afforded to the mobile object

(usually virtual pedestrian) update process during simulation steps. Table 6.2

summarizes their similarities and differences, and the next two subsections present

the details.

6.2.1 Stationary Objects

Our definition of a region assumes that we can effectively map its 3D space onto

a horizontal plane. By overlaying a uniform grid on that plane, we make each cell

correspond to a small area of the region and store in that cell identifiers of all the

objects that occupy that small area. Thus, the grid defines a rasterization of the

region. This rasterized “floor plan” simplifies visual sensing. The sensing query

shoots out a fan of line segments whose length reflects the desired perceptual range
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Type Cell Size Update Cost for Query Cost per
the Entire World Pedestrian

stationary small 0 constant, given the sensing
(∼ 10−1m) range and acuity

linear in the constant, given the sensing
mobile large number of fan and max number of

(∼ 101m) pedestrians sensed pedestrians

Table 6.2: Comparison of perception maps.

and whose density reflects the desired perceptual acuity (cf. [Tu and Terzopoulos

1994; Maes et al. 1995]). Each segment is rasterized onto the grid map (see the

left and center panels of Figure 6.1). Grid cells along each line are interrogated for

their associated object information. This perceptual query takes time that grows

linearly with the number of line segments times the number of cells on each line

segment. Most importantly, however, it does not depend on the number of objects

in the virtual environment. Without the help of grid maps, the necessary line-

object intersection tests would be time consuming given a large, complex virtual

environment populated by numerous pedestrians. For high sensing accuracy, small

sized-cells are used. In our simulations, the typical cell size of grid maps for

stationary object perception is 0.2 ∼ 0.3 meters.

6.2.2 Mobile Objects

Similarly, a 2D grid map is used for sensing mobile objects (typically other pedes-

trians). In this map, each cell stores and also updates a list of identifiers of all the

pedestrians currently within its area. To update the map, for each pedestrian H

(with Cold and Cnew denoting the cells in which H was and is, respectively):
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Figure 6.1: Perception maps and visual sensing. Left: Sensing stationary objects
by examining map entries along a rasterized eye ray. Center: Perceive situation
around by shooting out a fan of such eye rays (rasterization not shown). Right:
Sensing mobile objects by examining (color-coded) tiers of the sensing fan.

1. If (Cold == Cnew) then do nothing.

2. Otherwise, remove H from Cold and add him to Cnew.

A hash map is used to store the list of pedestrians within each cell. As the update

for each pedestrian takes negligible constant time, the update time cost for the

entire map is linear in the total number of pedestrians, with a small coefficient.

The main purpose of this perception map is to enable the efficient perceptual

query by a given pedestrian of nearby pedestrians that are within its sensing range.

The sensing range here is defined by a fan as illustrated in the right part of Fig-

ure 6.1. In the mobile object perception map, the set of cells wholly or partly

within the fan are divided into subsets, called “tiers”, based on their distance to

the pedestrian. Closer tiers will be examined earlier. Once a maximum number

(currently set to 16) of nearby pedestrians are perceived, the sensing is terminated.

This is intuitively inspired by the fact that usually people can simultaneously pay

attention only to a limited number of other people, especially those in close prox-

imity. Once the set of nearby pedestrians is sensed, further information can be
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obtained by referring to finer maps, by estimation, or simply by querying a par-

ticular pedestrian of interest. Given the sensing fan and the upper bound on the

number of sensed pedestrians, perception is a constant-time operation.

6.3 Path Maps

Goal-directed navigation is one of the most important abilities of a pedestrian, and

path planning enables a pedestrian to navigate a complex environment in a sensi-

ble manner. To facilitate fast and accurate online path planning, we use two types

of maps with different data structures–grid maps and quadtree maps, which will

be briefly presented next. The path planning algorithms will be detailed in a sub-

sequent chapter, after we have finished describing the environment representation

hierarchy.

6.3.1 Grid Path Map

Grid maps, which are useful in visual sensing, are also useful for path planning. We

can always find a shortest path on a grid map, if one exists, using the well-known

A∗ graph search algorithm [Rabin 2000; Stout 2000].

In our system, grid path maps are used whenever a detailed path is needed.

Suppose D is the direct distance between pedestrian H and his target T . Then a

detailed path is needed for H if D is smaller than a user-defined constant Dmax and

there are obstacles between H and T . This occurs, for instance, when one wants

to move from behind a chair to its front and sit on it. Clearly, the accuracy of

the path in this instance depends on the size of the cells in the grid path maps. A
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small cell size results in a large search space and, likely, low performance. However,

detailed paths are usually not needed unless the target is close to the starting point.

Therefore, chances are that paths are found quickly, after the search covers only

a small portion of the entire search space. Roughly speaking, in most cases the

space that must be searched is bounded by 4(Dmax/c)
2, where c is the cell size.

The typical values for these constants in our current system are 1 ≤ Dmax ≤ 10

meters and 10−1 ≤ c ≤ 1 meters.

In addition, grid path maps are used when path search fails on a quadtree path

map. This will be explained later in the section on path planning (Chapter 7).

When creating grid maps, special care must be taken to facilitate efficient

updates and queries. Polygonal bounding boxes of obstacle objects represented on

grid maps are enlarged by half of the size of a pedestrian’s bounding circle. If the

center of a pedestrian never enters this “buffer” area, collisions will be avoided.

This enables us to simplify the representation of a virtual pedestrian to a single

point, which makes most queries simpler and more efficient.

6.3.2 Quadtree Path Map

Every region has a quadtree map, which supports fast online path planning [Botea

et al. 2004]. Each quadtree map comprises

1. a list of nodes Ni (i = 0, 1, 2, · · · , m), which together cover the whole area of

the region (see Step (3) in Figure 6.2);

2. C, the number of levels; i.e., the number of different node cell sizes appearing

in the map (which is 3 for the quadtree map in Figure 6.2); and
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Figure 6.2: Construct a quadtree map.

3. a pointer to an associated grid map with small cell size (see Step (1) in

Figure 6.2).

Each node Ni of the quadtree [Samet 1989] stores the following variables:

1. Li, where 0 ≤ Li < C, the level of the node in the quadtree (which also

indicates the cell size of Ni);

2. the center position of the area covered by this node;

3. the occupancy type (ground, obstacle, etc.);

4. a list of pointers to neighboring nodes;

5. a congestion factor gi, which is updated at every simulation step and indicates

the portion of the area covered by this node that is occupied by pedestrians;

and

6. a distance variable, which indicates how far the area represented by the node

is from a given start point, and will be used at the time of path-planning,
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especially during back-tracking as a gradient reference to find the shortest

way back to the start point.

As Figure 6.2 illustrates, given a grid map with small cells, the algorithm for

constructing the quadtree map first builds the list of map levels containing nodes

representing increasing cell sizes, where the cell size of an upper level node is twice

as large as that of lower level nodes. Higher level nodes, which aggregate lower

level nodes, are created so long as the associated lower level cells are of the same

occupancy type, until a level is reached where no more cells can be aggregated.

Quadtree maps typically contain a large number of lower level nodes (usually over

85% of all nodes) that cover only a small portion (usually under 20%) of the entire

region. Such nodes significantly increase the search space for path planning. Thus,

in the final stage of construction, these nodes are excluded from the set of nodes

that will participate in online path planning. As the area that they cover is small,

their exclusion does not cause significant accuracy loss. However, in occasions

when path planning fails because of this exclusion, grid maps will be used to find

the path, as will be described in Chapter 7.

6.4 Specialized Environment Objects

At the lowest level of our environmental hierarchy are environment objects. Cells

of grid maps and quadtree maps maintain pointers to a set of objects that are

partly or wholly within their covered area. Every object has a list of properties,

such as name, type, geometry, color/texture, functionality, etc. Many of the envi-

ronment objects are specialized to support quick perceptual queries. For instance,
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every ground object contains an altitude function which responds to ground height

sensing queries. A bench object keeps track of how many people are sitting on it

and where they sit. By querying nearby bench objects, weary virtual pedestrians

are able to determine the available seat positions and decide where to sit with-

out further reference to the perceptual maps. Other types of specialized objects

include queues (where pedestrians wait in line), purchase points (where pedestri-

ans can make a purchase), entrances/exits, etc. In short, these objects provide a

higher level interpretation of the world that would be awkward to implement with

perception maps alone, and this simplifies the situational analysis for pedestrians

when they perform autonomous behaviors.

6.5 Processing Queries

The environment representation, together with the algorithms designed on it, ef-

ficiently provides accurate perceptual data as well as planning results in response

to the various queries that may be issued by an autonomous pedestrian. Typical

queries are explained next in order of increasing abstractness.

Sensing ground height To ensure that a virtual pedestrian’s feet touch the

ground in a natural manner, especially when climbing stairs or locomoting on

uneven ground, the pedestrian must query the environment model in order to sense

the local ground height so that the feet can be planted appropriately. Each grid

map cell contains the height functions of sometimes a few (most often a single)

ground objects. The greatest height at the desired foot location is returned in

constant time.
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Visual sensing As stated earlier in section 6.2 (see also Figure 6.1), our data

structures dramatically increase the efficiency of the sensing processes when a

pedestrian must perceive static obstacles and nearby pedestrians, which is a cru-

cial component of obstacle avoidance. On the perception map for static objects,

rasterized eye rays are used to detect static obstacles. On the perception map

for dynamic objects, a constant number of neighbor cells are examined to identify

nearby pedestrians. Both of the algorithms are localized and do not depend on

the size of the world, the number of objects or pedestrians, or anything else that

increases with world size.

Locating an object Given a location identifier (say, “Track 9”), a search at

the object level can find the virtual object. This is accomplished in constant time

using a hash map with location names as keys. As the virtual object has an upward

reference to its region, it can be located quickly (say, “under the lower concourse”)

by referring to the node in the topological graph, as can nearby objects in that

region (say, “Platform 9” and “Platform 10”) by referring to the perception maps

linked within the node.

Acquiring high level interpretation of specific situation Abstract inter-

pretation of the environment is indispensable for creating high level behaviors such

as “to get a ticket” to be described in Chapter 4. Take it as an example. In order

to get a ticket, a pedestrian needs to figure out (1) the length of wait line at each

booth to pick a fast one, (2) the last person on the wait line in order to go and

wait on the line, (3) when he becomes the first person on the line, (4) whether a

window is available for him to make the purchase. Such queries are all answered by

96



specialized objects, in this case a queue object and several purchase point objects

associated with the ticket booth, which keep track of the evolving situation.

Planning paths between regions Here, the path-to-via information is useful

in identifying intermediate regions that lead to the target region. Any intermediate

region can be picked as the next region and, by applying one of the path-searching

schemes described in Chapter 7, a path can be planned from the current location

to the boundary between the current region and that next region. The process is

repeated in the next region, and so on, until it can take place in the target region

to terminate at the target location. Although the extent of the path is global, the

processing is local.

6.6 Summary

In this chapter, we presented a large-scale environment model, which includes

a sophisticated set of hierarchical data structures that support fast and accurate

perceptual queries and path search algorithms. In the next chapter, we will describe

the algorithms employed for online path-planning on path maps in the environment

model.
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Chapter 7

Path Planning

Having presented the details of our environment model, we can now fill in the

missing details of the pedestrian cognition model which we covered in Chapter 5,

especially as they relate to path planning.

7.1 Path Planning Sub-Tasks

As we mentioned in Chapter 5, path planning in our pedestrian model is broken

down into sub-tasks at different scales:

• Task A: Given two regions RS and RT , find an RS’s neighboring region

RN through which a pedestrian can reach RT . This is done by first ex-

ploiting the topological map at the top level of the environment model. A

set of optimal neighboring regions leading to RT can be determined simply

by a table-lookup operation (using the precomputed path-to-via information

in the topological map (see Section 6.1)). From them, the best one can
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then be picked through passageway selection behavior or the like at the be-

havioral level, based on both the proximity and the pedestrian density (see

Section 4.3.2).

• Task B: Find a rough path connecting the start point S and the target T ,

which are within the same region R but far away from each other. Here we

first employ one of the search algorithms presented in Section 7.4 to search

for a path on the quadtree path map of R. If the attempt fails for the reason

explained later in this section, we will plan a path on one of the grid path

maps of R. The path found, whether on quadtree map or grid map, is usually

jagged or full of spikes. It will be taken as a rough guide by the pedestrian

during visually-guided navigation, as covered in Section 4.3.1.

• Task C: In the cases when S and T are close to each other but have obstacles

in between, plan a detailed path from S to T . Now the finest grid path

map of this region is used here for the path search in order to increase

accuracy. The path will then be slightly smoothed, and the pedestrian will

follow the processed path strictly when approaching the target as we describe

in Section 4.3.1.

With these sub-task solvers at hand, and given a pedestrian’s current location S

in region RS and a target location T in region RT , the general path planning can

be achieved as follows:

1. Use Task A to pick the right neighboring region RN of RS.

2. Determine BSN , the boundary area or portal area between RS and RN .
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3. Either go directly toward BSN or use Task B to plan a path and follow the

path to BSN .

4. Repeat Steps 1, 2, and 3 in the new region until region RT is reached.

5. Either go directly toward T or use Task B to approach T .

6. Either go directly toward T or use Task C to arrive at T .

Note that at the places where Task B or Task C is used, the current target

location (whether ultimate or not) will first be checked to determine whether or

not it is directly reachable. If it is, a pedestrian will simply move straight toward

it without further ado.

Autonomous virtual pedestrians are capable of automatically planning paths

around static and dynamic obstacles in the environment. When used for path

planning, quadtree maps have the advantage of quick response due to their smaller

search space, while grid path maps are good for detailed plans as they have higher

resolution. Thus, quadtree maps are always used when detailed paths are not

required. Sometimes, however, quadtree maps may fail to find a path even though

one exists. This is because low level nodes on a quadtree map are ignored during

path search in order to decrease the search space. Therefore, paths that must go

through some low level nodes cannot be found on a quadtree map. To resolve this,

we turn to grid path maps whenever search fails on a quadtree map. The standard

A∗ algorithm [Rabin 2000; Stout 2000], is used to find a path on grid maps. For

efficiency reasons, a list of grid maps with decreasing cell sizes is kept for each

region. Grid map path search starts at the coarsest level and progresses down the

list so long as the search fails on coarser levels. Although grid maps with large
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cells are likely to merge separate objects due to aliasing, and thus cause the search

to fail, the multiresolution search ascertains that, as long as the path exists, it will

always be found eventually on maps with smaller cells.

In the remaining part of this section, we describe the path planning algorithm

for quadtree path maps. To find a path on a quadtree map M from a given starting

point S to a target T , the main phases of the algorithm are as follows:

1. insert T into M and expand it if necessary (see Section 7.5);

2. from S, try to find any node in the expanded target using one of the several

available search schemes (see Sections 7.2, 7.3, and 7.4);

3. if the search reaches an expanded target node C, then (1) back-track through

the visited nodes to construct a path Pcs from C to S and (2) back-track

through expanded target nodes to build a path Pct from C to a real target

node in T (see Section 7.6);

4. link Pcs and Pct together to construct an initial path Pst from S to T ; and

5. post-process Pst to compute the final path P .

The details of the algorithm will be discussed in the next several sections.

7.2 Set Distance Variables

The search schemes mentioned in Step 2 employ several variations of the A∗ search

algorithm. In the conventional A∗ algorithm, the search procedure iteratively gets

an unvisited (ground) node from a queue, visits it, marks it as visited, adds its
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Figure 7.1: Non-uniform distance field caused by constant increment on a quad-
tree map.

neighbors to the queue, and repeats until the target is reached or the algorithm

fails to reach the target. As the algorithm progresses, it updates a distance variable

in each node which indicates the approximate distance of the node from the start

point. After the search succeeds, the distance tags of all the visited nodes form a

distance field, which back-tracking uses to find a shortest path along the distance

gradient from the target point back to the start point.

When A∗ algorithm is applied to plan paths on uniform grids, the increment

of distance variables at each search step is always the same due to the constant

cell size. The situation with a quadtree map is different, however, as the nodes of

a quadtree map can represent different sized regions. Constant-size increment of

distance variable at each step will produce a non-uniform distance field on quadtree

maps (see Figure 7.1). In updating the distance variables, we therefore employ the
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Figure 7.2: Distance approximation on quadtree map. Distance (dashed line)
between centers of neighboring nodes is approximated by the sum of the half of
the sizes of those two nodes (dotted lines).

actual distances Distc(N, B) between the centers of adjacent nodes N and B. To

make it efficient, the half sum of N ’s size and B’s size is used to approximate the

actual distance (see Figure 7.2). Notice that node sizes increase or decrease by a

factor of 2 from level to level in the quadtree, so we have:

Distc(N, B) ≈ 0.5× S0 × (2LN + 2LB) (7.1)

where S0 is the size of nodes at level 0 (those smallest nodes) and LN and LB are

levels of the nodes N and B, respectively. Further simplification can be achieved

by (1) omitting the constant part 0.5 × S0 and (2) keeping 2x in a precomputed

list, so that Equation 7.1 becomes:

Distc(N, B) ∼ Power2(LN) + Power2(LB) (7.2)

where Power2 = {1, 2, 4, 8, 16, 32, 64, 128, · · ·} is a list of powers of 2. In this

formula, the sum of two increments at level i is equal to one increment at level
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i+1, which exactly reflects the fact that the cost of going through two consecutive

nodes at level i is the same as that of going through one node at level i+1. However,

note that the centers of regions associated with large ground nodes in the quadtree

are generally further from obstacles than those of the small ground nodes. When

planning paths, virtual pedestrians can keep further away from obstacles simply

by favoring bigger nodes in their path searches. The search algorithm does this by

appropriately weighting the internodal distances from level to level in the quadtree:

Distc(N, B) ∼ w(LN)× Power2(LN) + w(LB)× Power2(LB) (7.3)

where w(i) is a choice of the weight function. To be more specific, our current choice

of weights effectively change the Power2 series into a Fibonacci series, which gives

limited favor to bigger nodes:

Distc(N, B) ∼ Fib(LN ) + Fib(LB) (7.4)

where Fib = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·} is a Fibonacci series. Clearly,

it favors one node at level i + 1 rather than the sum of two nodes at level i, but it

treats the former the same as the sum of one at level i and one at level i− 1. This

way the path found by back-tracking, although might be longer than the shortest

one, will not be too much longer. To be more precise, in worst case paths are 1/3

longer than the shortest.
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7.3 Congestion

The search algorithm also takes the congestion of a region into consideration during

path planning. The congestion factor variables CN and CB of adjacent nodes N

and B are incremented and decremented when a pedestrian transitions between

the regions covered by these nodes. If the congestion factor Ci of node i exceeds

a preset congestion threshold Cthresh, the internodal distances from that node are

weighted with a weighting factor greater than unity. Thus, Equation 7.4 becomes:

Distc(N, B) ∼ wcong(CN)× Fib(LN ) + wcong(CB)× Fib(LB) (7.5)

where wcong(x) is a choice of weight function and is currently defined as:

wcong(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x < Cthresh

( 1
1−(x−Cthresh)

)2 if Cthresh ≤ x < Cthresh + 1

infinity if Cthresh + 1 ≤ x

(7.6)

According to the above formula, greater costs will be associated for more con-

gested nodes in terms of their distance from a start node. This effectively pulls

crowded nodes away from the starting point. As the backtracking process always

trace back along the gradient, it will pick a low cost route and thus in a way

automatically avoid crowded area.

In Figure 7.3, we compare the paths planned with and without congestion

model. Part 1) shows a highly crowded sub-area (in gray circle) appearing in

a simulation with 210 agents. In the picture, blue objects are obstacles, thin

long green objects are walls and red dots are agents. In part 2), quadtree map
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Figure 7.3: Congestion model on quadtree maps.
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. Let S = the start node. EnQueue(S).

. Loop
. N = DeQueue()
. if (N == NULL) return “space exhausted”
. for each neighbor B of N , do

. if (B is a expanded target node) return “target reached”

. if (B is not a ground node) continue

. if (B has been visited) continue

. Bdist val = Ndist val + Distc(N,B)

. EnQueue(B)
. End loop.

Table 7.1: Algorithm outline shared by search schemes.

nodes whose congestion factor > 0.1 are shown in color, with more blueish squares

indicating more congested area. Part 3) shows a path planned from green circle

on the top to orange circle at the bottom without congestion model. And in

part 4), another path is planned for the same pair of start and target points with

congestion model. For both 3) and 4), color coded search space is also shown–

visited nodes as colored squares with distance variable values printed in the center

of the square. Note in 4), when search encounters highly crowded area, the distance

variable values suddenly go up (indicated by the sudden color change to red). The

red nodes act like a barrier, preventing back-tracking from going through them,

and thereby give great favor to the new path.

7.4 Search Schemes

We have designed several variants of the A∗ algorithm, each with its own emphasis.

Some variants aim at high speed while others always attempt to find shortest paths.
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Name Number of Nodes are Queues Path Search
queues sorted in are length speed

queues? prioritized?
SortedQ one partly sorted no shortest slowest

by distance
variable values

SingleQ one no no shorter slower
MultiQ multiple, one no no longer faster

for nodes at
each level

PmultiQ multiple, one no queues of nodes longest fastest
for nodes at at higher level
each level have higher

priority

Table 7.2: Comparing different search schemes (1): number and properties of
queues.

The virtual pedestrians use all of the variants in order to increase the variety of

their motions. Our A∗ variants share the same algorithm outline as shown in

Table 7.1 and differ in how they maintain the unvisited nodes in the queue(s) as

shown in Table 7.2 and Table 7.3.

Variant SingleQ is the standard A∗ algorithm for uniform grid maps. It

does not find shortest paths in quadtrees because it expands quadtree nodes non-

isotropically. SortedQ maintains a sorted queue, and thus it first visits the frontier

node (frontier nodes are nodes in the boundary between visited and unvisited re-

gions) which is closest to the start node. The expansion is more isotropic, but

maintaining a sorted queue is relatively expensive. SortedQ tends to visit larger

quantities of smaller nodes in the quadtree, since they are more plentiful; hence,

the visited region tends to grow rather slowly. MultiQ maintains a separate queue

for each level in the quadtree and it visits every level in turn; hence, more large
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- SortedQ
EnQueue Insert node N into the queue so that the

last K nodes in the queue are sorted in
increasing order of distance variable values.
K is a user-defined value.

DeQueue Return a node removed from the head of the queue.

- SingleQ
EnQueue Append node N to the tail of the queue.
DeQueue Return a node removed from the head of the queue.

- MultiQ
EnQueue Append node N to the tail of queue(N.level)
DeQueue If last time DeQueue returned a node from

queue(i), then this time return a node removed
from the head of the next queue – queue(i + 1).

- PmultiQ
EnQueue Append node N to the tail of queue(N.level)
DeQueue For each queue from highest priority to lowest priority

if queue is not empty then
remove a node from the head of queue and
return it.

Table 7.3: Comparing different search schemes (2): enqueue and dequeue opera-
tions.

nodes are visited sooner than in the SingleQ search, improving the search speed.

PmultiQ, is a prioritized MultiQ scheme, which tries to visit the largest frontier

node first and therefore exhibits the fastest growth speed among the four meth-

ods. If we consider the size of a node to be analogous to the size of a road, the

PmultiQ scheme finds a path by searching along interstate highways first, then

all state highways, then local roads, etc., until it finds the target. However, the

path found will not necessarily be optimal. Thus, in the following order of the four
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schemes (SortedQ, SingleQ, MultiQ, PmultiQ), the length of the paths that

they generate are increasingly less optimal, but the searches are increasingly more

efficient.

In figure 7.4, we compare paths computed by the four search variants of the path

planning algorithm. Part 1) is visualization of the quadtree map of the concourse’s

upper level in the Pennsylvania Train Station environment model. The white quads

denote ground nodes and the blue ones denote obstacles. The green circle on the

left is the start point and the orange circle on the right is the target. 2)-5) show

results of the four path planning schemes 2) SortedQ, 3) SingleQ, 4) MultiQ, and

5) PmultiQ. The search space is color coded with the distance variable values

increasing from green to orange. Note that, although the four paths are similar,

the sizes of search space are different. (For clarity, obstacle quads are not shown

in the lower images 2)-5).)

7.5 Target Expansion

To make the search even faster, every target is expanded on a quadtree map until

it touches any node at a certain level Lt or above. The value of Lt is a trade-

off between accuracy and efficiency and it is automatically determined during map

construction. Nodes on and above this level shall cover a large portion of the entire

region (currently we set the threshold to be 70%) and the number of them shall be

significantly small (usually less than 30% of all nodes). Target expansion will likely

shorten the time needed in the search step as nodes at levels lower than Lt probably

do not have to be visited before the expanded target is reached (especially in the
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Figure 7.4: Comparison of path planning algorithms on quadtree maps.
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Name Map Accuracy Total Average Average
(smallest cell Search Time Path Length Number of

size in meters) (in seconds) (in meters) Nodes visited
Grid 0.5 621.9 29 27078
Grid 1.0 141.1 31 6211

SortedQ 0.2 89.5 26 2817
SingleQ 0.2 62.3 28 2190
MultiQ 0.2 26.1 30 820
PmultiQ 0.2 19.5 32 535

Table 7.4: Comparison of path search on path maps. Results from a set of 50,000
searches in several different environments.

case of PmultiQ). In order for the expansion to be nearly isotropic, SortedQ

search scheme is used to expand the target for it to reach a node on or above level

Lt.

7.6 Path Construction

The search step successfully completes its task once it has found a node Te that

belongs to the expanded target. Using the aforementioned back-tracking method,

the path planning algorithm constructs a path from the starting point to Te within

the searched area and a path from Te to a real target node within the expanded

target area. By linking these two paths together, we obtain a complete path to the

target. Finally, the complete path will be refined for use by the virtual pedestrian,

as discussed early when we describe pedestrian behaviors in Chapter 4.
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Map Type % of Paths Planned % of Time Used

Quadtree 94% 8%
Grid 6% 2%

Table 7.5: Usage of path maps for non-detailed-path-planning. Results measured
from a set of 20-minute-long simulations with various number of pedestrians (100 ∼
1000) in Penn Station environment.

7.7 Performance Comparison

Table 7.4 compares the average performance of the two types of path maps and

various search schemes of quadtree maps, as measured in our experiments. The

experiments include 50,000 searches in several different environments. From the

results, it is clear that quadtree maps generally out perform grid maps with a big

margin and the four variants of path search algorithm on quadtree maps demon-

strate exactly the characteristics we expected–as search time decreases path length

increases. Therefore, in our simulations quadtree maps are used a lot more than

grid maps for non-detailed path planning, in order to save computation time (see

Table 7.5).
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Chapter 8

Applications, Results and

Analysis

Our pedestrian animation system, which comprises on the order of 50,000 lines of

C++ code, enables us to run long-term simulations of pedestrians in large-scale

urban environments without manual intervention.

8.1 Autonomous Pedestrians in Penn Station

We have employed the environmental modeling techniques described in Section 3.1

and Chapter 6 to represent the original Pennsylvania Train Station of New York

City (Figure 1.1 and the left column of Figure 1.2) whose 3D reconstruction is il-

lustrated in the right column of Figure 1.2 and in roofless plan view in Figure 3.1.

The entire 3D space of the station (200m (l) × 150m (w) × 20m (h)) is manu-

ally divided into 43 regions. The initial graph map for the Penn Station model is

constructed according to this division and the path-to-via information of every re-
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gion is computed automatically. For each region, all the objects are automatically

loaded and abstracted into the appropriate maps. For an obstacle, a polygonal

bounding box is included, while for a ground object, a sampled height function

is stored. Orientations are specified for objects such as chairs, newsstands, and

vending machines. Special labels are stored for platforms/tracks and for trains to

different destinations. A registered object also stores reference pointers to asso-

ciated representations in coarser-resolution maps. At run time, our environment

model requires approximately 90MB of memory to accommodate the station and

all the objects.

A text configuration file is used for the initialization of pedestrians. To distin-

guish individual pedestrians not only by their appearance, we define, in this file the

kinetic limits and personal preferences for each pedestrian. These personal traits

include body inertia, bounding box size, preferred walking speed, maximal angular

speed during turning, motion style and characteristic, preferred safe distance from

others, sensing range, crowding willingness, internal state variable changing range

and pattern, character type (commuter, policeman, etc.) and so on. In this file, we

also specify in which of the four ways each pedestrian shall be initialized—either

put the pedestrian at a random or a specific position that is valid (standing on the

floor and not intersecting with any solid object), or cue the pedestrian to enter the

station from a random or a specific entrance after the simulation starts.

In our simulation experiments, we populate the virtual station with five differ-

ent types of pedestrians. Most of them are classified as commuters. In addition,

there are tourists, performers, policemen, and patrolling soldiers. Our simulations

demonstrate not only conventional crowd behaviors, in some cases involving over
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a thousand pedestrians, but various individual activities that are typical for real

pedestrians in a train station as well. With every individual guided by his/her own

autonomous control, they act out their volition, coordinate with other strangers

based on both observation and personal preferences, and at the same time follow

simple common-sense rules. These autonomous characters imbue the virtual train

station with liveliness, social (dis)order, and a realistically complex dynamic.

8.1.1 Animation Examples

We will now describe several representative simulations that demonstrate specific

functionalities of our system. To help place the animation scenarios in context,

refer to Figure 3.1.

Following an Individual Commuter

As we claimed earlier in Section 2.2.5, an important distinction between our system

and existing crowd simulation systems is that we have implemented a comprehen-

sive human model, which makes every pedestrian a complete individual with a

richly broad behavioral and cognitive repertoire. In this animation, therefore, we

choose a commuter and follow him as he moves through the station.

In the animation, our subject enters the station, proceeds to the ticket booths

in the main waiting room, and waits in a queue to purchase a ticket at the first

open booth. Having obtained a ticket, he then proceeds to the concourses through

a congested portal. Next, our subject feels thirsty and spots a vending machine in

the concourse. He walks toward it and waits his turn to get a drink. Feeling a bit

tired, our subject finds a bench with an available seat, proceeds towards it, and sits
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(a) (b)

(c) (d)

(e) (f)

Figure 8.1: Following an individual commuter.
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(g) (h)

(i) (j)

(k) (l)

Figure 8.2: Following an individual commuter (continued).
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down. Later, the clock chimes the hour and it is time for our subject to get up and

proceed to his train platform. He makes his way through a somewhat congested

area by following, turning, and stopping as necessary in order to avoid bumping

into other pedestrians. He passes by some dancers that are attracting interest from

many other pedestrians, but our subject has no time to watch the performance and

descends the stairs to his train platform. Snapshots of this animation are given in

Figure 8.1 and Figure 8.2.

Pedestrian Activity in the Train Station

The second simulation, which includes over 600 autonomous pedestrians, demon-

strates a variety of pedestrian activities that are typical for a train station. We can

interactively vary our viewpoint through the station, directing the virtual camera

on the main waiting room, concourse, and arcade areas in order to observe the

rich variety of pedestrian activities that are simultaneously taking place in dif-

ferent parts of the station. Some additional activities that were not mentioned

above in the first animation include pedestrians choosing portals and navigating

through them, congregating in the upper concourse to watch a dance performance

for amusement, and proceeding to the train platforms using the rather narrow

staircases. Snapshots of this animation are shown in Figure 8.3.

8.1.2 Performance

We have run various simulation tests on a 2.8GHz Intel Xeon system with 1GB

of main memory. The total length of each test is 20 minutes in virtual world

time. Time costs of these tests are measured and plotted in Figure 8.4. The
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Figure 8.3: Pedestrian activity in a train station.
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Figure 8.4: Pure simulation time vs. number of pedestrians.

simulation times reported here include only the requirements of our algorithms—

cognitive control, behavioral control, perceptual query, and motor control for each

pedestrian plus environment model update. If we look at Figure 5.1, then the only

thing we excluded from the time cost measurement is the DI-Guy rectangle at the

very bottom, which is not controllable by us.

In the figure, the plotted curve indicates that computational load increases

almost linearly with the number of pedestrians in the simulation. It shows that

real-time simulation can be achieved for as many as 1400 autonomous pedestrians

(i.e., 20 virtual world minutes takes 20 minutes to simulate at 30 frames/second).

Although the relation is best fit by a quadratic function, the linear term domi-

nates by a factor of 2200. The small quadratic term is likely due to the fact that

the number of proximal pedestrians increases as the total number of pedestrians

increases, but with a much smaller factor.

Figure 8.5 breaks down the computational load for various parts of the simula-
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Includes time for updating 
- pedestrians: 14.0%  
- world: 19.4%  

Includes time for 
- sensing static objects: 8. 7%  
- sensing nearby humans: 1.9%  
- sensing ground height: 7.8%  
- sensing specialized objects: 1.0%   
- operations of  internal state variables: 0.3%  

Includes time for path planning  
 - on grid maps ( 2.2%  )  for  
     10.9% of all paths and  
 - on quadtree maps ( 12.3%  ) for  
      89.1% of all paths. 

Includes time for  
- reactive behaviors: 8.8%   
- motivational / navigational  behaviors: 11.1%   
- other high level behaviors: 3.8%   
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Processes 
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 Others 2.2% 
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Figure 8.5: Computation time of the various components of the system.

tion based on multiple experiments with different numbers of pedestrians ranging

from 100 to 1000 in the Penn Station model on the aforementioned PC. The com-

putation time inside DI-Guy and the rendering time is disregarded here.

Number of Pedestrians 0 100 200 300 400 500
Simulation Only n/a 64.4 32.2 23.0 16.9 12.3
Rendering Only 21.0 12.5 9.2 7.6 6.0 5.4

Simulation + Rendering 21.0 10.5 7.2 5.7 4.4 3.8

Table 8.1: Frame rate in different test settings.

Table 8.1 gives the frame rates that our system achieves on the aforementioned

PC with an NVIDEA GeForce 6800 GT AGP8X 256MB graphics system. The

frame rates listed here (in frames/sec) are measured from tests with various num-

ber of DI-Guy characters in the Penn Station environment. Unlike the previous

measurements, we include computation of DI-Guy and rendering selectively in

our tests listed in this table. In “simulation only” tests, full simulation is done

(including DI-Guy) without rendering. In “rendering only” tests, all simulation

algorithms are disabled and static scene with stationary characters is rendered.
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Figure 8.6: Virtual surveillance camera layout in Penn Station. Plan view of the
virtual Penn Station environment (the yellow rectangles indicate station portals)
illustrating an example visual sensor network comprising 16 simulated active (pan-
tilt-zoom) video surveillance cameras. Image provided courtesy of F. Qureshi.

And in “simulation + rendering” everything is enabled. As shown in the table,

rendering times dominate pedestrian simulation times and, consequently, lower

the frame rate during full simulation tests. This is probably due to the geometric

complexity of both the Penn Station model and numerous pedestrians. We believe

this rendering bottleneck can be ameliorated by using existing techniques such as

culling, impostors, levels of detail, and so on. However, this is beyond the scope

of this thesis.

8.1.3 Application to Computer Vision & Sensor Networks

Our autonomous pedestrian simulator can be of use to researchers in the domains

of computer vision and visual sensor networks in an approach called virtual vision
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Figure 8.7: Virtual vision. Synthetic video feeds from multiple virtual surveillance
cameras situated in the (empty) Penn Station environment.

[Terzopoulos et al. 1994; Qureshi and Terzopoulos 2005b; Qureshi and Terzopoulos

2005a]. In particular, our simulator is currently serving as the core of a software

testbed for the design and essaying of multi-camera automated sensor networks for

visual surveillance, which may eventually be capable of detecting suspicious activ-

ity and behavior. To this end, virtual cameras are situated at various locations in

our virtual Penn Station environment populated by autonomous pedestrians (Fig-

ure 8.6). The virtual cameras generate synthetic video feeds that emulate those

generated by real surveillance cameras monitoring public spaces (Figure 8.7). Fig-

ure 8.8 illustrates the virtual sensor network developed by Qureshi and Terzopou-

los [2005a], which comprises multiple active (pan-tilt-zoom) cameras, automati-
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cally tracking a female pedestrian wearing the red top as she proceeds through the

station.

In the context of the virtual vision approach, our simulator offers several ad-

vantages, among them the following:

• Deploying a large-scale visual sensor network in the real world is a major un-

dertaking whose cost can easily be prohibitive for most researchers interested

in designing and experimenting with sensor networks. Despite its sophisti-

cation, our simulator runs on high-end commodity PCs, obviating the need

to acquire and grapple with special-purpose hardware and software.

• Unlike the real world, researchers can readily deploy a virtual sensor network

in our simulated world and easily reconfigure the multi-camera layout in the

virtual environment.

• The use of realistic virtual environments in computer vision and sensor net-

work research offers significantly greater flexibility during the design and

evaluation cycle, thus expediting the engineering process.

• The virtual world provides readily accessible ground-truth data for the pur-

poses of visual sensor network algorithm validation.

• The hard real-time constraints of the real world can be relaxed in the simu-

lated world; i.e., simulation time can be prolonged relative to real, “wall-clock

time”, in principle permitting arbitrary amounts of computational processing

to be carried out during each unit of simulated time.

• Privacy laws generally restrict the monitoring of people in public spaces for
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Figure 8.8: A pedestrian is tracked by autonomous virtual cameras. Image pro-
vided courtesy of F. Qureshi.
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experimental purposes. We do not violate the privacy of any real people in

our virtual world.

• Obviously, in the virtual world researchers can potentially experiment with

complex and/or dangerous scenarios that cannot be attempted safely or re-

peatedly in real life. For example, one can potentially simulate the reactions

of crowds in crisis situations, such as the presence of an armed terrorist, and

see if one can design suites of computer vision algorithms that, through an

automated analysis of the virtual video streams, can detect such situations

and issue appropriate alerts.

A thorough description of ongoing virtual vision research is beyond the scope of this

thesis. For further details, we refer the reader to the above cited and forthcoming

publications of Qureshi and Terzopoulos.

8.2 Virtual Archaeology

Archaeology is another domain that can benefit from the application of autonomous

virtual pedestrians, particularly for the purposes of visualizing human activity

in computer reconstructions of archeological sites and, potentially, for testing of

archeological theories of site usage in ancient times.

8.2.1 The Petra Archeological Site and the Great Temple

Petra (from the Greek word for “rock”) lies in a great rift valley east of Wadi

Araba in Jordan about 80 kilometers south of the Dead Sea. As the principal

city of ancient Nabataea at its heyday, Petra has a history that can be traced
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Figure 8.9: Site of Petra Great Temple.

back over 3,000 years. The Great Temple of Petra represents one of the major

archaeological and architectural components of central Petra. It is now recognized

by archaeologists to have been one of the main buildings of the ancient city of

Petra and it is thought to have been dedicated to the most important cult deity of

the city. Unfortunately, earthquakes in ancient times demolished the temple and

buried it under debris.

The temple site has been explored since the 1890s. A major excavation re-

cently carried out by an archeological team from Brown University has unearthed

many amazing structures and sculptures [Joukowsky 1998]. With the new find-
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Figure 8.10: Reconstructed 3D model of Petra Great Temple.

ings, archaeologists, computer scientists, and artists have been collaborating to

reconstruct the original appearance of the temple in a virtual 3D model [Vote

et al. 2002]. Figure 8.9 shows a photo of the temple site under excavation and

Figure 8.10 shows a CG image rendered from the reconstructed 3D model.

Located on the southern citadel hill of Petra, the 7560 square meters Temple

Precinct is comprised of a Propylaeum (monumental entryway), a Lower Temenos

(with two colonnades on the east and west sides), and monumental east and west

Stairways, which lead to the Upper Temenos. Further ahead is the Great Temple

itself. This impressive structure measures 28 meters in width and some 42 meters

in length. Inside this structure, there is a small amphitheater with circular tiers

of stair seats surrounding a restricted stage area. Figure 8.11 shows the layout of
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Figure 8.11: Layout of the temple precinct.

the various parts of the Temple Precinct.

As the Temple has sustained severe damage and most of its parts have not yet

been found, many aspects of the Temple, from the layout of missing structures

to details of the sculptures to the purpose and use of the Temple and the am-

phitheater inside, remain unclear. Archaeologists must use scholarly speculation

while studying the site. Assimilating the reconstructed temple model within our

autonomous pedestrian simulation system, we are able to visualize possible inter-

actions between the temple and its human occupants, thus potentially serving as a

tool to archaeologists in their speculations about various functional aspects of the

Temple.
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Figure 8.12: Layout of the amphitheater. Seats are color-coded from red (best
seats) to green (worst seats). Spacing between neighboring seats is defined as
0.6m in left-right direction and 1.0m in front-back direction. The setting shown
includes 201 seats.

8.2.2 Temple Precinct Environmental Model

We divide the entire space of the Temple Precinct, which can be bounded by

a 180m (l) × 60m (w) × 30m (h) box, into 20 regions, including the entrance

area, the lower and upper squares, the temple, the amphitheater, and the stairs

connecting different regions, including those beneath the amphitheater that lead to

its auditorium. Objects such as columns and walls are automatically loaded during

map initialization. This large model consists of over 410,000 triangles and occupies

about 22 MB of memory for its geometry and textures. To prepare the entire model

for use by our autonomous pedestrians, our environment data structures consume

an additional 65 MB of memory.

A key issue of interest from the archaeological perspective is to determine how
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Figure 8.13: Amphitheater filled with audience (201 people seated).

many people can sit in the amphitheater and how efficiently they enter and exit

it. To this end, we developed a new specialized environment object to model the

amphitheater inside the temple. According to several user-specified parameters

loaded upon initialization, the theater object defines the locations of the stage and

the auditorium including the arrangement of the seats. During simulation, the

environment object keeps track of the size of the audience and where each member

of the audience sits.

In our simulations, we set the amphitheater parameters such that isle space

is reserved in order for people to reach their seats, even when the auditorium is
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almost full. Regions from which the stage area is largely occluded are excluded

as possible seating areas. Figure 8.12 illustrates the amphitheater layout in our

simulation tests.

8.2.3 Simulation Example and Results

An animation example that is typical of our simulation tests within the Petra

Great Temple environment unfolds as follows: In the beginning, the simulation

demonstrates hundreds of pedestrians entering the Temple Complex through the

Propylaeum—its grand entryway. On the Lower Temenos, the stream of pedestri-

ans separates to approach the two stairways on the east and west sides. Proceed-

ing to the Upper Temenos, the pedestrians enter the Great Temple via the three

small staircases. Once inside the Temple, pedestrians approach the amphithe-

ater entrance stairs located on the east and west sides beneath the amphitheater.

Through two arched gates each pedestrian autonomously enters the auditorium,

selects a seating area, determines a way to get to a selected seat and sits down. Af-

ter everyone has entered and taken a seat, a “tour guide” comes to the center stage

to enact the delivery of a short lecture about the Great Temple. At its conclusion,

the audience rises and starts to evacuate the amphitheater through the two narrow

arched gates, which are hardly wide enough to accommodate two pedestrians side

by side. Exiting the same way they entered, the pedestrians leave the Temple

through the Propylaeum. Successive sample frames from the animation are shown

in Figures 8.14–8.16.

Note that in order to function properly in the described scenario within the

amphitheater environment, our autonomous pedestrians require several naviga-
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(a) (b)

(c) (d)

(e) (f)

Figure 8.14: Petra Great Temple animation snapshots.
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(g) (h)

(i) (j)

(k) (l)

Figure 8.15: Petra Great Temple animation snapshots (continued).
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(m) (n)

(o)

Figure 8.16: Petra Great Temple animation snapshots (continued).

tional and motivational behavior routines in addition to those that we developed

in Chapter 4. In particular,

1. a seat selection behavior to pick a seat in the auditorium;

2. a navigation behavior to reach the selected seat to sit down; and

3. an exit behavior to leave the auditorium.

The first routine is similar to those described in Appendix B. In the second rou-

tine, a pedestrian will regard other seated pedestrians as static obstacles rather
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than mobile objects, and will appropriately apply detailed-path-planning and sta-

tic obstacle avoidance routines to reach the selected seat. Finally, in the third

routine, a pedestrian will simply follow pedestrians ahead of him/her in order to

exit the auditorium.

Our simulation experiments reveal that, given the structure of the amphithe-

ater and with an inter-personal distance (i.e., the distance between the centers of

two neighboring people) set to 0.6m for left-right and 1.0m for front-back, the am-

phitheater can accommodate approximately 201 people comfortably (Figure 8.13).

It requires approximately 7–8 minutes for the audience to enter and fill the am-

phitheater and approximately 5 minutes to exit and evacuate the amphitheater.

Note that the two arched stairways leading from underneath the amphitheater to

its auditorium are the only avenues for people to enter and exit; thus, as expected,

they become bottlenecks to pedestrian traffic.
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Chapter 9

Conclusion

In a departure from the substantial literature on so-called “crowd simulation”, we

have developed a decentralized, comprehensive model of pedestrians as autonomous

individuals capable of a broad variety of activities in large-scale synthetic urban

spaces. Our artificial life approach spans the modeling spectrum from pedestrian

appearance, motion, perception, behavior, to cognition.

In addition, we presented a methodology for modeling large-scale urban envi-

ronments that facilitates the animation of numerous autonomous virtual pedestri-

ans. Our environment model, which involves a set of hierarchical data structures

(a topological map, perception maps, path maps and specialized objects), supports

the efficient interaction between pedestrians and their complex environment, in-

cluding perceptual sensing, situation interpretation, and path planning at different

scales.

We developed a simulator that incorporates the autonomous pedestrian model

and the environmental model. Our simulator enables us to deploy a multitude of
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self-animated virtual pedestrians within a large indoor environment, a VR recon-

struction of the original Pennsylvania Train Station in New York City. We also

briefly described the application of our Penn Station simulator and its autonomous

virtual pedestrians in the domain of computer vision for the design and evalua-

tion of visual sensor networks. Finally, in the domain of virtual archaeology, we

described how our autonomous pedestrian model serves in the visualization of ur-

ban social life in reconstructed archaeological sites, specifically the Great Temple

precinct of ancient Petra. Our simulation results in each of these application sce-

narios speak to the robustness of our system and its ability to produce prodigious

quantities of intricate animation of pedestrians carrying out various individual and

group activities suitable to their environment.

9.1 Limitations and Future Work

Although motion artifacts are at times conspicuous in our animation results, pri-

marily due to the limitations of the underlying DI-Guy software, the architecture

of our simulation system facilitates the potential replacement of this low-level soft-

ware package by a better character rendering and motion synthesis package should

one become available.

Despite the sophisticated pedestrian models that we have developed, the gap

between the abilities of our virtual pedestrians and those of real people remains

substantial. To further close the gap, additional behavioral abilities and reasoning

facilities must be added to the current model. Additional future work on our

models and our simulation system can be done along the following directions:
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Cooperating Pedestrians: In our work, we have focused on modeling pedes-

trians as highly competent individuals through a comprehensive artificial life mod-

eling approach that integrates motor, perceptual, behavioral, and cognitive com-

ponents. However, we have barely modeled the additional interactions inherent

to small groups of cooperating pedestrians (e.g., friends or family units), which

can be important to the realism of pedestrian animation within urban environ-

ments. To this end, models of human relationships and non-verbal communication

can be introduced. Relationships between characters will affect their behaviors.

For example, two pedestrians walking together will try to remain close to each

other. They may have different choices in certain situations when walking alone,

but they will coordinate their choices when walking together. Any conflict can be

resolved either by leadership in an asymmetric relationship (father and son) or by

non-verbal communication (such as gestures) in a symmetric one (such as close

friends).

Perception: Although the perceptual processes employed by our pedestrians are

efficient and they serve the behavior routines well, most of them employ shortcut

algorithms that make use of the world database directly. On the one hand, such

perceptual mechanisms guarantee the correctness of the extracted information. On

the other hand, however, it does not attempt to closely model the actual perceptual

processes employed by real humans. A more sophisticated approach along these

lines is referred to as synthetic vision by Noser et al. [1995]. Terzopoulos and Rabie

[1996; 1999] introduce a more biomimetic approach, which models active, foveated

visual sensors (“eyes”) and active computer vision processing for sensorimotor
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control.

Perceptual Inference: Furthermore, as we have pointed out, meaningful in-

terpretation of perceived situations is of greater value to decision making for au-

tonomous characters than raw sensed data. Currently, however, such interpreta-

tions are computed in an ad hoc manner within the world model of our system.

This choice is due to the high complexity of the problem and concerns about ef-

ficiency. In view of ever increasing computational power and given advances in

computer vision and artificial intelligence, it may soon be feasible for each individ-

ual to infer high level information (e.g., “long wait line”, “crowded portal”, etc.)

from low level sensed data (e.g., “many people”) in a biologically plausible manner.

Head (and Eye) Movement: Given the quality of the behaviors that our

pedestrians demonstrate, their lack of head movements has begun to become in-

creasingly conspicuous. Their upper bodies seem rigid relative to their natural

navigation. Therefore, it is our intention to develop a satisfactory set of subcon-

scious, reactive and deliberative head and eye motion behaviors for our virtual

pedestrian model. As eyes are the organs for visual perception, these new head

and eye movements should be correlated with perceptual attention and will in turn

introduce more intricacy into the behavioral control. A well-designed coupling be-

tween perceptual attention and head/eye movement will then become necessary.

Manipulation: For the same reason mentioned above, one should also try to

imbue our pedestrians with useful manipulation skills, such as the necessary upper

body motions for making purchases at ticket booth or vending machines. Also, it
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hasn’t escaped our notice that our train station simulations would be more realistic

if some virtual pedestrians toted luggage.

Alternatives for Reactive Behaviors: The optimal sequencing of our six re-

active behavior routines enables our pedestrians to navigate safely in a dynamic

world. Despite the satisfactory performance, this may not be the ideal approach.

Alternatively, it might be possible to integrate these reactive behavior routines

in parallel rather than sequentially, or one can devise a different set of key rou-

tines. Furthermore, instead of matching part of the current obstacle situation with

various “situation patterns” and then integrating the various responses to those

patterns to get the final response, the situation may be considered in its entirety by

a pedestrian in order to determine the appropriate reaction, as has been attempted

in the machine learning community for steering mobile robots [LeCun et al. 2005].

Externalization and Agreement: Sociologist Erving Goffman points out:

“The workability of lane and passing rules is based upon two processes

important in the organization of public life: externalization and scan-

ning.”

(E. Goffman. 1971. Relations in public: Microstudies of the public

order, Page 11.)

Here, externalization is the “process whereby an individual pointedly uses overall

body gesture to make otherwise unavailable facts about his situation gleanable”

[Goffman 1971]. Scanning is a reciprocal process in which an individual, as he
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moves along, visually gauges the intentions of others which are in the front of a

close circle around him. These two processes have been modeled to an extent in

the sensory processes and the reactive behavioral level for our pedestrians such

that they can avoid collisions with other pedestrians. Future work that would en-

able our pedestrians to resolve such conflicts more smoothly would engage a further

mechanism—an implicit agreement established by mutual signals between conflict-

ing pedestrians (through what Goffman called “body check” and “checked-body-

check”). Such agreements are often employed in real life when two pedestrians tie

in an avoidance situation. Sooner or later (usually after several attempts) they will

agree on who takes what resource, mostly through non-verbal (sometimes verbal)

communication. Such mechanisms should be implemented in our pedestrians.

User Interaction: Our system enables the user (animator) to change the way a

simulation runs through configuration files, which are used to initialize the simula-

tor. In these files, users can change numerous parameters, including environment

settings (such as region decomposition) and pedestrian settings (such as total num-

ber, their types, personal traits, initializations, etc.). During real time simulation, a

user can also control a pedestrian interactively by issuing motor control commands

(locomotion speed and direction) via the keyboard, in a manner similar to that

commonly used in computer games. Just like the motor control commands issued

by the higher-level autonomous behavior controllers of the autonomous pedestrian

model, the user’s interactive motor commands will go through the set of reactive

behavior routines for a safety check. The interface enables users to control a pedes-

trian to walk around without worrying about obstacle avoidance. We also provide
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an interactive interface for users to input high level directions to a pedestrian, such

as asking him to go to a specific place, to get a ticket, or to find a seat and take

a rest. Future work would give users the option of initializing a simulation via an

interactive interface without using any configuration files. A more ambitious goal

is a user to control several pedestrians at once.

Improving the Animation Frame Rate: We pointed out that the visualiza-

tion frame rate of our fully rendered online simulation is dominated by rendering.

We have already made use of levels of detail for both character geometry and

motion as provided by the low-level DI-Guy API. However, the large number of

pedestrians and the large Penn Station model impose a heavy rendering burden.

By using advanced rendering techniques and tricks, such as culling and impostors,

this problem may be mitigated in the future.

In closing, our animation results show that, like real humans, our autonomous

virtual pedestrians demonstrate rational behaviors reflective of their internal goals

and compatible with their external world. Although the gap between real and

synthetic humans remains substantial, our progress makes us confident that the

end result of related research in the fields of computer graphics and animation,

artificial life/intelligence, robotics, simulation, as well as cognitive science, biology,

physiology, psychology, ethology and sociology, will continue to narrow the gap

until it eventually closes.
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Appendix A

Ordering the Reactive Behavior

Routines

In Chapter 4, we presented the six key reactive behavior routines and briefly de-

scribed how they are activated sequentially in a best permutation ordering that we

found via an exhaustive search (cf. [Reynolds 1993]), evaluating the performance

of all 720 possibilities. Here in this appendix, we will present more details of this

exhaustive search, explaining the criteria and discussing the result.

A.1 Fitness – The Performance Measure

For each permutation ordering of the six routines, an identical set of simulations

given in Table A.1 is run and the results are summarized to a single value called

“fitness”. As a measure of the performance of a permutation, fitness is defined in

Table A.2.

We put two factors, liveness and safety, in the definition of agent fitness, because
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Environment Number Simulation Length
Setting of Agents (in Virtual Time)

A Simple Synthetic 100 three 20-min simulations with
Environment ∗ different initial configurations
Penn Station 210 three 20-min simulations with

different initial configurations
Penn Station 500 one 20-min simulation

Table A.1: The set of simulations for permutation search.
*: This environment is shown in Figure A.1.

we believe both of them are crucial to the realism of a pedestrian model. However,

these two conflict with each other. Although we can always guarantee one of them

by sacrificing the other, the most desirable is to have both of them in harmony—

collisions shall surely be avoided and meanwhile pedestrians shall moving in their

pleasant pace. The fitness value is such a measure that reveals the tradeoff between

the two factors. It has the range from 0 to 1 and the closer to 1 the better.

A.2 Result Analysis

In Figure A.2, we show the plot of fitness values of all the 720 possible permuta-

tions. The y-axis in this plot shows the fitness score of each permutation ordering

along the x-axis. The plot seems to be a chaos at the first glance. But when

examining it carefully, we notice that in the middle of the diagram near x = 240,

there is a sharp boost in fitness value. In fact, x = 240 corresponds to the last

permutation ordering starting with Routine B (B − F − E − D − C − A) and

x = 241 is the first starting with Routine C (C−A−B−D−E−F ). The sudden

increase happens exactly from x = 240 to x = 241 and fitness values stay high for
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Figure A.1: A simple synthetic environment. The environment can be bounded
by a 110 × 110m2 box. In the picture, dark blue objects are obstacles, thin long
green objects are walls and red dots are agents.

a while after x = 241. Now let us look at Fb and Fc, the two sets of fitness values

of permutations starting with Routine B and C, respectively, shown by two red

circle in the figure: Fb = {y(x)|x ∈ [121, 240]} and Fc = {y(x)|x ∈ [241, 360]}.
It is obvious from the plot that most values in Fb are much smaller than those in

Fc. (Actually the mean of Fb is smaller than the minimal value of Fc.) Therefore,

we can conclude that permutations C − ∗ ∗ ∗ ∗ ∗ are generally better than B − ∗ ∗
∗ ∗ ∗. By similar observation, together with further data analysis such as sorting
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System fitness F = 1
N
×∑N

i=1 Fi (N is the number of agents)

Agent fitness Fi = (Si × Li)
4

Safety factor Si =

{
(1− Ci

50
)2 if Ci < 50

0 otherwise

Collision frames Ci = the average number of frames in every 10000 frames
that pedestrian i involves in collision with
either stationary obstacles or other agents

Liveness factor Li =

{
1 if Ri > 0.5
(2× Ri)

8 otherwise

Speed ratio Ri = average speed of pedestrian i in simulation
his preferred speed

Table A.2: Definition of fitness.

permutations by partial ordering and comparing shape of different parts of the

plot, etc., we found the following fact with a permutation P :

• Those starting with A and B usually give poor performance.

• The later D appears in P , the better the performance will be.

• It’s better for C to appear before A, but no need for them to be adjacent.

Fb 

Fc 

x = Indices of Permutations y 
= 
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s 
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Figure A.2: Plot of fitness values of all permutations.
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P 
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R 

P 

Figure A.3: Explanation of the order of C − A: pedestrian H can avoid obstacles
by simply following the crowd and letting others (those labeled P ) deal with them.
So can pedestrian R.

• It’s better for A to appear before B, but no need for them to be adjacent.

• If F appears earlier than C, D and E, it has the exact same performance as

if F is omitted. (This is obviously true as routine F is designed to correct

directions picked by routines C, D or E. If they are not executed, F will

have no effect.)

Actually, almost all of the high performance permutations have A before B and

after C and have D at the end. It is difficult to fully explain the result of the per-

mutation search. We humbly provide our speculative explanation in the following

and hope it will be inspiring to readers.

1. The order of C −A. Imagine a crowd, among which there is pedestrian H ,

moves at a certain direction. Chances are that H , if not on the edge of the crowd,

will not bump into a stationary obstacle as long as he stays within the crowd, since
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the people on the boundary of the crowd may have already dealt with the obstacle,

if any, and have steered the crowd to a safe direction (see Figure A.3. So the only

thing H need to do is to stay within the crowd by using routine C. The order of

C − A allows a pedestrian to take advantage of efforts made by others—“let the

others do the obstacle avoidance job and by following the crowd I probably do not

have to do it at all”.

2. The order of A−B. Put B after A is sensible as whenever we want to check

a turn, the turn itself should better be already determined. Otherwise, the check

is a waste of effort. In the six routines, only A will change the turning angle so big

that the turn may need more than one step to finish. Therefore, it is better for A

to appear before B.

3. The later appearance of D. D is to avoid the pedestrians coming toward

me (either from side or front) that may cause potential collision on my future

trajectory. Generally speaking, it considers pedestrians a bit far away and therefore

its situations are usually not as urgent as those in other routines. So all of the

avoiding options in D are small changes in either moving speed or turning angle

or both, which means motor control command issued by the previous routine is

likely to be preserved. If D appears early in a permutation, other routines may

likely overwrite D’s motor control command with their bigger changes. However,

if it gets executed at the end, its result will surely remain untouched while motor

control command issued by the previous routine is preserved as well (or only slightly

altered).
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4. “Flexibility” of E and F . If routines A, B, C, and D are perfectly designed,

almost all danger situations will be dealt with at their early stages and it is most

likely that situations described in E and F will hardly happen. So ideally, E and

F do not provide as much help as the other four. On the other hand, even if E and

F might help a lot, both of the avoiding options for them involve “slowing down to

a stop” should a threat be detected and subsequent reactive behavior routines will

hardly have any effect on a pedestrian if he has already stopped. Therefore, given

that a threatening situation described by E or F confronts the pedestrian, he will

almost always have the same reaction–slow down to a stop–regardless of the order

of the reactive behavior routines, which makes E and F fit anywhere. However, in

some cases early routines may redirect the pedestrian such that the original threat

does not block the way any more but new threats appear. Due to the existence of

such occasions, the positions of E and F do affect the performance a bit, but the

effect is not strong enough for us to figure out the rule. So they appear “flexible”

to us.

Permutation 333 Agents 666 Agents 1000 Agents
CABFED 4 22 84
FCABED 3 25 85
CEABFD 3 23 94
CAFBED 4 24 99
ECABFD 1 31 102

Table A.3: Result performance. Average number of collisions happened in sim-
ulations with different number of pedestrians using various best permutations of
reactive behaviors.

Before this exhaustive search, we had originally designed, out of our intuition,

the order of reactive behavior routines to be simply A − B − C − D − E − F ,

which corresponds to x = 1 in the plot in Figure A.2. This choice turned out
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to have the performance no better than the average. Table A.3 lists some of the

best permutations we found together with the number of collisions that happened

in several Penn Station simulation experiments (with each being 20 minutes long

in virtual time, or 36000 frames) with different number of pedestrians. (In our

implementation, we do not impose hard constraint to prevent collisions.) Most of

the collisions are human-human and less than 3% are human-obstacle. Collisions

usually last no more than 1 second and for the human-obstacle type collisions,

obstacle-crossing (e.g., moving “across” a solid wall) never happens.

Despite the satisfactory performance, our approach at the reactive behavior

level may not be the only good answer. Alternatively, it might be possible to

integrate these reactive behavior routines somehow “in parallel” instead of “se-

quentially” or one can even come up with another set of key routines.
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Appendix B

Additional Motivational Behavior

Routines

In this appendix, we describe several representative higher level behavior routines

in detail. As mentioned in Chapter 4, these routines depend greatly on other

routines that are beneath them in our bottom-up behavioral hierarchy, including

navigational behaviors and reactive behaviors, as well as a collection of action

level motor skills, such as walking, running, turning while moving, turning at the

spot, standing, sitting, etc. In addition, they also rely on specialized environment

objects for abstract level interpretation of situation in order to make decisions.

Next we detail the routines.

B.1 Surround Artists and Watch Performance

Suppose a pedestrian is attracted by a performance nearby, he will use the routine

shown in Table B.1 to approach the performance and watch it until he leaves. In the

153



dancing artists 

wall 

performance 
area 

watching 
point p 

watcher-to-be 

about to leave 

Figure B.1: Approach and watch performance. The yellow pedestrian is interested
in the performance. He finds an available spot and approaches it. Among the
current watchers, there are two (in blue) on the right who are about to leave. And
outside the area, pedestrians (in green) are constantly passing by.

routine, A is the performance area defined as a (part of) circular area surrounding

the performing artists, illustrated in Figure B.1.

In Step 2, a pedestrian will use detailed path-planning to find an available

watching point and plan a path to it simultaneously. He first puts the performance

area A as a target on a grid path map and then add every watcher surrounding

the area as a static circular obstacle, which can effectively prevent path search

to access the target area through its standing point. This can lead path search

toward the nearest available interval space around the area, if one exists. In cases

when no space is available, the pedestrian can either give up or enlarge the target

performance area by the size of pedestrian bounding box and try finding a path

again. This probabilistic strategy leads to a sparse second layer of watchers.

In order to quickly identify all the current watchers, a pedestrian needs the help
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1. If A is still far away, use navigation behaviors to approach A.
2. Once A is close enough, find an available watching point p around A.
3. Use detailed arrival behavior to approach and reach p.
4. Turn to face the performance.
5. Watch the performance for a while.
6. Turn to face the outside.
7. Leave the performance.

Table B.1: Surround artists and watch performance

from a specialized object—the performance area object. This object keeps track of

the watchers that surrounding the area. Whenever a new watcher joins, it will be

registered into the watcher list. Once it leaves, it will be removed. These operations

are triggered by the watchers themselves. If a watcher-to-be is approaching and is

close to its watching position (say one meter away), he will request a registration.

This also in a way resolves conflict of two watchers-to-be competing a spot big

enough for only one. The first one that issues the registration request will get

the spot. It is fair enough as the first issuer is usually also the closer one. When

he leaves the performance area, a watcher will issue a remove request once he is

far away enough (say more than one meter away). Specifically in the routine, the

registration request is usually issued late in Step 3 and the removing request late

in Step 7.

B.2 Make a Purchase

When a pedestrian need to get something T , say a ticket or a drink, through a

purchase, the routine “make a purchase” shown in Table B.2 will be employed.
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ticket booth 
open windows closed window 

wait line 

vending machine 

wait line 
about to leave 

head 
tail 

Figure B.2: Get on the line and make a purchase. A yellow pedestrian on the
left is going to wait on the line for tickets. The other yellow pedestrian in the
front of this line, is about to take the transaction spot just available as the blue
pedestrian leaves. On the right side, a wait line also forms for purchasing drink
from a vending machine. Red triangles are pedestrians who are currently making
purchases. With other pedestrians (in green) constantly passing by, the situation
is difficult to analyze without the help of specialized objects.

1. Find out all places within the current region that sell T .
2. Pick the best one B among them in terms of proximity and expected

wait time.
3. If B is far
4. use navigation behavior to approach it.
5. else if there is a spot available in B for transaction
6. approach and take it.
7. else
7.1 Go and stay behind the last person on the waiting line.
7.2 Wait either patiently or impatiently.
7.3 If the line moves forward, follow it to move forward.
7.4 If I become the first on the line and a spot for transaction is available
7.5 then approach and take the spot.
8. Make a purchase at the transaction spot.
9. Leave the transaction spot.

Table B.2: Make a purchase
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In Step 2, a routine similar to passageway selection (see Table 4.2) will be used

for the pedestrian to make a choice among several available purchasing places. In

Step 7.2, one of several waiting motions of different styles in the motion repertoire

will be picked in a probabilistic way to express the (im)patience of the pedestrian.

Like the routine in last section, “make a purchase” requires two types of spe-

cialized objects to help it analyze the situation. The wait-line object which keeps

track of the waiting pedestrians on the line will tell a pedestrian how many people

are on the line, who is the first and who is the last. The purchase-point object can

point out whether a transaction spot is available for taking. And similarly, pedes-

trians need to issue requests to register themselves into and remove themselves

from those specialized objects. Given that there are other pedestrians constantly

passing by (as shown in Figure B.2), the help of these specialized objects are crucial

to situation analysis and decision making.

B.3 Take a Rest

The last example (see Figure B.3) is the routine that enables the pedestrian to take

a rest as shown in Table B.3. The basic structure is pretty much the same as the

previous two. The selecting behavior here uses the resting comfort in addition to

proximity as the criteria. And as usual, there is a specialized object—seat-space,

which tracks all the available spaces on a resting facility—that helps the execution

of this behavior routine.
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long benches 

about to leave 

Figure B.3: Pick a comfortable seat and take a rest. There are four long benches
in this figure. Characters in dark gray are currently sitting on the benches. A
blue character is about to leave the left-most bench, on which a yellow character is
going to sit. On the upper right side, another yellow pedestrian also want to take
a rest. With two choices close to him, he picks the more comfortable one (in the
sense of more space) and proceed to it. Other pedestrians that pass by are shown
in green.

1. Find all seats around within the current region.
2. Pick the best available one B among them in terms of proximity and

expected resting comfort.
3. If B is far, use navigation behavior to approach it.
4. Once B is close, plan a detailed-path and use detailed arrival behavior

to approach and reach it.
5. When in front of the seat, turn to face the correct direction and sit down.
6. Sit for a while.
7. Stand up and leave the seat.

Table B.3: Pick a comfortable seat and take a rest
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B.4 Summary

To summarize, the routines described in this appendix represent a big category

of meaningful behaviors suitable for pedestrians. Such behaviors involve inter-

personal conflicts among pedestrians on available resources [Mataric 1994]. While

everyone is trying to maximize its own benefit through various selecting behaviors

in resolving these conflicts, they shall at the same time obey rules that are explicitly

or implicitly defined for the sake of others in the society. It is exactly the balancing

of these two sides that makes their ultimate behaviors appear to be natural and

rational.
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Appendix C

Motion Analysis and Synthesis

The human animation package DI-Guy we have been using provides a variety of

colored and textured human models. It frees us from the tedious work of creating

different character models. But at the same time, unfortunately, the software

restrains us to use only the motion repertoire and blending algorithms that come

with the package, allowing only limited flexibility in customization. As the software

was originally designed for users to make animation out of scripts, it suffers from

limited amount of motion data and non-optimal quality of synthesis algorithms

when used to produce realtime animation. In the this appendix, we provide a

motion analysis and synthesis framework we designed as an alternative to our

current motor level implementation for interested readers.

To get high fidelity behavioral animation, we choose to use a data-driven ap-

proach to synthesize human motions, especially pedestrian motions. To prepare a

motion database, our system first analyzes a given motion library and transforms

the data into a composite network structure for the sake of search efficiency. In
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the synthesis phase, heuristic graph traverse is used to find, in this network struc-

ture, motion sequences with certain properties. After a set of modification these

sequences are pieced together to create the target motion. Now we describe our

method in detail.

C.1 Find Constraints

As we focus on modeling human pedestrians, locomotion is the type of motion that

interests us most. The most important constraint for locomotion is foot-plant. In

order to save time and effort, we incorporate a simple but effective method to

automatically detect foot-plant constraints in motions as follows:

1. Both feet are labeled as unconstrained for every frame.

2. Compute the vertical position py and velocity magnitude |v| of two reference

points (one attached on heel and the other on toe) for each foot at each frame.

As we assume all motion data are recorded on a flat ground, if py and |v| are

below their respective threshold Tpy (= 10cm) and Tv (= 1.25cm/frame) for

reference point P of foot F at frame i, then we will label F as to be planted

at P for frame i.

3. Compute acom, the vertical acceleration of the body COM (center of mass),

for those frames that are still unlabeled (i.e., neither foot is planted so far).

Theoretically, if acom is bigger than gravity constant g (assuming g takes the

minus sign), there must be some upward supporting force underneath the

body, which infers the existence of planted points. In practice, we choose
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0.33g as a clamp value (see Gsupport in Table C.2) and run Step 2 again with

new thresholds (Tpy = 10cm, Tv = 2.5cm/frame) on those frames whose

acom are bigger than 0.33g. The choice of 0.33g makes sure that this process

will not mistake an unsupported case as supported, although it may fail to

detect a right one.

4. Label all the unconstrained frames as “neither”, which means neither foot is

planted. Thus every frame has some constraint.

5. To maintain certain level of continuity, abrupt constraint changes are re-

moved: for a constraint that lasts a tiny period of time, say less than Fc

frames (currently set to 2), we replace the first half of the frames with their

predecessor’s constraints and the second half their successor’s. This process

is iterated until no change is needed.

In the above method, finite difference is used for velocity/acceleration compu-

tation. In order to compute the body COM position, we attach a set of reference

points (or “point cloud”) to different skeletal parts of our character model. These

points are properly weighted and distributed all over the body (see figure C.1)

according to an anthropometry study by Naval Biodynamics Laboratory [Naval

Biodynamics Laboratory 1988]. We utilize the cloud of points to effectively ap-

proximate the mass distribution of a character body at different postures. In this

way, body COM position is simply the weighted spatial average of these points.
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Skeleton

Weighted
Points

Figure C.1: Weighted point cloud on a skeleton. Center of each light blue circle
is the position of a point and the size of each circle indicates the weight of that
point.

C.2 Compute Similarity Values

In order to determine how similar two motion clips are, we compute the aligned

difference between postures of the two motions. Here we use the point cloud model

again. As mentioned before, during any motion the cloud of points will move with

their attached body parts, which approximately gives the body weight distribution

for different postures. With this, we define our similarity function D as the sum of

weighted distance between aligned point clouds of frame segments from two motion
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clips:

D(A, i, B, j) =

Lf−1∑
t=0

Np−1∑
k=0

wk ×Dp(A, i + t, B, j + t, k) (C.1)

where

1. A and B are motion clips;

2. i and j are frame numbers;

3. Lf is a predefined constant indicating the length of frame segment used for

similarity computation;

4. Dp(A, i, B, j, k) is the distance between the two “kth points” in frame A(i)

and B(j) respectively;

5. Np is the number of points in the predefined point cloud;

6. wk is the predefined weight associated to the “kth point” in the point cloud;

and

7. (A, i, B, j, Lf) must be compatible, whose meaning will be explained later;

Otherwise D(A, i, B, j) = inf.

It is clear from the definition of the similarity function that smaller values

indicate the two motions are more similar to each other. As smooth blends require

more information than can be obtained at individual frames, we use a segment of

Lf continuous frames to effectively include the important kinematic information

(such as velocity, acceleration and higher order derivatives) of body parts into

account. To remove the difference of global transformation (rotation around the

vertical axis and translation), we align up two sequences of point clouds based on
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Pairs of (L, L) (R, R) (B, B) (N, N) (L, B) or (R, B) or Others
constraints (B, L) (B, R)

Compatible Yes Yes Yes Yes Yes Yes No

New L R B N L R N/A
constraint

Table C.1: Compatible pairs of constraints. Foot constraints abbreviation: L –
left, R – right, B – both, N – neither.

1) the body COM (center of mass) positions, and 2) the root joint facing directions

of the two first frames. This alignment process will be used again later in both

transition construction and motion synthesis.

In equation C.1, we require (A, i, B, j, Lf ) to be compatible. This means that

each correspondent frame pair of segments A(i), A(i + 1), ..., A(i + Lf − 1) and

B(j), B(j + 1), ..., B(j + Lf − 1) must have compatible constraints, which we

define in Table C.1. This requirement avoids constraint ambiguity in transition

sequences to be generated and thus improves transition continuity.

C.3 Pick Transition Points

Using the similarity metric described above, we can compute a similarity matrix

for two motion clips A and B with each entry Mij as the value of D(A, i, B, j).

Intuitively, in this matrix, a value below a given threshold indicates a high quality

transition point and a local minimum implies a best transition point among the

neighbors. However, different kinds of motions have different kinematic properties
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and different transition fidelity requirements, and therefore need different threshold

values. We believe that the best way to find the threshold is to look back into the

original motion clips. By comparing two neighboring frame segments (say frame

1 ∼ 10 and frame 2 ∼ 11) from the same motion, we can get a quantitative concept

of the inherent similarity between different postures of this motion, which we call

the “similarity reference” value R. As this value may still vary along a motion

clip, we put the comparison down to the frame level and it can be computed by

plugging in the same motion for A and B to equation C.1. Thus R can be written

as

R(A, i) = D(A, i, A, i + Foffset) (C.2)

where Foffset is a predefined constant indicating offset frames between segments for

computation of similarity reference value. Now that every motion frame (except

those at the end of a motion clip) is assigned a similarity reference value, we can

compare every original similarity value D(A, i, B, j) with its two correspondent

reference values:

Dadj(A, i, B, j) =
D(A, i, B, j)

min(R(A, i), R(B, j))
(C.3)

where min(x, y) is the minimum function. The result of this comparison Dadj is

a uniform measurement that reveals how similar the two frame segments are with

respect to their original motions. Now we convert every matrix of D into a new

matrix of Dadj and pick local minimal values below a constant threshold Tq as

transition points. This threshold Tq is a user-defined constant which controls the

overall quality of all transition clips. In Table C.2, we list all the constants we
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Constant Type Current Function See
Name Value Description Section

Tpy threshold 10cm maximal vertical distance
(due to noise) allowed be-
tween ground and a planted
foot

C.1

Tv threshold 1.25
cm/frame

maximal speed allowed for a
planted foot

C.1

Gsupport threshold 0.33g, (g
takes minus
sign)

minimal acceleration of body
COM indicating existence of
supporting force

C.1

Fc threshold 2 frames minimal period of time that a
constraint shall last

C.1

Lf constant 10 frames the length of frame segment
used for similarity computa-
tion

C.2

Np constant 45 points the number of points in the
predefined point cloud

C.2

wk constant various ac- weight associated to kth C.2
(k = 1, 2, ..., Np) cording to k point in the point cloud

Foffset constant 1 frame the offset frames between seg-
ments for computation of sim-
ilarity reference value

C.3

Tq threshold 2.5 threshold for quality control
of transition clips

C.3

Table C.2: Constant list for motion analysis and synthesis

mentioned in this chapter and their values in our current system, which are picked

based on experiments.

C.4 Construct Transitions

For each transition point found in Section C.3, transition motion will be con-

structed via a blending process. Suppose D(A, i, B, j) is the similarity value

for a transition point. First of all, frame segments A(i) ∼ A(i + Lf − 1) and
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B(j) ∼ B(j + Lf − 1) need to be transformed so that the first frames are aligned

together in the sense that 1) body COM (center of mass) shall be at the same

position and 2) root joint orientation (around vertical axis only) shall be the same.

Then we linearly interpolate between the two aligned frame segments to compute

each frame p (0 ≤ p < Lf ) of the new transition C:

C(p) = α(
p

Lf

)×A(i + p) + (1− α(
p

Lf

))×B(j + p) (C.4)

where α(x) is a blending weight function defined as:

α(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x < 0

2x3 − 3x2 + 1, 0 ≤ x ≤ 1

0, x > 1

(C.5)

As this weight function has C1 continuity everywhere and satisfies α(0) = 1, α(1) =

0, and α′(0) = α′(1) = 0, motion continuity is maintained at both boundaries as

well as along the transition motion. Constraint continuity is implicitly guaranteed

since those pairs of segments with incompatible constraints have been already

discarded during similarity value computation, as described early. In Table C.1,

we enumerate the choice of the new constraint out of a compatible pair for new

transition frames.

C.5 Extract Footstep Information

Up to this stage, we have transformed a library of unrelated motion clips into a

directed network, as shown in figure C.2. Paths in this network system reveal

168



the possible sequences of motions that can be synthesized. However, it does not

contain any explicit information for searching, such as those that describe motion

properties. In addition, the network is composed of a great number of frames

which form a space that is too big for online searching. To solve these problems,

we construct an abstract network above the current one and embed information in

the higher level network to facilitate online searching.

To make the abstraction, we segment the current network into sequences of

frames, each of which is an “atomic action”. Currently as we are focusing mostly

on pedestrian’s locomotion, it is natural and intuitive to take a “footstep” as an

atomic action. Here footstep is a general concept. Using foot-plant constraint

information of each frame, we define footstep as follows:

A footstep is a sequence of frames whose constraint sequence is of the

form (a, a, . . . , a, b, b, . . . , b, c), where a, b and c are constraints satisfy-

ing

1. a can be “left”, “right” and “both”;

2. b sequence is an optional “neither” sequence; and

3. c can be “left”, “right” and “both” but must be different from a

if no b appears in between.

According to this definition, constraint sequences (left, left, left, both) and

(right, right, right, neither, neither, neither, right) are legal footsteps but sequences

(left, left, neither) and (neither, neither, right) are not. Intuitively speaking, foot-

steps are always bounded by frames that start a new foot-plant constraint (except

the “neither” constraint). Following this intuition, it is easy to pick out all the
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Figure C.2: From motion data analysis to synthesis.

boundary frames from the current motion network and then each frame sequence

between two neighboring boundary frames (inclusive) is a footstep. Note that

boundary frames are always used by two neighboring footsteps, which makes it

natural for them to act as the reference frame for aligning continuous sequences

together in the synthesis stage. Incomplete footsteps may appear at the end of

motion sequences and they will be discarded in the pruning stage, which will be dis-

cussed soon. After the above segmentation, we can construct a new graph (called

step graph) with each node encapsulating a footstep and each edge correspondent

to the adjacency between footsteps, as shown in figure C.2. If we assume each

footstep consists of about 10 frames, then clearly, the size of the step graph is

one magnitude smaller than the original motion network. In addition, we analyze

each footstep and store in its step graph node motion information such as moving

speed, direction change, jumping distance and so on. Such helpful information will

further improve the performance of search during online motion synthesis.
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Figure C.3: Alignment and adjustment.

C.6 Prune the Step Graph

The step graph is likely to have nodes that are not on any cycle (for instance,

those incomplete footstep nodes mentioned before). While we want to synthesize

motion continuously and indefinitely, these nodes will bring motion synthesis to

an end. Other nodes may be part of one or more cycles but nonetheless only be

able to reach a small fraction of all nodes in the graph. They will cause motion

synthesis confined to a small part of the database. To address the problem, we

find in the step graph the largest strongly connected component and eliminate all

the remaining part of the step graph. This solution guarantees non-stop motion

synthesis at the cost of motion data loss.

C.7 Synthesize Motion

Up to now, we have converted a collection of unrelated motion clips into a two-

level composition of directed graph together with descriptive information for each

atomic action. To synthesize motions, we do the following two steps.

171



1. Use a goal-directed traverse in the step graph level to find a path with certain

properties. As we are doing online synthesis, the traverse is heuristic in the sense

that breadth first search is used and only a limited number of nodes are visited

before making the final decision. This assures that search time is bounded by a

strict upper limit. To decide whether a path in step graph is correspondent to a

motion sequence that satisfies certain properties, such as “going straight forward”,

“getting closer to a target” or “turning at point p to face east”, the character’s

current global transformation and posture configuration are used as initial con-

dition. During the traverse, motion information stored in each step graph node

being visited is retrieved and combined with values from previously-visited nodes

for computation of objective functions. If a candidate satisfies the goal, the tra-

verse stops and returns the candidate. Otherwise, a set of best candidates found

so far is kept until the time limit comes. At that moment, a random one from the

set will be picked as the answer.

2. The path found in the step graph has several nodes, each of which corre-

spondent to a sequence of frames in the motion graph level. By connecting these

sequences together with proper alignment and adjustment respectively at action

and frame level, a new motion is ready. The action level alignment takes the last

frame (which is also a footstep boundary frame) of the previous atomic action as

the reference and transforms the current action rigidly as a whole to merge its

first frame with that reference frame. Adjustments happen at frame level and they

usually alter character postures (in the case of foot-plant constraint enforcement,

for instance), causing changes inside a frame. In the cases that footstep boundary
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frames are modified, we need a special adjustment to propagate, with decreasing

weights, the modification part toward both directions: forward to all frames after

the boundary and backward to all before it, as show in part (c) of figure C.3. For

online animation, such adjustment requires us to look ahead at least two footsteps.

Once the new motion sequence is ready, the algorithm goes back to step 1 again

to look for solutions with new initial condition.

C.8 Implementation and Discussion

We have implemented the above algorithms in a stand-alone Maya plug-in program

using Visual C++. This program can read in a collection of motion sequences, an-

alyze them, convert the collection to a two-level composite network structure, and

generate in real-time continuous motions with desired properties (see Figure C.4

and C.5). Currently, we restrict our objective motion properties to be spatial ones

such as “desired target point”, “desired target orientation”, etc. The system can

be extended to accommodate other properties such as those in the temporal or

posture domains. As we mentioned before, for the time being, we have not linked

this motion synthesis mechanism with our higher level pedestrian behavioral and

cognitive model, due to the interface limitation of DI-Guy, which provides us the

textured human models. However, the algorithms we provided in this appendix

can be used as a motion synthesis alternative once a better, more flexible human

animation software is available.

Motion synthesis using captured real data described here is not exactly an

artificial life approach. The ideal way is to use motion controllers in physical
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1 32 65 98 120 151 190 257 367 

262 451 533 1011 1076 

Figure C.4: Snapshots of online motion synthesis, part 1. Images in the first row
are snapshots of an animation of the original motion capture data (12 seconds in
length) in which the character is trying to drive away some bees. Images in the
second row show an animation with motions synthesized in realtime. Here the
character is asked to reach several targets marked by red circles (partly shown
in the bottom of the 2nd, 4th, and 5th image). As the available motion data
are limited, the character needs to plan several steps ahead and searches for best
answers. The blue curves coming out from the pelvis of the character are part
of the search tree at every step and the red curve is the branch he picked. Each
snapshot has its frame number shown on its lower-left corner.

simulation to drive different parts of the body to accomplish various motor skills, as

presented in [Faloutsos et al. 2001b]. However, not only are the controllers difficult

to design and thus only a limited amount of motion data can be produced so far,

but also the frame rate of such simulation is quite low even for a single character.

For now, obviously it is not suitable for realtime simulation with hundreds even

thousands of pedestrians.

Recent advance in hybrid techniques (see Chapter 2, Section 2.1) opens up new

possible ways of motion synthesis with flexibility in highly-interactive situations.

And such techniques may well be suitable for animating autonomous creatures in

future.
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1 31 61 91 121 151 181 211 241 271 301 331 361 391 

138 320 694 937 1027 

Figure C.5: Snapshots of online motion synthesis, part 2. The first row shows
snapshots of the original motion capture data (14 seconds in length). In this data
set, the character walks nervously on a flat ground, frequently stops and looks
around, seemingly looking for something. The second row of snapshots shows an
animation in which the character is asked to reach several targets on an uneven
terrain. Again motions are synthesized in realtime using only the available data. In
each image, the number near the character’s pelvis is the number of possible choices
of the next several steps ahead. The pink line coming out from the character’s lower
body is the route he chose. Note that although original motion is on even ground,
our synthesis process can smoothly adjust (see the second step in Section C.7)
the motion for uneven terrains and still maintain the natural look. Again, each
snapshot has its frame number shown beneath the image.
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